1
|
Suzuki R, Yamasoba D, Kimura I, Wang L, Kishimoto M, Ito J, Morioka Y, Nao N, Nasser H, Uriu K, Kosugi Y, Tsuda M, Orba Y, Sasaki M, Shimizu R, Kawabata R, Yoshimatsu K, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Sawa H, Ikeda T, Irie T, Matsuno K, Tanaka S, Fukuhara T, Sato K. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature 2022; 603:700-705. [PMID: 35104835 PMCID: PMC8942852 DOI: 10.1038/s41586-022-04462-1] [Citation(s) in RCA: 441] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/25/2022] [Indexed: 12/30/2022]
Abstract
The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern1. In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell-cell fusion2,3, the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity.
Collapse
|
|
3 |
441 |
2
|
Saito A, Irie T, Suzuki R, Maemura T, Nasser H, Uriu K, Kosugi Y, Shirakawa K, Sadamasu K, Kimura I, Ito J, Wu J, Iwatsuki-Horimoto K, Ito M, Yamayoshi S, Loeber S, Tsuda M, Wang L, Ozono S, Butlertanaka EP, Tanaka YL, Shimizu R, Shimizu K, Yoshimatsu K, Kawabata R, Sakaguchi T, Tokunaga K, Yoshida I, Asakura H, Nagashima M, Kazuma Y, Nomura R, Horisawa Y, Yoshimura K, Takaori-Kondo A, Imai M, Tanaka S, Nakagawa S, Ikeda T, Fukuhara T, Kawaoka Y, Sato K. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 2022; 602:300-306. [PMID: 34823256 PMCID: PMC8828475 DOI: 10.1038/s41586-021-04266-9] [Citation(s) in RCA: 394] [Impact Index Per Article: 131.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022]
Abstract
During the current coronavirus disease 2019 (COVID-19) pandemic, a variety of mutations have accumulated in the viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and, at the time of writing, four variants of concern are considered to be potentially hazardous to human society1. The recently emerged B.1.617.2/Delta variant of concern is closely associated with the COVID-19 surge that occurred in India in the spring of 2021 (ref. 2). However, the virological properties of B.1.617.2/Delta remain unclear. Here we show that the B.1.617.2/Delta variant is highly fusogenic and notably more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates cleavage of the spike protein and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity compared with its parental virus. Our data suggest that the P681R mutation is a hallmark of the virological phenotype of the B.1.617.2/Delta variant and is associated with enhanced pathogenicity.
Collapse
|
research-article |
3 |
394 |
3
|
Motozono C, Toyoda M, Zahradnik J, Saito A, Nasser H, Tan TS, Ngare I, Kimura I, Uriu K, Kosugi Y, Yue Y, Shimizu R, Ito J, Torii S, Yonekawa A, Shimono N, Nagasaki Y, Minami R, Toya T, Sekiya N, Fukuhara T, Matsuura Y, Schreiber G, Ikeda T, Nakagawa S, Ueno T, Sato K. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe 2021; 29:1124-1136.e11. [PMID: 34171266 PMCID: PMC8205251 DOI: 10.1016/j.chom.2021.06.006] [Citation(s) in RCA: 374] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Accepted: 06/09/2021] [Indexed: 01/15/2023]
Abstract
Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity.
Collapse
|
brief-report |
4 |
374 |
4
|
Yamasoba D, Kimura I, Nasser H, Morioka Y, Nao N, Ito J, Uriu K, Tsuda M, Zahradnik J, Shirakawa K, Suzuki R, Kishimoto M, Kosugi Y, Kobiyama K, Hara T, Toyoda M, Tanaka YL, Butlertanaka EP, Shimizu R, Ito H, Wang L, Oda Y, Orba Y, Sasaki M, Nagata K, Yoshimatsu K, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Kuramochi J, Seki M, Fujiki R, Kaneda A, Shimada T, Nakada TA, Sakao S, Suzuki T, Ueno T, Takaori-Kondo A, Ishii KJ, Schreiber G, Sawa H, Saito A, Irie T, Tanaka S, Matsuno K, Fukuhara T, Ikeda T, Sato K. Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell 2022; 185:2103-2115.e19. [PMID: 35568035 PMCID: PMC9057982 DOI: 10.1016/j.cell.2022.04.035] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.
Collapse
|
|
3 |
215 |
5
|
Tamura T, Ito J, Uriu K, Zahradnik J, Kida I, Anraku Y, Nasser H, Shofa M, Oda Y, Lytras S, Nao N, Itakura Y, Deguchi S, Suzuki R, Wang L, Begum MM, Kita S, Yajima H, Sasaki J, Sasaki-Tabata K, Shimizu R, Tsuda M, Kosugi Y, Fujita S, Pan L, Sauter D, Yoshimatsu K, Suzuki S, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Yamamoto Y, Nagamoto T, Schreiber G, Maenaka K, Hashiguchi T, Ikeda T, Fukuhara T, Saito A, Tanaka S, Matsuno K, Takayama K, Sato K. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat Commun 2023; 14:2800. [PMID: 37193706 PMCID: PMC10187524 DOI: 10.1038/s41467-023-38435-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023] Open
Abstract
In late 2022, SARS-CoV-2 Omicron subvariants have become highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged through the recombination of two cocirculating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022. XBB.1 is the variant most profoundly resistant to BA.2/5 breakthrough infection sera to date and is more fusogenic than BA.2.75. The recombination breakpoint is located in the receptor-binding domain of spike, and each region of the recombinant spike confers immune evasion and increases fusogenicity. We further provide the structural basis for the interaction between XBB.1 spike and human ACE2. Finally, the intrinsic pathogenicity of XBB.1 in male hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provides evidence suggesting that XBB is the first observed SARS-CoV-2 variant to increase its fitness through recombination rather than substitutions.
Collapse
|
research-article |
2 |
164 |
6
|
Kimura I, Yamasoba D, Tamura T, Nao N, Suzuki T, Oda Y, Mitoma S, Ito J, Nasser H, Zahradnik J, Uriu K, Fujita S, Kosugi Y, Wang L, Tsuda M, Kishimoto M, Ito H, Suzuki R, Shimizu R, Begum MM, Yoshimatsu K, Kimura KT, Sasaki J, Sasaki-Tabata K, Yamamoto Y, Nagamoto T, Kanamune J, Kobiyama K, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Shirakawa K, Takaori-Kondo A, Kuramochi J, Schreiber G, Ishii KJ, Hashiguchi T, Ikeda T, Saito A, Fukuhara T, Tanaka S, Matsuno K, Sato K. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5. Cell 2022; 185:3992-4007.e16. [PMID: 36198317 PMCID: PMC9472642 DOI: 10.1016/j.cell.2022.09.018] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/20/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.
Collapse
|
research-article |
3 |
163 |
7
|
Kaku Y, Okumura K, Padilla-Blanco M, Kosugi Y, Uriu K, Hinay AA, Chen L, Plianchaisuk A, Kobiyama K, Ishii KJ, Zahradnik J, Ito J, Sato K. Virological characteristics of the SARS-CoV-2 JN.1 variant. THE LANCET. INFECTIOUS DISEASES 2024; 24:e82. [PMID: 38184005 DOI: 10.1016/s1473-3099(23)00813-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
|
Letter |
1 |
141 |
8
|
Chu CK, Bhadti VS, Doboszewski B, Gu ZP, Kosugi Y, Pullaiah KC, Van Roey P. General syntheses of 2',3'-dideoxynucleosides and 2',3'-didehydro-2',3'-dideoxynucleosides. J Org Chem 2002. [DOI: 10.1021/jo00270a036] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
114 |
9
|
Ferreira IATM, Kemp SA, Datir R, Saito A, Meng B, Rakshit P, Takaori-Kondo A, Kosugi Y, Uriu K, Kimura I, Shirakawa K, Abdullahi A, Agarwal A, Ozono S, Tokunaga K, Sato K, Gupta RK. SARS-CoV-2 B.1.617 Mutations L452R and E484Q Are Not Synergistic for Antibody Evasion. J Infect Dis 2021; 224:989-994. [PMID: 34260717 PMCID: PMC8420622 DOI: 10.1093/infdis/jiab368] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
The SARS-CoV-2 B.1.617 variant emerged in the Indian state of Maharashtra in late 2020. There have been fears that 2 key mutations seen in the receptor-binding domain, L452R and E484Q, would have additive effects on evasion of neutralizing antibodies. We report that spike bearing L452R and E484Q confers modestly reduced sensitivity to BNT162b2 mRNA vaccine-elicited antibodies following either first or second dose. The effect is similar in magnitude to the loss of sensitivity conferred by L452R or E484Q alone. These data demonstrate reduced sensitivity to vaccine-elicited neutralizing antibodies by L452R and E484Q but lack of synergistic loss of sensitivity.
Collapse
|
brief-report |
4 |
109 |
10
|
Kimura I, Kosugi Y, Wu J, Zahradnik J, Yamasoba D, Butlertanaka EP, Tanaka YL, Uriu K, Liu Y, Morizako N, Shirakawa K, Kazuma Y, Nomura R, Horisawa Y, Tokunaga K, Ueno T, Takaori-Kondo A, Schreiber G, Arase H, Motozono C, Saito A, Nakagawa S, Sato K. The SARS-CoV-2 Lambda variant exhibits enhanced infectivity and immune resistance. Cell Rep 2021; 38:110218. [PMID: 34968415 PMCID: PMC8683271 DOI: 10.1016/j.celrep.2021.110218] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
|
|
4 |
104 |
11
|
Saito A, Tamura T, Zahradnik J, Deguchi S, Tabata K, Anraku Y, Kimura I, Ito J, Yamasoba D, Nasser H, Toyoda M, Nagata K, Uriu K, Kosugi Y, Fujita S, Shofa M, Monira Begum M, Shimizu R, Oda Y, Suzuki R, Ito H, Nao N, Wang L, Tsuda M, Yoshimatsu K, Kuramochi J, Kita S, Sasaki-Tabata K, Fukuhara H, Maenaka K, Yamamoto Y, Nagamoto T, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Ueno T, Schreiber G, Takaori-Kondo A, Shirakawa K, Sawa H, Irie T, Hashiguchi T, Takayama K, Matsuno K, Tanaka S, Ikeda T, Fukuhara T, Sato K. Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant. Cell Host Microbe 2022; 30:1540-1555.e15. [PMID: 36272413 PMCID: PMC9578327 DOI: 10.1016/j.chom.2022.10.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
Abstract
The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency, but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.
Collapse
|
research-article |
3 |
99 |
12
|
Murthy MSRC, Swaminathan T, Rakshit SK, Kosugi Y. Statistical optimization of lipase catalyzed hydrolysis of methyloleate by response surface methodology. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/pl00009097] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
25 |
93 |
13
|
Yamasoba D, Uriu K, Plianchaisuk A, Kosugi Y, Pan L, Zahradnik J, Ito J, Sato K. Virological characteristics of the SARS-CoV-2 omicron XBB.1.16 variant. THE LANCET. INFECTIOUS DISEASES 2023; 23:655-656. [PMID: 37148902 PMCID: PMC10156138 DOI: 10.1016/s1473-3099(23)00278-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
|
Letter |
2 |
90 |
14
|
Uriu K, Ito J, Zahradnik J, Fujita S, Kosugi Y, Schreiber G, Sato K. Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant. THE LANCET. INFECTIOUS DISEASES 2023; 23:280-281. [PMID: 36736338 PMCID: PMC9889095 DOI: 10.1016/s1473-3099(23)00051-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
|
Letter |
2 |
90 |
15
|
Kosugi Y, Watanabe E, Goto J, Watanabe T, Yoshimoto S, Takakura K, Ikebe J. An articulated neurosurgical navigation system using MRI and CT images. IEEE Trans Biomed Eng 1988; 35:147-52. [PMID: 3350540 DOI: 10.1109/10.1353] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
|
37 |
87 |
16
|
Uriu K, Ito J, Kosugi Y, Tanaka YL, Mugita Y, Guo Z, Hinay AA, Putri O, Kim Y, Shimizu R, Begum MM, Jonathan M, Saito A, Ikeda T, Sato K. Transmissibility, infectivity, and immune evasion of the SARS-CoV-2 BA.2.86 variant. THE LANCET. INFECTIOUS DISEASES 2023; 23:e460-e461. [PMID: 37734391 DOI: 10.1016/s1473-3099(23)00575-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
|
Letter |
2 |
78 |
17
|
Watanabe T, Imoto I, Kosugi Y, Fukuda Y, Mimura J, Fujii Y, Isaka K, Takayama M, Sato A, Inazawa J. Human arylhydrocarbon receptor repressor (AHRR) gene: genomic structure and analysis of polymorphism in endometriosis. J Hum Genet 2001; 46:342-6. [PMID: 11393538 DOI: 10.1007/s100380170070] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diversity of biological effects resulting from exposure to dioxin may reflect the ability of this environmental pollutant to alter gene expression by binding to the arylhydrocarbon receptor (AHR) gene and related genes. AHR function may be regulated by structural variations in AHR itself, in the AHR repressor (AHRR), in the AHR nuclear translocator (ARNT), or in AHR target molecules such as cytochrome P-4501A1 (CYP1A1) and glutathione S-transferase. Analysis of the genomic organization of AHRR revealed an open reading frame consisting of a 2094-bp mRNA encoded by ten exons. We found one novel polymorphism, a substitution of Ala by Pro at codon 185 (GCC to CCC), in exon 5 of the AHRR gene; among 108 healthy unrelated Japanese women, genotypes Ala/Ala, Ala/Pro, and Pro/Pro were represented, respectively, by 20 (18.5%), 49 (45.4%), and 39 (36.1%) individuals. We did not detect previously published polymorphisms of ARNT (D511N) or the CYP1A1 promoter (G-469A and C-459T) in our subjects, suggesting that these polymorphisms are rare in the Japanese population. No association was found between uterine endometriosis and any polymorphisms in the AHRR, AHR, ARNT, or CYP1A1 genes analyzed in the present study.
Collapse
|
|
24 |
69 |
18
|
Kosugi Y, Elias S, Malinak LR, Nagata J, Isaka K, Takayama M, Simpson JL, Bischoff FZ. Increased heterogeneity of chromosome 17 aneuploidy in endometriosis. Am J Obstet Gynecol 1999; 180:792-7. [PMID: 10203646 DOI: 10.1016/s0002-9378(99)70649-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Endometriosis is a complex gynecologic disorder that may display features similar to malignancy, including aggressive growth and localized invasion of the myometrium or spread to various organs outside the uterus. Molecular studies of cancer have demonstrated that genomic instability involving chromosome 17 plays a role in the development and progression of various tumor types. These involve gain and/or loss, deletions, and mutations of candidate tumor suppressor genes (eg, BRCA1 and p53 ) on chromosome 17. STUDY DESIGN We used a 2-color fluorescence in situ hybridization method for analysis of endometriotic and normal archival tissue. Centromere-specific and locus-specific p53 probes localized to chromosome 17 were selected to study 8 patients with late-stage (severe) endometriosis. Single cells localized to endometriotic lesions or normal endometrial glands were analyzed and identified as normal or abnormal on the basis of the distribution of fluorescence in situ hybridization signals. RESULTS Overall, chromosome 17 aneuploidy was significantly greater (P <.05) in the endometriosis specimens (mean of 65%) than in normal endometrial cells (mean of 25%). No significant difference (P =.1071) in the distribution of fluorescence in situ hybridization signals was observed among the 5 normal endometrial specimens. However, significant differences (P <. 0001) were observed between the 8 endometriosis tissue specimens. CONCLUSION We found increased heterogeneity of chromosome 17 aneuploidy in endometriosis. These findings support a multistep pathway involving somatic genetic alterations in the development and progression of this common disease.
Collapse
|
|
26 |
53 |
19
|
Tamura T, Mizuma K, Nasser H, Deguchi S, Padilla-Blanco M, Oda Y, Uriu K, Tolentino JEM, Tsujino S, Suzuki R, Kojima I, Nao N, Shimizu R, Wang L, Tsuda M, Jonathan M, Kosugi Y, Guo Z, Hinay AA, Putri O, Kim Y, Tanaka YL, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Saito A, Ito J, Irie T, Tanaka S, Zahradnik J, Ikeda T, Takayama K, Matsuno K, Fukuhara T, Sato K. Virological characteristics of the SARS-CoV-2 BA.2.86 variant. Cell Host Microbe 2024; 32:170-180.e12. [PMID: 38280382 DOI: 10.1016/j.chom.2024.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/29/2024]
Abstract
In late 2023, several SARS-CoV-2 XBB descendants, notably EG.5.1, were predominant worldwide. However, a distinct SARS-CoV-2 lineage, the BA.2.86 variant, also emerged. BA.2.86 is phylogenetically distinct from other Omicron sublineages, accumulating over 30 amino acid mutations in its spike protein. Here, we examined the virological characteristics of the BA.2.86 variant. Our epidemic dynamics modeling suggested that the relative reproduction number of BA.2.86 is significantly higher than that of EG.5.1. Additionally, four clinically available antivirals were effective against BA.2.86. Although the fusogenicity of BA.2.86 spike is similar to that of the parental BA.2 spike, the intrinsic pathogenicity of BA.2.86 in hamsters was significantly lower than that of BA.2. Since the growth kinetics of BA.2.86 are significantly lower than those of BA.2 both in vitro and in vivo, the attenuated pathogenicity of BA.2.86 is likely due to its decreased replication capacity. These findings uncover the features of BA.2.86, providing insights for control and treatment.
Collapse
|
|
1 |
41 |
20
|
Yamasoba D, Kimura I, Nasser H, Morioka Y, Nao N, Ito J, Uriu K, Tsuda M, Zahradnik J, Shirakawa K, Suzuki R, Kishimoto M, Kosugi Y, Kobiyama K, Hara T, Toyoda M, Tanaka YL, Butlertanaka EP, Shimizu R, Ito H, Wang L, Oda Y, Orba Y, Sasaki M, Nagata K, Yoshimatsu K, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Kuramochi J, Seki M, Fujiki R, Kaneda A, Shimada T, Nakada TA, Sakao S, Suzuki T, Ueno T, Takaori-Kondo A, Ishii KJ, Schreiber G, Sawa H, Saito A, Irie T, Tanaka S, Matsuno K, Fukuhara T, Ikeda T, Sato K. Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell 2022; 185:2103-2115.e19. [PMID: 35568035 DOI: 10.1101/2022.02.14.480335] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 04/26/2022] [Indexed: 05/23/2023]
Abstract
Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.
Collapse
|
|
3 |
39 |
21
|
Watanabe T, Imoto I, Kosugi Y, Ishiwata I, Inoue S, Takayama M, Sato A, Inazawa J. A novel amplification at 17q21-23 in ovarian cancer cell lines detected by comparative genomic hybridization. Gynecol Oncol 2001; 81:172-7. [PMID: 11330945 DOI: 10.1006/gyno.2001.6132] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Little is known about the molecular mechanisms involved in the pathogenesis and/or progression of ovarian cancer (OC). To investigate the genomic imbalances and identify the cancer-related genes associated with this tumor, we applied comparative genomic hybridization (CGH) in OC cell lines. METHODS Chromosomal aberrations among 17 OC cell lines were analyzed with CGH. Since novel chromosomal regions, including 17q21-23, were identified, we examined the involvement of two candidate genes, PS6K and ZNF147, mapped on this chromosomal region. We examined the status of amplification and expression by fluorescence in situ hybridization as well as by Southern blot analysis and by Northern blot analysis on two candidate genes, respectively. RESULTS All lines displayed numerous chromosomal imbalances; the most frequent losses were observed on 18q22-23 (29.4%), 13q22-34 (23.5%), 9p (17.6%), 4p11-14 (17.6%), and 11p14-15 (17.6%). The most common gains were noted at 20q12-13 (47.1%), 8q23-24 (35.2%), 5p15 (23.5%), 7q32-36 (23.5%), and 20p (23.5%). High-level gains (HLGs) were detected at 20q12-13 (four cell lines), 8q24 (two cell lines), 12p11-12 (two cell lines), and 17q21-23 (two cell lines). PS6K and ZNF147 genes were amplified in two cell lines exhibiting HLGs at 17q21-23, but not overexpressed. CONCLUSIONS Our CGH data indicate that OCs have various DNA copy number changes. Among these frequent changes, 17q21-23 may harbor another tumor-associated gene(s) responsible for OC carcinogenesis.
Collapse
|
|
24 |
38 |
22
|
Kimura I, Kosugi Y, Wu J, Zahradnik J, Yamasoba D, Butlertanaka EP, Tanaka YL, Uriu K, Liu Y, Morizako N, Shirakawa K, Kazuma Y, Nomura R, Horisawa Y, Tokunaga K, Ueno T, Takaori-Kondo A, Schreiber G, Arase H, Motozono C, Saito A, Nakagawa S, Sato K. The SARS-CoV-2 Lambda variant exhibits enhanced infectivity and immune resistance. Cell Rep 2022; 38:110218. [PMID: 34968415 DOI: 10.1101/2021.07.28.454085] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 05/22/2023] Open
Abstract
SARS-CoV-2 Lambda, a variant of interest, has spread in some South American countries; however, its virological features and evolutionary traits remain unclear. In this study, we use pseudoviruses and reveal that the spike protein of the Lambda variant is more infectious than that of other variants due to the T76I and L452Q mutations. The RSYLTPGD246-253N mutation, a unique 7-amino acid deletion in the N-terminal domain of the Lambda spike protein, is responsible for evasion from neutralizing antibodies and further augments antibody-mediated enhancement of infection. Although this mutation generates a nascent N-linked glycosylation site, the additional N-linked glycan is dispensable for the virological property conferred by this mutation. Since the Lambda variant has dominantly spread according to the increasing frequency of the isolates harboring the RSYLTPGD246-253N mutation, our data suggest that the RSYLTPGD246-253N mutation is closely associated with the substantial spread of the Lambda variant in South America.
Collapse
|
|
3 |
38 |
23
|
Musha T, Kosugi Y, Matsumoto G, Suzuki M. Modulation of the time relation of action potential impulses propagating along an axon. IEEE Trans Biomed Eng 1981; 28:616-23. [PMID: 6274785 DOI: 10.1109/tbme.1981.324751] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
|
44 |
36 |
24
|
Kosugi Y, Sase M, Kuwatani H, Kinoshita N, Momose T, Nishikawa J, Watanabe T. Neural network mapping for nonlinear stereotactic normalization of brain MR images. J Comput Assist Tomogr 1993; 17:455-60. [PMID: 8491911 DOI: 10.1097/00004728-199305000-00023] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We present techniques of automatic nonlinear transformation of MR images (2D or 3D). A neural network automatically finds the corresponding parts between the subject's brain images and the standard images. By iterative operations, the network generates a set of image-shifting vectors to realize a plastic transformation. For precise matching, a set of markers can be placed manually before starting the transformation on landmarks of the images, e.g., on the anterior-posterior commissural line and on the central sulcus.
Collapse
|
|
32 |
36 |
25
|
Ando S, Ishikawa K, Ishida H, Kawarabayasi Y, Kikuchi H, Kosugi Y. Thermostable aminopeptidase from Pyrococcus horikoshii. FEBS Lett 1999; 447:25-8. [PMID: 10218575 DOI: 10.1016/s0014-5793(99)00257-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
From the genome sequence data of the thermophilic archaeon Pyrococcus horikoshii, an open reading frame was found which encodes a protein (332 amino acids) homologous with an endoglucanase from Clostridium thermocellum (42% identity), deblocking aminopeptidase from Pyrococcus furiosus (42% identity) and an aminopeptidase from Aeromonas proteolytica (18% identity). This gene was cloned and expressed in Escherichia coli, and the characteristics of the expressed protein were examined. Although endoglucanase activity was not detected, this protein was found to have aminopeptidase activity to cleave the N-terminal amino acid from a variety of substrates including both N-blocked and non-blocked peptides. The enzyme was stable at 90 degrees C, with the optimum temperature over 90 degrees C. The metal ion bound to this enzyme was calcium, but it was not essential for the aminopeptidase activity. Instead, this enzyme required the cobalt ion for activity. This enzyme is expected to be useful for the removal of N(alpha)-acylated residues in short peptide sequence analysis at high temperatures.
Collapse
|
|
26 |
34 |