1
|
Alexandrov I, Kazakov A, Tumeneva I, Shepelev V, Yurov Y. Alpha-satellite DNA of primates: old and new families. Chromosoma 2001; 110:253-66. [PMID: 11534817 DOI: 10.1007/s004120100146] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this report we review alpha-satellite DNA (AS) sequence data to support the following proposed scenario of AS evolution. Centromeric regions of lower primate chromosomes have solely "old" AS based on type A monomeric units. Type A AS is efficiently homogenized throughout the whole genome and is nearly identical in all chromosomes. In the ancestors of great apes, a divergent variant of the type A monomer acquired the ability to bind CENP-B protein and expanded in the old arrays, mixing irregularly with type A. As a result, a new class of monomers, called type B, was formed. The "new" AS families were established by amplification of divergent segments of irregular A-B arrays and spread to many chromosomes before the human-chimpanzee-gorilla split. The new arrays contain regularly alternating monomers of types A and B. New AS is homogenized within an array with little or no homogenization between chromosomes. Most human chromosomes contain only one new array and one or a few old arrays. However, as a rule only new arrays are efficiently homogenized. Apparently, in evolution, after the establishment of the new arrays homogenization in the old arrays stopped. Notably, kinetochore structures marking functional centromeres are also usually formed on the new arrays. We propose that homogenization of AS may be limited to arrays participating in centromeric function.
Collapse
|
|
24 |
144 |
2
|
Yurov YB, Vorsanova SG, Iourov IY, Demidova IA, Beresheva AK, Kravetz VS, Monakhov VV, Kolotii AD, Voinova-Ulas VY, Gorbachevskaya NL. Unexplained autism is frequently associated with low-level mosaic aneuploidy. J Med Genet 2007; 44:521-5. [PMID: 17483303 PMCID: PMC2597925 DOI: 10.1136/jmg.2007.049312] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Autism is a common childhood neurodevelopmental disorder with a possible genetic background. About 5-10% of autism cases are associated with chromosomal abnormalities or monogenic disorders. However, the role of subtle genomic imbalances in autism has not been delineated. This study aimed to investigate a hypothesis suggesting autism to be associated with subtle genomic imbalances presenting as low-level chromosomal mosaicism. METHODS We surveyed stochastic (background) aneuploidy in children with/without autism by interphase three-colour fluorescence in situ hybridisation. The rate of chromosome loss and gain involving six arbitrarily selected autosomes and the sex chromosomes was assessed in the peripheral blood cells of 60 unaffected children and 120 children with autism. RESULTS Of 120 analysed boys with autism, 4 (3.3%) with rare structural chromosomal abnormalities (46,XY,t(1;6)(q42.1;q27); 46,XY,inv(2)(p11q13); 46,XY,der(6),ins(6;1)(q21;p13.3p22,1)pat; and 46,XY,r(22)(p11q13)) were excluded from further molecular cytogenetic analysis. Studying <420 000 cells in 60 controls and 116 children with idiopathic autism, we determined the mean frequency of stochastic aneuploidy in control and autism: (1) autosome loss 0.58% (95% CI 0.42 to 0.75%) and 0.60% (95% CI 0.37 to 0.83%), respectively, p = 0.83; (2) autosome gain 0.15% (95% CI 0.09 to 0.21%) and 0.22% (95% CI 0.14 to 0.30%), respectively, p = 0.39; and (3) chromosome X gain 1.11% (95% CI 0.90 to 1.31%) and 1.01% (95% CI 0.85 to 1.17%), respectively, p = 0.30. A frequency of mosaic aneuploidy greater the background level was found in 19 (16%) of 116 children with idiopathic autism, whereas outlier values were not found in controls (p = 0.0019). CONCLUSIONS Our findings identify low-level aneuploidy as a new genetic risk factor for autism. Therefore, molecular cytogenetic analysis of somatic mosaicism is warranted in children with unexplained autism.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
110 |
3
|
Alexandrov IA, Mitkevich SP, Yurov YB. The phylogeny of human chromosome specific alpha satellites. Chromosoma 1988; 96:443-53. [PMID: 3219915 DOI: 10.1007/bf00303039] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The chromosomal distribution of sequences homologous to 18 coned alpha satellite fragments was established by in situ hybridization. It appeared that all the cloned sequences were members of small repeated families located on single chromosome pairs. Among the sequences studied specific molecular markers for chromosomes 3, 4, 10, 11, 17, 18 and X were found. Comparison of the hybridization spectra obtained under non-stringent conditions and of restriction site periodicities in different chromosome-specific families allowed the identification of three "suprachromosomal" families, each located on a characteristic set of chromosomes. The three families together cover all the autosomes and the X chromosome. These data plus those reported previously allow part of the phylogenetic tree of chromosome-specific alpha satellite repeats to be drawn. Each suprachromosomal family has presumably originated from a distinct ancestral sequence and consists of certain types of monomers. Ancestral sequences have evolved into a number of chromosome-specific families by cycles of interchromosomal transfers and subsequent amplification events. The high homogeneity of chromosome-specific families may be a result of intrachromosomal homogenization of amplification units in chromosome-specific alpha satellite domains.
Collapse
|
|
37 |
85 |
4
|
Iourov IY, Vorsanova SG, Yurov YB. Somatic genome variations in health and disease. Curr Genomics 2011; 11:387-96. [PMID: 21358982 PMCID: PMC3018718 DOI: 10.2174/138920210793176065] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 12/29/2022] Open
Abstract
It is hard to imagine that all the cells of the human organism (about 10(14)) share identical genome. Moreover, the number of mitoses (about 10(16)) required for the organism's development and maturation during ontogeny suggests that at least a proportion of them could be abnormal leading, thereby, to large-scale genomic alterations in somatic cells. Experimental data do demonstrate such genomic variations to exist and to be involved in human development and interindividual genetic variability in health and disease. However, since current genomic technologies are mainly based on methods, which analyze genomes from a large pool of cells, intercellular or somatic genome variations are significantly less appreciated in modern bioscience. Here, a review of somatic genome variations occurring at all levels of genome organization (i.e. DNA sequence, subchromosomal and chromosomal) in health and disease is presented. Looking through the available literature, it was possible to show that the somatic cell genome is extremely variable. Additionally, being mainly associated with chromosome or genome instability (most commonly manifesting as aneuploidy), somatic genome variations are involved in pathogenesis of numerous human diseases. The latter mainly concerns diseases of the brain (i.e. autism, schizophrenia, Alzheimer's disease) and immune system (autoimmune diseases), chromosomal and some monogenic syndromes, cancers, infertility and prenatal mortality. Taking into account data on somatic genome variations and chromosome instability, it becomes possible to show that related processes can underlie non-malignant pathology such as (neuro)degeneration or other local tissue dysfunctions. Together, we suggest that detection and characterization of somatic genome behavior and variations can provide new opportunities for human genome research and genetics.
Collapse
|
Journal Article |
14 |
83 |
5
|
Yurov YB, Vostrikov VM, Vorsanova SG, Monakhov VV, Iourov IY. Multicolor fluorescent in situ hybridization on post-mortem brain in schizophrenia as an approach for identification of low-level chromosomal aneuploidy in neuropsychiatric diseases. Brain Dev 2001; 23 Suppl 1:S186-90. [PMID: 11738870 DOI: 10.1016/s0387-7604(01)00363-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fluorescence in situ hybridization (FISH) of DNA-DNA or DNA-RNA using post-mortem brain samples is one approach to study low-level chromosomal aneuploidy and selective expression of specific genes in the brain of patients with neuropsychiatric diseases. We have performed a pilot molecular-cytogenetic analysis of post-mortem brain of schizophrenic patients. Multicolor FISH on two post-mortem brain samples of normal individuals and six schizophrenic individuals (area 10 of cortex) was applied. A set of DNA probes for FISH included: (i) centromeric alphoid DNA probes for chromosomes 7, 8, 13 and 21, 18, X and Y; (ii) classical satellite DNA probes for chromosomes 1 and 16; and (iii) region-specific DNA probes for chromosomes 13, 21 and 22. A statistically significant level of aneuploidy (up to 0.5-4% of neurons) involving chromosomes X and 18 was detected in two post-mortem brains of patients with schizophrenia. These results indicate that low-level chromosomal aneuploidy could be involved in the pathogenesis of schizophrenia. FISH could be applied to extended studies of chromosomal aneuploidy, abnormal patterns of chromosomal organization and functional gene expression in situ in the neurons of the brain in different psychiatric and neurodevelopmental diseases. Schizophrenia and Rett syndrome might be considered as psychiatric diseases of special interest for molecular-cytogenetic analysis as both of them could be associated with mutations in genes involving regulation of neurodevelopmental processes in the brain.
Collapse
|
|
24 |
72 |
6
|
Iourov IY, Vorsanova SG, Yurov YB. Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics 2011; 9:452-65. [PMID: 19506734 PMCID: PMC2691674 DOI: 10.2174/138920208786241216] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/06/2008] [Accepted: 07/09/2008] [Indexed: 01/08/2023] Open
Abstract
Molecular cytogenetics is a promising field of biomedical research that has recently revolutionized our thinking on genome structure and behavior. This is in part due to discoveries of human genomic variations and their contribution to biodiversity and disease. Since these studies were primarily targeted at variation of the genome structure, it appears apposite to cover them by molecular cytogenomics. Human brain diseases, which encompass pathogenic conditions from severe neurodegenerative diseases and major psychiatric disorders to brain tumors, are a heavy burden for the patients and their relatives. It has been suggested that most of them, if not all, are of genetic nature and several recent studies have supported the hypothesis assuming them to be associated with genomic instabilities (i.e. single-gene mutations, gross and subtle chromosome imbalances, aneuploidy). The present review is focused on the intriguing relationship between genomic instability and human brain diseases. Looking through the data, we were able to conclude that both interindividual and intercellular genomic variations could be pathogenic representing, therefore, a possible mechanism for human brain malfunctioning. Nevertheless, there are still numerous gaps in our knowledge concerning the link between genomic variations and brain diseases, which, hopefully, will be filled by forthcoming studies. In this light, the present review considers perspectives of this dynamically developing field of neurogenetics and genomics.
Collapse
|
Journal Article |
14 |
67 |
7
|
Alexandrov IA, Medvedev LI, Mashkova TD, Kisselev LL, Romanova LY, Yurov YB. Definition of a new alpha satellite suprachromosomal family characterized by monomeric organization. Nucleic Acids Res 1993; 21:2209-15. [PMID: 8502563 PMCID: PMC309486 DOI: 10.1093/nar/21.9.2209] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have analyzed more than 500 alphoid monomers either sequenced in our laboratory or available in the literature. Most of them belonged to the well studied suprachromosomal families 1, 2 and 3 characterized by dimeric (1 and 2) and pentameric (3) ancestral periodicities. The sequences that did not belong to the previously known families were subjected to further analysis. About a half of them formed a relatively homogenous family. Its members were on average 80.5% identical and 89.5% homologous to the M1 consensus sequence derived from this group (39 monomers). In the genome they do not form any ancestral periodicities other than a monomeric one, and are found at least in chromosomes 13, 14, 15, 21, 22 and Y. The newly defined family was termed suprachromosomal family 4. Comparison of all 10 alphoid monomeric groups identified so far showed that the M1 sequence is closely related to the J1-D2-W4-W5 homology grouping. Notably the African Green Monkey alpha satellite, also characterized by monomeric construction, appears to be a member of the same group.
Collapse
|
research-article |
32 |
57 |
8
|
Iourov IY, Vorsanova SG, Yurov YB. Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions. Cytogenet Genome Res 2013; 139:181-188. [PMID: 23428498 DOI: 10.1159/000347053] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent genomic advances have exacerbated the problem of interpreting genome-wide association studies aimed at uncovering genetic basis of brain disorders. Despite of a plethora of data on candidate genes determining the susceptibility to neuropsychiatric diseases, no consensus is reached on their intrinsic contribution to the pathogenesis, and the influence of the environment on these genes is incompletely understood. Alternatively, single-cell analyses of the normal and diseased human brain have shown that somatic genome/epigenome variations (somatic mosaicism) do affect neuronal cell populations and are likely to mediate pathogenic processes associated with brain dysfunctions. Such (epi-)genomic changes are likely to arise from disturbances in genome maintenance and cell cycle regulation pathways as well as from environmental exposures. Therefore, one can suggest that, at least in a proportion of cases, inter- and intragenic variations (copy number variations (CNVs) or single nucleotide polymorphisms (SNPs)) associated with major brain disorders (i.e. schizophrenia, Alzheimer's disease, autism) lead to genetic dysregulation resulting in somatic genetic and epigenetic mosaicism. In addition, environmental influences on malfunctioning cellular machinery could trigger a cascade of abnormal processes producing genomic/chromosomal instability (i.e. brain-specific aneuploidy). Here, a brief analysis of a genome-wide association database has allowed us to support these speculations. Accordingly, an ontogenetic 2-/multiple-hit mechanism of brain diseases was hypothesized. Finally, we speculate that somatic cell genomics approach considering both genome-wide associations and somatic (epi-)genomic variations is likely to have bright perspectives for disease-oriented genome research.
Collapse
|
|
12 |
50 |
9
|
Alexandrov IA, Mashkova TD, Akopian TA, Medvedev LI, Kisselev LL, Mitkevich SP, Yurov YB. Chromosome-specific alpha satellites: two distinct families on human chromosome 18. Genomics 1991; 11:15-23. [PMID: 1765373 DOI: 10.1016/0888-7543(91)90097-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two types of human chromosome 18-specific alpha satellite fragments have been cloned and sequenced. They represent closely related but distinct alphoid families formed by two different types of the higher-order repeated units (1360-bp EcoRI and 1700-bp HindIII fragments) that do not alternate in the genome. The individual repeats within each family are 99% identical and interfamily homology is about 78%. Sequence analysis shows that both repeats belong to alphoid suprachromosomal family 2, but their homology is not higher than that of family members located on different chromosomes. Therefore, the two repeats shared a common origin in the recent past, although they are not the direct offspring of one ancestral sequence. Our data indicate that these two 18-specific domains have appeared as a result of two separate amplification events. Despite the high degree of homology, they are not undergoing intrachromosomal homogenization, although some variation of this process might take place within each domain.
Collapse
|
|
34 |
50 |
10
|
Iourov IY, Liehr T, Vorsanova SG, Kolotii AD, Yurov YB. Visualization of interphase chromosomes in postmitotic cells of the human brain by multicolour banding (MCB). Chromosome Res 2006; 14:223-9. [PMID: 16628493 DOI: 10.1007/s10577-006-1037-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 01/18/2006] [Indexed: 10/24/2022]
Abstract
Molecular cytogenetics offers the unique possibility of investigating numerical and structural chromosomal aberrations in interphase nuclei of somatic cells. Previous fluorescence in-situ hybridization (FISH) investigations gave hints of numerical chromosomal imbalances in the human brain, present as low-level mosaicism. However, as precise identification of aneuploidy rates in somatic tissues faces major difficulties due to the limitations of FISH using whole chromosome painting or centromeric probes, in this study low-level mosaicism in the human brain was addressed for the first time using microdissection-based multicolour banding (MCB) probe sets. We demonstrated that MCB is suitable for this application and leads to more reliable results than the use of centromeric probes in parallel on the same samples. Autosomes and the active X chromosome appear as discrete metaphase chromosome-like structures, while the inactive X chromosome is condensed in more than 95% of interphase nuclei. The frequency of stochastic aneuploidy was found to be 0.2-0.5% (mean 0.35%) per autosome pair, 2% for the X chromosome in the female brain, and 0.4% in the male brain, giving a cumulative frequency of aneuploidy of approximately 10% in the adult brain. Moreover, MCB as well as multi-probe FISH using centromeric probes revealed associated signals in a large proportion of brain cells (10-40%). While co-localized signals could not be discriminated from numerical chromosome imbalances after FISH using centromeric probes, interphase MCB allows such differentiation. In summary, MCB is the only approach available at present that provides the possibility of characterizing the chromosomal integrity of arbitrary interphase cell populations. Thus, cytogenetics is no longer limited in its application to dividing cells, which is a great step forward for brain research.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
47 |
11
|
Puechberty J, Laurent AM, Gimenez S, Billault A, Brun-Laurent ME, Calenda A, Marçais B, Prades C, Ioannou P, Yurov Y, Roizès G. Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: recombination across 5cen. Genomics 1999; 56:274-87. [PMID: 10087194 DOI: 10.1006/geno.1999.5742] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human centromeres are poorly understood at both the genetic and the physical level. In this paper, we have been able to distinguish the alphoid centromeric sequences of chromosome 5 from those of chromosome 19. This result was obtained by pulsed-field gel electrophoresis after cutting genomic DNA with restriction endonucleases NcoI (chromosome 5) and BamHI (chromosome 19). We could thus define a highly polymorphic marker, representing length variations of the D5Z1 domain located at the q arm boundary of the chromosome 5 centromere. The centromeric region of chromosome 5 was then analyzed in full detail. We established an approximately 4.6-Mb physical map of the whole region with five rare-cutting enzymes by using nonchimeric YACs, two of which were shown to contain the very ends of 5cen on both sides. The p-arm side of 5cen was shown to contain an alphoid subset (D5Z12) different from those described thus far. Two genes and several putative cDNAs could be precisely located close to the centromere. Several L1 elements were shown to be present within alpha satellites at the boundary between alphoid and nonalphoid sequences on both sides of 5cen. They were used to define STSs that could serve as physical anchor points at the junction of 5cen with the p and q arms. Some STSs were placed on a radiation hybrid map. One was polymorphic and could therefore be used as a second centromeric genetic marker at the p arm boundary of 5cen. We could thus estimate recombination rates within and around the centromeric region of chromosome 5. Recombination is highly reduced within 5cen, with zero recombinants in 58 meioses being detected between the two markers located at the two extremities of the centromere. In its immediate vicinity, 5cen indeed exerts a direct negative effect on meiotic recombination within the proximal chromosomal DNA. This effect is, however, less important than expected and is polarized, as different rates are observed on both arms if one compares the 0 cM/Mb of the p proximal first 5.5 Mb and the 0.64 cM/Mb of the q proximal first 5 Mb to the sex-average 1.02 cM/Mb found throughout the entire chromosome 5. Rates then become close to the average when one goes further within the arms. Finally, most recombinants (21/22), irrespective of the arm, are of female origin, thus showing that recombination around 5cen is essentially occurring in the female lineage.
Collapse
MESH Headings
- Blotting, Southern
- Centromere/genetics
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 5/genetics
- Contig Mapping
- Electrophoresis, Gel, Pulsed-Field
- Humans
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Oligonucleotide Probes
- Pedigree
- Physical Chromosome Mapping
- Recombination, Genetic
- Restriction Mapping
- Sequence Analysis, DNA
- Sequence Tagged Sites
- Temperature
Collapse
|
|
26 |
44 |
12
|
Yurov YB, Vorsanova SG, Iourov IY. Ontogenetic variation of the human genome. Curr Genomics 2011; 11:420-5. [PMID: 21358986 PMCID: PMC3018722 DOI: 10.2174/138920210793175958] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/22/2022] Open
Abstract
The human genome demonstrates variable levels of instability during ontogeny. Achieving the highest rate during early prenatal development, it decreases significantly throughout following ontogenetic stages. A failure to decrease or a spontaneous increase of genomic instability can promote infertility, pregnancy losses, chromosomal and genomic diseases, cancer, immunodeficiency, or brain diseases depending on developmental stage at which it occurs. Paradoxically, late ontogeny is associated with increase of genomic instability that is considered a probable mechanism for human aging. The latter is even more appreciable in human diseases associated with pathological or accelerated aging (i.e. Alzheimer's disease and ataxia-telangiectasia). These observations resulted in a hypothesis suggesting that somatic genomic variations throughout ontogeny are determinants of cellular vitality in health and disease including intrauterine development, postnatal life and aging. The most devastative effect of somatic genome variations is observed when it manifests as chromosome instability or aneuploidy, which has been repeatedly noted to produce pathologic conditions and to mediate developmental regulatory and aging processes. However, no commonly accepted concepts on the role of chromosome/genome instability in determination of human health span and life span are available. Here, a review of these ontogenetic variations is given to propose a new "dynamic genome" model for pathological and natural genomic changes throughout life that mimic those of phylogenetic diversity.
Collapse
|
Journal Article |
14 |
44 |
13
|
Yurov YB, Saias MJ, Vorsanova SG, Erny R, Soloviev IV, Sharonin VO, Guichaoua MR, Luciani JM. Rapid chromosomal analysis of germ-line cells by FISH: an investigation of an infertile male with large-headed spermatozoa. Mol Hum Reprod 1996; 2:665-8. [PMID: 9239680 DOI: 10.1093/molehr/2.9.665] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A rapid fluorescence in-situ hybridization (FISH) technique was used for direct chromosomal analysis on germ cells from an infertile male with large-headed spermatozoa. The interphase chromosomes were fluorescently-labelled using an extremely bright cyanine dye during a 5-15 min FISH procedure. Germ cells were analysed using a battery of chromosome-specific DNA probes in several consecutive rapid FISH experiments. It was found that the majority of large-headed spermatozoa contained a diploid chromosome number probably due to errors in meiosis I or II divisions, whereas the majority of spermatozoa with normal sized heads are haploid and may be utilized for selective in-vitro fertilization procedures. Rapid FISH may be useful for the detection of major chromosomal aneuploidies in germ cells as an alternative technique to standard or multicolour FISH, and may find an additional application for the chromosomal analysis of human preimplantation embryos.
Collapse
|
Case Reports |
29 |
42 |
14
|
Yurov YB, Soloviev IV, Vorsanova SG, Marcais B, Roizes G, Lewis R. High resolution multicolor fluorescence in situ hybridization using cyanine and fluorescein dyes: rapid chromosome identification by directly fluorescently labeled alphoid DNA probes. Hum Genet 1996; 97:390-8. [PMID: 8786090 DOI: 10.1007/bf02185780] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We tested DNA probes directly labeled by fluorescently labeled nucleotides (Cy3-dCTP, Cy5-dCTP, FluorX-dCTP) for high resolution uni- and multicolor detection of human chromosomes and analysis of centromeric DNA organization by in situ hybridization. Alpha-satellite DNA probes specific to chromosomes 1, 2, 3, 4 + 9, 5 + 19, 6, 7, 8, 10, 11, 13 + 21, 14 + 22, 15, 16, 17, 18, 20, 22, X and Y were suitable for the accurate identification of human chromosomes in metaphase and interphase cells. Cy3-labeled probes had several advantages: (1) a high level of fluorescence (5-10 times more compared with fluorescein-labeled probes); (2) a low level of fluorescence in solution, allowing the detection of target chromosomes in situ during hybridization without the washing of slides; and (3) high resistance to photobleaching during prolonged (1-2 h) exposure to strong light, thus allowing the use of a high energy mercury lamp or a long integration time during image acquisition in digital imaging microscopy for the determination of weak signals. For di- and multicolor fluorescence in situ hybridization (FISH), we successfully used different combinations of directly fluorophorated probes with preservation of images by conventional microscopy or by digital imaging microscopy. FluorX and Cy3 dyes allowed the use of cosmid probes for mapping in a one-step hybridization experiment. Cyanine-labeled fluorophorated DNA probes offer additional possibilities for rapid chromosome detection during a simple 15-min FISH procedure, and can be recommended for basic research and clinical studies, utilizing FISH.
Collapse
|
|
29 |
41 |
15
|
Yurov YB, Mitkevich SP, Alexandrov IA. Application of cloned satellite DNA sequences to molecular-cytogenetic analysis of constitutive heterochromatin heteromorphisms in man. Hum Genet 1987; 76:157-64. [PMID: 3475246 DOI: 10.1007/bf00284914] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cloned alpha-satellite DNA sequences were used to evaluate the specificity and possible variability of repetitive DNA in constitutive heterochromatin of human chromosomes. Five probes with high specificity to individual chromosomes (chromosomes 3, 11, 17, 18, and X) were in situ hybridized to metaphase chromosomes of different individuals. The stable position of alpha-satellite DNA sequences in heterochromatic regions of particular chromosomes was found. Therefore, the chromosome-specific alpha-satellite DNA sequences may be used as molecular markers for heterochromatic regions of certain human chromosomes. The homologous chromosomes of many individuals were characterized by cytologically visible heteromorphisms of hybridization intensity with chromosome-specific alpha-satellite DNA sequences. A special analysis of hybridization between homologues with morphological differences provided the evidence for a high resolution power of the in situ hybridization technique for evaluation of chromosome heteromorphisms. The approaches for detection of heteromorphisms in cases without morphological differences between homologues are discussed. The results obtained indicate that constitutive heterochromatin of human chromosomes has a variable amount of alpha-satellite DNA sequences. In situ hybridization of cloned satellite DNA sequences may be used as a new general approach to analysis of chromosome heteromorphisms in man.
Collapse
MESH Headings
- Base Sequence
- Chromosome Mapping
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 18
- Chromosomes, Human, Pair 3
- Cloning, Molecular
- DNA, Satellite/genetics
- Genetic Markers
- Heterochromatin/genetics
- Humans
- Karyotyping
- Nucleic Acid Hybridization
- Polymorphism, Genetic
- X Chromosome
Collapse
|
|
38 |
38 |
16
|
Yurov YB, Liapunova NA. The units of DNA replication in the mammalian chromosomes: evidence for a large size of replication units. Chromosoma 1977; 60:253-67. [PMID: 870295 DOI: 10.1007/bf00329774] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The replication of chromosomal DNA in human and Chinese hamster cell populations has been studied by means of the DNA fiber autoradiography. It was found that the rate of DNA replication for one fork in human cells varies from 0.2 to 0.9 micron/min, the average being 0.6 micron/min. In the Chinese hamster cells the rate DNA replication is greater, varying from 0.3 to 1.2 micron/min, the average being 0.8 micron/min. There are no clusters containing a great number of replication units in human and Chinese hamster cells. Sequences consisting of two or three replicons which belong to single DNA molecule have been observed, but their frequency was relatively low. The distances between the initiation points in such sequences of replicons vary from 40 to 280 micron, the average value being 130 micron. This value represents the minimum size of the replication units which have completed the DNA synthesis within 3 h of the S-period. The DNA synthesis in most replication units fails to be accomplished within the three hours of labelling. The process can be completed only in the fragments of DNA molecules of 40 to 200 micron (the average value being 100 micron) in human cells, whereas in the Chinese hamster cells the fragments of 40 to 250 micron (the average being about 140 micron) are completely replicated. Provided that the replicaton is bidirectional the complete replicons are supposed to contain two such fragments. Consequently, the greater part of replication units in mammalian cells covers the pieces of a few hundred microns in DNA molecules. The relation between replication process at the DNA molecules level and that at the metaphase chromosome level is discussed.
Collapse
|
|
48 |
34 |
17
|
Vorsanova SG, Yurov YB, Ulas VY, Demidova IA, Sharonin VO, Kolotii AD, Gorbatchevskaia NL, Beresheva AK, Soloviev IV. Cytogenetic and molecular-cytogenetic studies of Rett syndrome (RTT): a retrospective analysis of a Russian cohort of RTT patients (the investigation of 57 girls and three boys). Brain Dev 2001; 23 Suppl 1:S196-201. [PMID: 11738872 DOI: 10.1016/s0387-7604(01)00347-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder with an incidence of 2.5% in mentally retarded girls in Russia. We have performed cytogenetic studies of 60 patients (57 girls and three boys) with a clinical picture of RTT, selected according to the criteria for diagnosis of RTT defined by B. Hagberg et al. in 1996. Collection of DNA samples and fixed cell suspensions of RTT patients (37 girls and two boys) and their parents (27 patients) was established for molecular studies, for example analysis of MECP2 mutations in a Russian cohort of RTT patients. Among 60 patients 57 girls with a clinical picture of RTT had normal female karyotype (46,XX), one boy had normal male karyotype in peripheral lymphocytes (46,XY) and two boys had a mosaic form of Kleinfelter's syndrome (47,XXY/46,XY) in peripheral lymphocytes or muscle cells (with MeCP2 mutation R270X). Twenty-four mothers and parents of RTT girls had normal karyotype, two mothers had mosaic forms of Turner syndrome (45,X/46,XX) and one had mosaic karyotype (47,XX,+mar/48,XXX,+mar). We analyzed chromosome X in lymphocytes of 57 affected girls with a clinical picture of RTT using the 5-bromo-2'-deoxyuridine+Giemsa staining technique. A specific type of inactive chromosome X (so-called type 'C') with unusual staining of chromatin in the long arm of chromosome X was found in 55 (from 57) girls with RTT. This technique was positively used for presymptomatic diagnosis of RTT in five girls in earlier stages of the disease. We believe that the phenomenon of altered chromatin conformation in inactive chromosome X could be used as a laboratory test for preclinical diagnosis of the RTT.
Collapse
|
Case Reports |
24 |
33 |
18
|
Vorsanova SG, Yurov YB, Soloviev IV, Iourov IY. Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics 2011; 11:440-6. [PMID: 21358989 PMCID: PMC3018725 DOI: 10.2174/138920210793176010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/26/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022] Open
Abstract
Human molecular cytogenetics integrates the knowledge on chromosome and genome organization at the molecular and cellular levels in health and disease. Molecular cytogenetic diagnosis is an integral part of current genomic medicine and is the standard of care in medical genetics and cytogenetics, reproductive medicine, pediatrics, neuropsychiatry and oncology. Regardless numerous advances in this field made throughout the last two decades, researchers and practitioners who apply molecular cytogenetic techniques may encounter several problems that are extremely difficult to solve. One of them is undoubtedly the occurrence of somatic genome and chromosome variations, leading to genomic and chromosomal mosaicism, which are related but not limited to technological and evaluative limitations as well as multiplicity of interpretations. More dramatically, current biomedical literature almost lacks descriptions, guidelines or solutions of these problems. The present article overviews all these problems and gathers those exclusive data acquired from studies of genome and chromosome instability that is relevant to identification and interpretations of this fairly common cause of somatic genomic variations and chromosomal mosaicism. Although the way to define pathogenic value of all the intercellular variations of the human genome is far from being completely understood, it is possible to propose recommendations on molecular cytogenetic diagnosis and management of somatic genome variations in clinical population.
Collapse
|
Journal Article |
14 |
30 |
19
|
Hultén MA, Jonasson J, Iwarsson E, Uppal P, Vorsanova SG, Yurov YB, Iourov IY. Trisomy 21 mosaicism: we may all have a touch of Down syndrome. Cytogenet Genome Res 2013; 139:189-92. [PMID: 23306383 DOI: 10.1159/000346028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ever increasing sophistication in the application of new analytical technology has revealed that our genomes are much more fluid than was contemplated only a few years ago. More specifically, this concerns interindividual variation in copy number (CNV) of structural chromosome aberrations, i.e. microdeletions and microduplications. It is important to recognize that in this context, we still lack basic knowledge on the impact of the CNV in normal cells from individual tissues, including that of whole chromosomes (aneuploidy). Here, we highlight this challenge by the example of the very first chromosome aberration identified in the human genome, i.e. an extra chromosome 21 (trisomy 21, T21), which is causative of Down syndrome (DS). We consider it likely that most, if not all, of us are T21 mosaics, i.e. everyone carries some cells with an extra chromosome 21, in some tissues. In other words, we may all have a touch of DS. We further propose that the occurrence of such tissue-specific T21 mosaicism may have important ramifications for the understanding of the pathogenesis, prognosis and treatment of medical problems shared between people with DS and those in the general non-DS population.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
30 |
20
|
Vorsanova SG, Yurov YB, Alexandrov IA, Demidova IA, Mitkevich SP, Tirskaia AF. 18p- syndrome: an unusual case and diagnosis by in situ hybridization with chromosome 18-specific alphoid DNA sequence. Hum Genet 1986; 72:185-7. [PMID: 3753696 DOI: 10.1007/bf00283945] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A patient with an atypical clinical picture of 18p- syndrome is described. By the in situ hybridization technique we localized the chromosome 18-specific cloned repetitive sequence to metaphase chromosomes of the patient. The predominant hybridization of the probe was found in pericentromeric regions of homologous chromosomes 18. The amount of pericentromeric DNA measured by in situ hybridization differed between homologous chromosomes; and the number of radioactive grains was statistically greater in the normal chromosome 18 than in the aberrant chromosome 18p-. The results indicate that this probe may be useful in clinical cytogenetics for identification of aberrant chromosomes, localization of breakpoints, and studies of C-band DNA polymorphism of chromosome 18.
Collapse
|
Case Reports |
39 |
29 |
21
|
Ananiev EV, Polukarova LG, Yurov YB. Replication of chromosomal DNA in diploid Drosophila melanogaster cells cultured in vitro. Chromosoma 1977; 59:259-72. [PMID: 138582 DOI: 10.1007/bf00292782] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Replication rate and replicon sizes in chromosomal DNA of in vitro cultured diploid D. melanogaster cells were determined using autoradiography of 3H-thymidine labeled DNA. Synthesis of DNA in euchromatic and heterochromatic regions of Drosophila diploid cells occurs at different periods of the S phase which last 10 h. During the first 4 h the synthesis is observed only in euchromatic regions. The heterochromatic synthesis starts shortly before the synthesis in euchromatic regions is completed and lasts for 6 h until the end of the S phase. The cells were synchronized by 5-fluorodeoxyuridine which blocked the diploid cell DNA synthesis. Synthesis was found to start simultaneously in most euchromatic replicons. In the majority of the replicons the synthesis started at a single point and proceeded bidirectionally. The average rate of DNA synthesis per fork was 12.5 mum/h (38kb). The mean distance between the middle points of adjacent labeled regions was 70 mgm (210 kb). The size of most replicons ranged from 40 to 120 mum. - These estimates do not apply to the heterochromatic portions of the D. melanogaster genome since the measurements have been carried out on DNA preparations obtained during the first 2 h of the S phase. - On the average, a replicon can consist of 7 chromomeres since the size of a replicon in diploid cell chromosomal DNA and DNA length of a polytene chromomere average 210 and 30 kb, respectively.
Collapse
|
|
48 |
28 |
22
|
Soloviev IV, Yurov YB, Vorsanova SG, Fayet F, Roizes G, Malet P. Prenatal diagnosis of trisomy 21 using interphase fluorescence in situ hybridization of post-replicated cells with site-specific cosmid and cosmid contig probes. Prenat Diagn 1995; 15:237-48. [PMID: 7784382 DOI: 10.1002/pd.1970150307] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Interphase fluorescence in situ hybridization (FISH) with chromosome 21-specific cosmid clones was used to identify trisomy 21 in cultured and uncultured amniotic cells. Two novel site-specific cosmid clones (regions 21q22 and 21qtel) were compared with a cosmid contig (Zheng et al., 1992). Correct identification of chromosome 21 copy number was made in 65-75 per cent of trisomic cells and in 70-75 per cent of normal disomic cells by using all the tested probes. However, the chromosome 21-specific telomeric probe (cos 17F8) showed the best results due to more intense and clearly visible hybridization. Utilization of a directly fluorophorated telomeric probe using Cy3-dCTP and FluorX-dCTP allows accurate detection of chromosome 21 in a fast 'one-step' FISH procedure on uncultured interphase nuclei. In addition, we compared the efficacy of FISH analysis for the total population of interphase cells and cells in the post-replication (late S, G2) periods of the cell cycle. Selective scoring of cells in the post-replicative period (showing a pair of hybridization signals on each chromatid of the replicated interphase chromosome) increased the number of informative nuclei by up to 95-97 per cent. This approach allows cells with overlapping chromosomes, artificial double hybridization signals on separate chromatids in interphase chromosomes, background hybridization, and polyploid cells to be analysed. Application of directly labelled telomeric cosmid probes and integral analysis of hybridized nuclei in the pre- and post-replication periods of the cell cycle may help to further improve the prenatal detection of trisomy 21.
Collapse
|
|
30 |
24 |
23
|
Mashkova T, Oparina N, Alexandrov I, Zinovieva O, Marusina A, Yurov Y, Lacroix MH, Kisselev L. Unequal cross-over is involved in human alpha satellite DNA rearrangements on a border of the satellite domain. FEBS Lett 1998; 441:451-7. [PMID: 9891989 DOI: 10.1016/s0014-5793(98)01600-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It can be invoked from the theory of tandem repeat homogenization that DNA on a satellite/non-satellite border may carry sequence marks of molecular processes basic to satellite evolution. We have sequenced a continuous 17-kb alpha satellite fragment bordering the non-satellite in human chromosome 21, which is devoid of higher-order repeated structure, contains multiple rearrangements, and exhibits higher divergence of monomers towards the border, indicating the lack of efficient homogenization. Remarkably, monomers have been found with mutually supplementary deletions matching each other as reciprocal products of unequal recombination, which provide evidence for unequal cross-over as a mechanism generating deletions in satellite DNA.
Collapse
|
|
27 |
21 |
24
|
Shepelev VA, Uralsky LI, Alexandrov AA, Yurov YB, Rogaev EI, Alexandrov IA. Annotation of suprachromosomal families reveals uncommon types of alpha satellite organization in pericentromeric regions of hg38 human genome assembly. GENOMICS DATA 2015; 5:139-146. [PMID: 26167452 PMCID: PMC4496801 DOI: 10.1016/j.gdata.2015.05.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
Journal Article |
10 |
20 |
25
|
Prades C, Laurent AM, Puechberty J, Yurov Y, Roizés G. SINE and LINE within human centromeres. J Mol Evol 1996; 42:37-43. [PMID: 8576962 DOI: 10.1007/bf00163209] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A number of the Alu and L1 elements present within the centromeric regions of the human chromosomes have been analyzed by polymerase chain reaction amplification. The oligonucleotide primers were homologous to the 3' end consensus sequences of either Alu or L1 in conjunction with an oligonucleotide primer homologous to alphoid sequences specific to different chromosomes. This allowed one to detect an unusual number of Alu and L1 polymorphisms at different loci. It is proposed that this results from molecular rearrangements which occur within the alpha-satellite DNA in which they are embedded (Marçais et al. J. Mol. Evol. 33:42-48, 1991) and not because the centromeric regions are targets for new insertions of such elements. The same analyses were made on cosmids and YACs originating from the centromeric region of chromosome 21 as well as on a collection of somatic hybrids containing chromosome 21 centromere as unique common human genetic material. The results were consistent with the above hypothesis.
Collapse
|
|
29 |
18 |