1
|
Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Déglon N, Aebischer P. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 2000; 290:767-73. [PMID: 11052933 DOI: 10.1126/science.290.5492.767] [Citation(s) in RCA: 910] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lentiviral delivery of glial cell line-derived neurotrophic factor (lenti-GDNF) was tested for its trophic effects upon degenerating nigrostriatal neurons in nonhuman primate models of Parkinson's disease (PD). We injected lenti-GDNF into the striatum and substantia nigra of nonlesioned aged rhesus monkeys or young adult rhesus monkeys treated 1 week prior with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Extensive GDNF expression with anterograde and retrograde transport was seen in all animals. In aged monkeys, lenti-GDNF augmented dopaminergic function. In MPTP-treated monkeys, lenti-GDNF reversed functional deficits and completely prevented nigrostriatal degeneration. Additionally, lenti-GDNF injections to intact rhesus monkeys revealed long-term gene expression (8 months). In MPTP-treated monkeys, lenti-GDNF treatment reversed motor deficits in a hand-reach task. These data indicate that GDNF delivery using a lentiviral vector system can prevent nigrostriatal degeneration and induce regeneration in primate models of PD and might be a viable therapeutic strategy for PD patients.
Collapse
|
|
25 |
910 |
2
|
Togan E, Chu Y, Trifonov AS, Jiang L, Maze J, Childress L, Dutt MVG, Sørensen AS, Hemmer PR, Zibrov AS, Lukin MD. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 2010; 466:730-4. [DOI: 10.1038/nature09256] [Citation(s) in RCA: 853] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 06/08/2010] [Indexed: 11/09/2022]
|
|
15 |
853 |
3
|
Chu Y, Solski PA, Khosravi-Far R, Der CJ, Kelly K. The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J Biol Chem 1996; 271:6497-501. [PMID: 8626452 DOI: 10.1074/jbc.271.11.6497] [Citation(s) in RCA: 358] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mitogen-activated protein (MAP) kinases can be grouped into three structural families, ERK, JNK, and p38, which are thought to carry out unique functions within cells. We demonstrate that ERK, JNK, and p38 are activated by distinct combinations of stimuli in T cells that simulate full or partial activation through the T cell receptor. These kinases are regulated by reversible phosphorylation on Tyr and Thr, and the dual specific phosphatases PAC1 and MKP-1 previously have been implicated in the in vivo inactivation of ERK or of ERK and JNK, respectively. Here we characterize a new MAP kinase phosphatase, MKP-2, that is induced in human peripheral blood T cells with phorbol 12-myristate 13-acetate and is expressed in a variety of nonhematopoietic tissues as well. We show that the in vivo substrate specificities of individual phosphatases are unique. PAC1, MKP-2, and MKP-1 recognize ERK and p38, ERK and JNK, and ERK, p38, and JNK, respectively. Thus, individual MAP kinase phosphatases can differentially regulate the potential for cross-talk between the various MAP kinase pathways. A hyperactive allele of ERK2 (D319N), analogous to the Drosophila sevenmaker gain-of-function mutation, has significantly reduced sensitivity to all three MAP kinase phosphatases in vivo.
Collapse
|
|
29 |
358 |
4
|
Emerich DF, Winn SR, Hantraye PM, Peschanski M, Chen EY, Chu Y, McDermott P, Baetge EE, Kordower JH. Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington's disease. Nature 1997; 386:395-9. [PMID: 9121555 DOI: 10.1038/386395a0] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Huntington's disease is a genetic disorder that results from degeneration of striatal neurons, particularly those containing GABA (gamma-aminobutyric acid). There is no effective treatment for preventing or slowing this neuronal degeneration. Ciliary neurotrophic factor (CNTF) is a trophic factor for striatal neurons and therefore a potential therapeutic agent for Huntington's disease. Here we evaluate CNTF as a neuroprotective agent in a nonhuman primate model of Huntington's disease. We gave cynomolgus monkeys intrastriatal implants of polymer-encapsulated baby hamster kidney fibroblasts that had been genetically modified to secrete human CNTF. One week later, monkeys received unilateral injections of quinolinic acid into the previously implanted striatum to reproduce the neuropathology seen in Huntington's disease. Human CNTF was found to exert a neuroprotective effect on several populations of striatal cells, including GABAergic, cholinergic and diaphorase-positive neurons which were all destined to die following administration of quinolinic acid. Human CNTF also prevented the retrograde atrophy of layer V neurons in motor cortex and exerted a significant protective effect on the GABAergic innervation of the two important target fields of the striatal output neurons (the globus pallidus and pars reticulata of the substantia nigra). Our results show that human CNTF has a trophic influence on degenerating striatal neurons as well as on critical non-striatal regions such as the cerebral cortex, supporting the idea that human CNTF may help to prevent the degeneration of vulnerable striatal populations and cortical-striatal basal ganglia circuits in Huntington's disease.
Collapse
|
|
28 |
251 |
5
|
Stone J, Maslim J, Valter-Kocsi K, Mervin K, Bowers F, Chu Y, Barnett N, Provis J, Lewis G, Fisher SK, Bisti S, Gargini C, Cervetto L, Merin S, Peér J. Mechanisms of photoreceptor death and survival in mammalian retina. Prog Retin Eye Res 1999; 18:689-735. [PMID: 10530749 DOI: 10.1016/s1350-9462(98)00032-9] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mammalian retina, like the rest of the central nervous system, is highly stable and can maintain its structure and function for the full life of the individual, in humans for many decades. Photoreceptor dystrophies are instances of retinal instability. Many are precipitated by genetic mutations and scores of photoreceptor-lethal mutations have now been identified at the codon level. This review explores the factors which make the photoreceptor more vulnerable to small mutations of its proteins than any other cell of the body, and more vulnerable to environmental factors than any other retinal neurone. These factors include the highly specialised structure and function of the photoreceptors, their high appetite for energy, their self-protective mechanisms and the architecture of their energy supply from the choroidal circulation. Particularly important are the properties of the choroidal circulation, especially its fast flow of near-arterial blood and its inability to autoregulate. Mechanisms which make the retina stable and unstable are then reviewed in three different models of retinal degeneration, retinal detachment, photoreceptor dystrophy and light damage. A two stage model of the genesis of photoreceptor dystrophies is proposed, comprising an initial "depletion" stage caused by genetic or environmental insult and a second "late" stage during which oxygen toxicity damages and eventually destroys any photoreceptors which survive the initial depletion. It is a feature of the model that the second "late" stage of retinal dystrophies is driven by oxygen toxicity. The implications of these ideas for therapy of retinal dystrophies are discussed.
Collapse
|
Review |
26 |
189 |
6
|
Kordower JH, Bloch J, Ma SY, Chu Y, Palfi S, Roitberg BZ, Emborg M, Hantraye P, Déglon N, Aebischer P. Lentiviral gene transfer to the nonhuman primate brain. Exp Neurol 1999; 160:1-16. [PMID: 10630186 DOI: 10.1006/exnr.1999.7178] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lentiviral vectors infect quiescent cells and allow for the delivery of genes to discrete brain regions. The present study assessed whether stable lentiviral gene transduction can be achieved in the monkey nigrostriatal system. Three young adult Rhesus monkeys received injections of a lentiviral vector encoding for the marker gene beta galatosidase (beta Gal). On one side of the brain, each monkey received multiple lentivirus injections into the caudate and putamen. On the opposite side, each animal received a single injection aimed at the substantia nigra. The first two monkeys were sacrificed 1 month postinjection, while the third monkey was sacrificed 3 months postinjection. Robust incorporation of the beta Gal gene was seen in the striatum of all three monkeys. Stereological counts revealed that 930,218; 1,192,359; and 1,501,217 cells in the striatum were beta Gal positive in monkeys 1 (n = 2) and 3 (n = 1) months later, respectively. Only the third monkey had an injection placed directly into the substantia nigra and 187,308 beta Gal-positive cells were identified in this animal. The injections induced only minor perivascular cuffing and there was no apparent inflammatory response resulting from the lentivirus injections. Double label experiments revealed that between 80 and 87% of the beta Gal-positive cells were neurons. These data indicate that robust transduction of striatal and nigral cells can occur in the nonhuman primate brain for up to 3 months. Studies are now ongoing testing the ability of lentivirus encoding for dopaminergic trophic factors to augment the nigrostriatal system in nonhuman primate models of Parkinson's disease.
Collapse
|
|
26 |
168 |
7
|
Ren X, Ye F, Jiang Z, Chu Y, Xiong S, Wang Y. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4(+)CD25(+) regulatory T cells. Cell Death Differ 2007; 14:2076-84. [PMID: 17762882 DOI: 10.1038/sj.cdd.4402220] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CD4(+)CD25(+) regulatory T cells (Treg) are potent immunosuppressive cells active in controlling normal pathological immune responses. The mechanisms of this suppression have been investigated under various conditions. In this report, tumor necrosis factor-related apoptosis inducing ligand (TRAIL)/death receptor 5 (DR5) was explored as one of the pivotal factors for the suppression and cytotoxicity induced by CD4(+)CD25(+) Treg. Cell death was involved in the suppression induced by activated CD4(+)CD25(+) Treg in vitro. The induction of CD4(+) T cell death was not mediated by the CD95/CD95L pathway, but rather depended upon the upregulation of TRAIL in the Treg. Blocking the TRAIL/DR5 pathway resulted in a significant reduction of the suppressive activity as well as the cytotoxic effects of Treg in vitro. Activated Treg displayed TRAIL-dependent cytotoxicity against CD4(+) T cells in vivo. The prolonged survival of allogeneic skin grafts induced by Treg was inhibited by DR5-blocking antibodies. Our findings suggest that the TRAIL/DR5 pathway is one of the mechanisms used by Treg to regulate immune responses both in vitro and in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
104 |
8
|
Chu Y, Hughes S, Chan-Ling T. Differentiation and migration of astrocyte precursor cells and astrocytes in human fetal retina: relevance to optic nerve coloboma. FASEB J 2001; 15:2013-5. [PMID: 11511521 DOI: 10.1096/fj.00-0868fje] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The presence of astrocyte precursor cells (APCs) and time course and topography of astrocyte differentiation during development were investigated by triple-label immunohistochemistry with intact fetal and adult human retinas. Throughout retinal development and adulthood, expression of Pax2 was restricted to cells of the astrocytic lineage. Three distinct stages of astrocytic differentiation were identified during development: i) Pax2+/vimentin+/GFAP- APCs; ii) Pax2+/vimentin+/GFAP+ immature perinatal astrocytes; and iii) Pax2+/vimentin-/GFAP+ mature perinatal astrocytes. In adult, cells with the antigenic phenotype of mature perinatal astrocytes were restricted to a region surrounding the optic nerve head (ONH), whereas cells at a fourth stage of differentiation, adult astrocytes (Pax2-/vimentin-/GFAP+), were apparent throughout the vascularized retina. APC appearance was centered around the ONH and preceded the appearance of perinatal astrocytes. A cluster of Pax2+ somas was also present in a small region surrounding the ONH at the ventricular surface of the developing retina, which suggests the existence of two distinct sites of astrocytic differentiation. The coincidence in the location of APCs and perinatal astrocytes at the ventricular zone with that of optic nerve colobomas, together with the association of Pax2 gene mutations with this condition, suggests that coloboma formation may result from impaired astrocyte differentiation during development.
Collapse
|
|
24 |
83 |
9
|
Togan E, Chu Y, Imamoglu A, Lukin MD. Laser cooling and real-time measurement of the nuclear spin environment of a solid-state qubit. Nature 2011; 478:497-501. [DOI: 10.1038/nature10528] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/31/2011] [Indexed: 11/09/2022]
|
|
14 |
80 |
10
|
Yang D, Li L, Liu H, Wu L, Luo Z, Li H, Zheng S, Gao H, Chu Y, Sun Y, Liu J, Jia L. Induction of autophagy and senescence by knockdown of ROC1 E3 ubiquitin ligase to suppress the growth of liver cancer cells. Cell Death Differ 2012; 20:235-47. [PMID: 22935614 DOI: 10.1038/cdd.2012.113] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulator of Cullins-1 (ROC1) or RING box protein-1 (RBX1) is an essential RING component of Cullin-RING ligase (CRL). Our previous studies showed that ROC1 is required for the growth of several cancer cell lines while ROC1 siRNA silencing inactivates CRL, leading to cell cycle arrest, cell senescence and/or apoptosis. However, it is completely unknown whether ROC1 knockdown triggers autophagic response by inactivating CRL. Moreover, the role of ROC1 in liver cancer remains elusive. In this study, we reported that ROC1 knockdown significantly inhibited the growth of liver cancer cells by sequentially and independently inducing autophagy and p21-dependent cell senescence. Mechanism analysis revealed that ROC1 silencing triggered autophagy by inhibition of mammalian target of rapamycin (mTOR) activity due to accumulation of mTOR-inhibitory protein Deptor, a substrate of CRL. Consistently, Deptor knockdown significantly blocked autophagy response upon ROC1 silencing. Biologically, autophagy response upon ROC1 silencing was a survival signal, and blockage of autophagy pathway sensitized cancer cells to apoptosis. Finally, we demonstrated that ROC1 was overexpressed in hepatocellular carcinomas, which is associated with poor prognosis of liver cancer patients. These findings suggest that ROC1 is an appealing drug target for liver cancer and provide a proof-of-concept evidence for a novel drug combination of ROC1 inhibitor and an autophagy inhibitor for effective treatment of liver cancer by enhancing apoptosis.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
77 |
11
|
Jones G, Jones D, Zhou L, Steller H, Chu Y. Deterin, a new inhibitor of apoptosis from Drosophila melanogaster. J Biol Chem 2000; 275:22157-65. [PMID: 10764741 DOI: 10.1074/jbc.m000369200] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deterin, a new apoptosis inhibitor from Drosophila melanogaster, possesses an unusual structure of only a single baculovirus inhibitor of apoptosis (IAP)-type repeat and no RING finger motif. The biochemical actions of deterin are demonstrated in SF9 and S2 cell transfection assays, in which the expressed protein acts in the cytoplasm to inhibit or deter cells from apoptosis otherwise induced by the caspase-dependent apoptosis activator reaper or by cytotoxicants. A loss of function phenotype for deterin of cell death was indicated by transfections with either a dominant negative deterin mutant or with inhibitory RNA (RNAi) for deterin. The dominant negative C-terminal fragment that antagonized antiapoptotic activity of deterin did not affect antiapoptotic activity of DIAP1 or p35. Both the baculovirus IAP-type repeat (BIR) domain and the alpha-helical C-terminal domain are necessary in both SF9 and S2 cells for deterin to manifest its activity to prevent cell death. The approximately 650-base deterin transcript is present in embryos, third instar larvae, and late stage nurse cells of adult females. The deterin transcript is distributed throughout early stage embryos, whereas in later stage embryos it becomes progressively restricted to the central nervous system and gonads. Whereas the nematode survivin-type IAP has thus far been implicated only as a mitotic regulator, Drosophila deterin constitutes the first invertebrate member of the survivin-type IAP group to exhibit apoptosis-inhibitory activity.
Collapse
|
|
25 |
72 |
12
|
Laviña B, Gracia-Sancho J, Rodríguez-Vilarrupla A, Chu Y, Heistad DD, Bosch J, García-Pagán JC. Superoxide dismutase gene transfer reduces portal pressure in CCl4 cirrhotic rats with portal hypertension. Gut 2009; 58:118-25. [PMID: 18829979 DOI: 10.1136/gut.2008.149880] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increased intrahepatic vascular tone in cirrhosis has been attributed to a decrease of hepatic nitric oxide (NO) secondary to disturbances in the post-translational regulation of the enzyme eNOS. NO scavenging by superoxide (O(2)(-)) further contributes to a reduction of NO bioavailability in cirrhotic livers. AIM To investigate whether removing increased O(2)(-) levels could be a new therapeutic strategy to increase intrahepatic NO, improve endothelial dysfunction and reduce portal pressure in cirrhotic rats with portal hypertension. METHODS Adenoviral vectors expressing extracellular superoxide dismutase (SOD) (AdECSOD) or beta-galactosidase (Adbetagal) were injected intravenously in control and CCl(4)-induced cirrhotic rats. After 3 days, liver O(2)(-) levels were determined by dihydroethidium staining, NO bioavailability by hepatic cGMP levels, nitrotyrosinated proteins by immunohistochemistry and western blot, and endothelial function by responses to acetylcholine in perfused rat livers. Mean arterial pressure (MAP) and portal pressure were evaluated in vivo. RESULTS Transfection of cirrhotic livers with AdECSOD produced a significant reduction in O(2)(-) levels, a significant increase in hepatic cGMP, and a decrease in liver nitrotyrosinated proteins which were associated with a significant improvement in the endothelium-dependent vasodilatation to acetylcholine. In addition, in cirrhotic livers AdECSOD transfection produced a significant reduction in portal pressure (17.3 (SD 2) mm Hg vs 15 (SD 1.6) mm Hg; p<0.05) without significant changes in MAP. In control rats, AdECSOD transfection prevents the increase in portal perfusion pressure promoted by an ROS-generating system. CONCLUSIONS In cirrhotic rats, reduction of O(2)(-) by AdECSOD increases NO bioavailability, improves intrahepatic endothelial function and reduces portal pressure. These findings suggest that scavenging of O(2)(-) might be a new therapeutic strategy in the management of portal hypertension.
Collapse
|
Evaluation Study |
16 |
68 |
13
|
Chu Y, Sperber K, Mayer L, Hsu MT. Persistent infection of human adenovirus type 5 in human monocyte cell lines. Virology 1992; 188:793-800. [PMID: 1585648 DOI: 10.1016/0042-6822(92)90534-v] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adenovirus infection of human monocyte hybridoma cell lines and the fusion partner U937 was investigated. Adenovirus adsorbed poorly to these cells as well as primary human alveolar macrophages. The virus-binding experiments showed a 100-fold reduction in apparent viral binding to these cells compared to the permissive HeLa cells. Adsorption of adenovirus to these cells could be enhanced by preincubation of adenovirus with its antiserum. Following entry into the cells amplification of adenovirus DNA was detected starting at 2 days postinfection but few mature virus particles were produced. The infected cultures survived the infection and continued to grow for more than a year. In these chronically infected cultures, linear adenovirus DNA persisted up to 200 copies per cell and a small amount of mature virus was produced. Infectious center assay and cell cloning experiments showed that the majority of the cells in the chronically infected cultures harbor adenovirus genome. These results indicate that restriction of replication of human adenovirus type 5 at the late phase results in persistent infection of U937 and the human monocyte hybridoma cell lines.
Collapse
|
|
33 |
59 |
14
|
Bartus RT, Kordower JH, Johnson EM, Brown L, Kruegel BR, Chu Y, Baumann TL, Lang AE, Olanow CW, Herzog CD. Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with α-synucleinopathies. Neurobiol Dis 2015; 78:162-71. [PMID: 25841760 DOI: 10.1016/j.nbd.2015.03.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/13/2015] [Accepted: 03/23/2015] [Indexed: 11/29/2022] Open
Abstract
Substantial interest persists for developing neurotrophic factors to treat neurodegenerative diseases. At the same time, significant progress has been made in implementing gene therapy as a means to provide long-term expression of bioactive neurotrophic factors to targeted sites in the brain. Nonetheless, to date, no double-blind clinical trial has achieved positive results on its primary endpoint despite robust benefits achieved in animal models. A major issue with advancing the field is the paucity of information regarding the expression and effects of neurotrophic factors in human neurodegenerative brain, relative to the well-characterized responses in animal models. To help fill this information void, we examined post-mortem brain tissue from four patients with nigrostriatal degeneration who had participated in clinical trials testing gene delivery of neurturin to the putamen of patients. Each had died of unrelated causes ranging from 1.5-to-3-months (2 Parkinson's disease patients), to 4+-years (1 Parkinson's disease and 1 multiple-system atrophy-parkinsonian type patient) following gene therapy. Quantitative and immunohistochemical evaluation of neurturin, alpha-synuclein, tyrosine hydroxylase (TH) and an oligodendroglia marker (Olig 2) were performed in each brain. Comparable volumes-of-expression of neurturin were seen in the putamen in all cases (~15-22%; mean=18.5%). TH-signal in the putamen was extremely sparse in the shorter-term cases. A 6-fold increase was seen in longer-term cases, but was far less than achieved in animal models of nigrostriatal degeneration with similar or even far less NRTN exposure. Less than 1% of substantia nigra (SN) neurons stained for neurturin in the shorter-term cases. A 15-fold increase was seen in the longer-term cases, but neurturin was still only detected in ~5% of nigral cells. These data provide unique insight into the functional status of advanced, chronic nigrostriatal degeneration in human brain and the response of these neurons to neurotrophic factor stimulation. They demonstrate mild but persistent expression of gene-mediated neurturin over 4-years, with an apparent, time-related amplification of its transport and biological effects, albeit quite weak, and provide unique information to help plan and design future trials.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
58 |
15
|
Chu Y, Varanasi PP, McGlade MJ, Varanasi S. pH-induced swelling kinetics of polyelectrolyte hydrogels. J Appl Polym Sci 1995. [DOI: 10.1002/app.1995.070581203] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
30 |
58 |
16
|
Cao H, Chu Y, Zhu H, Sun J, Pu Y, Gao Z, Yang C, Peng S, Dou Z, Hua J. Characterization of immortalized mesenchymal stem cells derived from foetal porcine pancreas. Cell Prolif 2011; 44:19-32. [PMID: 21199007 DOI: 10.1111/j.1365-2184.2010.00714.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Islet replacement therapy is limited by shortage of donor islet cells. Usage of islet cells derived from porcine pancreatic stem cells (PSCs) is currently viewed as the most promising alternative for human islet transplantation. However, PSCs are rare and have a finite proliferative lifespan. In this study, we isolated and established an immortalized mesenchymal stem cell (MSC) line derived from foetal porcine pancreas, by transfecting human telomerase reverse transcriptase (hTERT) and called these immortalized pancreatic mesenchymal stem cells (iPMSCs). The iPMSCs have been cultured for more than 80 passages and have capacity to differentiate into neurons, cardiomyocytes, germ cells and islet-like cells, analysed by morphology, RT-PCR, western blotting, immunofluorescence, immunocytochemistry and transplantation assay. Islets derived from iPMSCs reversed hyperglycaemia in streptozotocin-induced diabetic mice and secreted insulin and C-peptide in vitro. These results demonstrated that iPMSCs might provide unlimited resources for islet replacement therapy and models for functional cell differentiation.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
57 |
17
|
Hausmann BJM, Shields BJ, Quan Q, Chu Y, de Leon NP, Evans R, Burek MJ, Zibrov AS, Markham M, Twitchen DJ, Park H, Lukin MD, Lonc R M. Coupling of NV centers to photonic crystal nanobeams in diamond. NANO LETTERS 2013; 13:5791-6. [PMID: 24156318 DOI: 10.1021/nl402174g] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The realization of efficient optical interfaces for solid-state atom-like systems is an important problem in quantum science with potential applications in quantum communications and quantum information processing. We describe and demonstrate a technique for coupling single nitrogen vacancy (NV) centers to suspended diamond photonic crystal cavities with quality factors up to 6000. Specifically, we present an enhancement of the NV center's zero-phonon line fluorescence by a factor of ~ 7 in low-temperature measurements.
Collapse
|
|
12 |
57 |
18
|
Chu Y, Cochran EJ, Bennett DA, Mufson EJ, Kordower JH. Down-regulation of trkA mRNA within nucleus basalis neurons in individuals with mild cognitive impairment and Alzheimer's disease. J Comp Neurol 2001; 437:296-307. [PMID: 11494257 DOI: 10.1002/cne.1284] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent studies indicate that trkA expression is reduced in end-stage Alzheimer's disease (AD). However, understanding the neuropathologic correlates of early cognitive decline, as well as the changes that underlie the transition from nondemented mild cognitive impairment (MCI) to AD, are more critical neurobiological challenges. In these regards, the present study examined the expression of trkA mRNA in individuals diagnosed with MCI and AD from a cohort of people enrolled in a Religious Orders Study. Individuals with MCI and AD displayed significant reductions in trkA mRNA relative to aged-matched controls, indicating that alterations in trkA gene expression occur early in the disease process. The magnitude of change was similar in MCI and AD cases, suggesting that further loss of trkA mRNA is not necessarily associated with the transition of individuals from nondemented MCI to AD. The loss of trkA mRNA was not associated with education, apolipoprotein E allele status, gender, Braak score, global cognitive score or Mini-Mental Status Examination. In contrast, the loss of trkA mRNA in MCI and AD was significantly correlated with function on a variety of episodic memory tests.
Collapse
|
|
24 |
54 |
19
|
Chu Y, de Leon NP, Shields BJ, Hausmann B, Evans R, Togan E, Burek MJ, Markham M, Stacey A, Zibrov AS, Yacoby A, Twitchen DJ, Loncar M, Park H, Maletinsky P, Lukin MD. Coherent optical transitions in implanted nitrogen vacancy centers. NANO LETTERS 2014; 14:1982-6. [PMID: 24588353 DOI: 10.1021/nl404836p] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report the observation of stable optical transitions in nitrogen-vacancy (NV) centers created by ion implantation. Using a combination of high temperature annealing and subsequent surface treatment, we reproducibly create NV centers with zero-phonon lines (ZPL) exhibiting spectral diffusion that is close to the lifetime-limited optical line width. The residual spectral diffusion is further reduced by using resonant optical pumping to maintain the NV(-) charge state. This approach allows for placement of NV centers with excellent optical coherence in a well-defined device layer, which is a crucial step in the development of diamond-based devices for quantum optics, nanophotonics, and quantum information science.
Collapse
|
|
11 |
54 |
20
|
Xiong S, Zheng Y, Jiang P, Liu R, Liu X, Qian J, Gu J, Chang L, Ge D, Chu Y. PA28gamma emerges as a novel functional target of tumour suppressor microRNA-7 in non-small-cell lung cancer. Br J Cancer 2013; 110:353-62. [PMID: 24281003 PMCID: PMC3899764 DOI: 10.1038/bjc.2013.728] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/12/2013] [Accepted: 10/23/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNA-7 (miR-7) has been reported to be a tumour suppressor gene. However, whether it has a role in the growth of non-small-cell lung cancer (NSCLC) and what is its target involved in the tumour growth is still under investigation. METHODS NSCLC tissue sample, NSCLC cell lines and tissue microarray were investigated in this study. Total RNA, miRNA and protein were used for RT-PCR and western blot analysis. Immunohistochemistry was performed in tissues microarray. Cell culture and intervention experiments were performed in vitro and in vivo. Bioinformatics prediction, western blot and luciferase assay were identified the target of miR-7. RESULTS In this study, we found that the expression of miR-7 was significantly downregulated not only in NSCLC cell lines, but also in human NSCLC tissues compared with the matched adjacent tissues. Restoration of its expression through miR-7 mimics in A549 and H1299 NSCLC cells inhibited cell proliferation, colony formation, and cell-cycle progression in vitro. More importantly, the tumorigenicity in nude mice was reduced after administration of miR-7 in vivo. In advance, through bioinformatic analysis, luciferase assay and western blot, we identified a novel target of miR-7, PA28gamma (a proteasome activator) to be enrolled in the regulation with tumour. PA28gamma mRNA and protein levels are markedly upregulated in NSCLC cell lines and tumour samples, exhibiting a strong inverse relation with that of miR-7. In addition, knockdown of PA28gamma induced similar effects as overexpression of miR-7 in NSCLC cells. Furthermore, miR-7 overexpression or silencing of PA28gamma reduced the cyclinD1 expression at mRNA and protein level in NSCLC cell lines. CONCLUSION All these findings strongly imply that the overexpression of PA28gamma resulted from miR-7 downexpression in NSCLC has an important role in promoting cancer cell progress and consequently results in NSCLC growth. Thus, strategies targeting PA28gamma and/or miR-7 may become promising molecular therapies in NSCLC treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
54 |
21
|
Lister T, Chu Y, Cullen W, You H, Yonco R, Mitchell J, Nagy Z. Electrochemical and X-ray scattering study of well defined RuO2 single crystal surfaces. J Electroanal Chem (Lausanne) 2002. [DOI: 10.1016/s0022-0728(02)00744-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
23 |
54 |
22
|
Chu Y, Lee EY, Schlender KK. Activation of protein phosphatase 1. Formation of a metalloenzyme. J Biol Chem 1996; 271:2574-7. [PMID: 8576223 DOI: 10.1074/jbc.271.5.2574] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The recombinant catalytic subunit of protein phosphatase 1 is produced as an inactive enzyme which can be activated by Mn2+ (Zhang, Z., Bai, G., Deans-Zirattu, S., Browner, M. F., and Lee, E. Y. C. (1992) J. Biol. Chem. 267, 1484-1490). In this report, we have investigated the effects of divalent cations on the activity of recombinant catalytic subunit of protein phosphatase 1. Latent phosphatase 1 can be activated by Co2+ or Mn2+, whereas other metal ions tested including Fe2+, Zn2+, Mg2+, Ca2+, Cu2+, or Ni2+ were not effective or were only weakly effective in activating the enzyme. The Mn(2+)-stimulated activity was susceptible to inactivation by EDTA; however, the Co(2+)-activated phosphatase was stable after dilution and chelation of the Co2+ with excess EDTA. After stable activation of phosphatase 1 using 57Co2+, a stoichiometric amount of 57Co2+ was shown to be tightly bound to phosphatase 1. These findings demonstrate for the first time the generation of a stable metalloenzyme form of phosphatase 1. Fe2+ reversibly deactivated the Co(2+)-stimulated activity, but did not displace the bound Co2+. Interestingly, treatment of the enzyme with a combination of Fe2+ and Zn2+ (but not the individual metal ions) significantly activated phosphatase 1. These results suggest that at least two metal binding sites exist on the enzyme and that protein phosphatase 1 may be an iron/zinc metalloprotein in vivo.
Collapse
|
|
29 |
51 |
23
|
Toyoda K, Faraci FM, Watanabe Y, Ueda T, Andresen JJ, Chu Y, Otake S, Heistad DD. Gene transfer of calcitonin gene-related peptide prevents vasoconstriction after subarachnoid hemorrhage. Circ Res 2000; 87:818-24. [PMID: 11055987 DOI: 10.1161/01.res.87.9.818] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We sought to determine whether adenovirus-mediated gene transfer in vivo of calcitonin gene-related peptide (CGRP), a potent vasodilator, ameliorates cerebral vasoconstriction after experimental subarachnoid hemorrhage (SAH). Arterial blood was injected into the cisterna magna of rabbits to mimic SAH 5 days after injection of AdRSVCGRP (8x10(8) pfu), AdRSVbetagal (control virus), or vehicle. After injection of AdRSVCGRP, there was a 400-fold increase in CGRP in cerebrospinal fluid. Contraction of the basilar artery to serotonin in vitro was greater in rabbits after SAH than after injection of artificial cerebrospinal fluid (P<0.001). Contraction to serotonin was less in rabbits with SAH after AdRSVCGRP than after AdRSVbetagal or vehicle (P:<0.02). Basal diameter of the basilar artery before SAH (measured with digital subtraction angiogram) was 13% greater in rabbits treated with AdRSVCGRP than in rabbits treated with vehicle or AdRSVbetagal (P:<0.005). In rabbits treated with vehicle or AdRSVbetagal, arterial diameter after SAH was 25+/-3% smaller than before SAH (P<0.0005). In rabbits treated with AdRSVCGRP, arterial diameter was similar before and after SAH and was reduced by 19+/-3% (P<0.01) after intracisternal injection of CGRP-(8-37) (0.5 nmol/kg), a CGRP(1) receptor antagonist. To determine whether gene transfer of CGRP after SAH may prevent cerebral vasoconstriction, we constructed a virus with a cytomegalovirus (CMV) promoter, which results in rapid expression of the transgene product. Treatment of rabbits with AdCMVCGRP after experimental SAH prevented constriction of the basilar artery 2 days after SAH. Thus, gene transfer of CGRP prevents cerebral vasoconstriction in vivo after experimental SAH.
Collapse
|
|
25 |
50 |
24
|
Su Y, Hon YY, Chu Y, Van de Poll ME, Relling MV. Assay of 6-mercaptopurine and its metabolites in patient plasma by high-performance liquid chromatography with diode-array detection. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 732:459-68. [PMID: 10517368 DOI: 10.1016/s0378-4347(99)00311-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A reversed-phase high-performance liquid chromatography (HPLC) method was developed to determine 6-mercaptopurine (MP) and seven of its metabolites (6-thioguanine, 6-thioxanthine, 6-mercaptopurine riboside, 6-thioguanosine, 6-thioxanthine riboside, 6-methylmercaptopurine and 6-methylmercaptopurine riboside) simultaneously in human plasma. A volume of 100 microl of plasma was used. Protein was removed from the sample by a simple and easy ultrafiltration step and ultrafiltrate was directly injected onto the HPLC system. Analytes were detected and confirmed with a diode-array detector before quantitation at 295 and 330 nm. The limit of detection for the analytes ranged from 20 to 50 nM. For the majority of patients receiving a 1 g/m2 MP intravenous infusion, MP and all metabolites except 6-thioguanine and 6-methylmercaptopurine riboside were present. This method serves as useful tool to characterize pharmacokinetics and pharmacodynamics of MP in oncology patients, and the small volume of plasma lends itself to pediatric studies.
Collapse
|
|
26 |
48 |
25
|
Chrissobolis S, Ziogas J, Chu Y, Faraci FM, Sobey CG. Role of inwardly rectifying K(+) channels in K(+)-induced cerebral vasodilatation in vivo. Am J Physiol Heart Circ Physiol 2000; 279:H2704-12. [PMID: 11087224 DOI: 10.1152/ajpheart.2000.279.6.h2704] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested whether activation of inwardly rectifying K(+) (Kir) channels, Na(+)-K(+)-ATPase, or nitric oxide synthase (NOS) play a role in K(+)-induced dilatation of the rat basilar artery in vivo. When cerebrospinal fluid [K(+)] was elevated from 3 to 5, 10, 15, 20, and 30 mM, a reproducible concentration-dependent vasodilator response was elicited (change in diameter = 9 +/- 1, 27 +/- 4, 35 +/- 4, 43 +/- 12, and 47 +/- 16%, respectively). Responses to K(+) were inhibited by approximately 50% by the Kir channel inhibitor BaCl(2) (30 and 100 microM). In contrast, neither ouabain (1-100 microM, a Na(+)-K(+)-ATPase inhibitor) nor N(G)-nitro-L-arginine (30 microM, a NOS inhibitor) had any effect on K(+)-induced vasodilatation. These concentrations of K(+) also hyperpolarized smooth muscle in isolated segments of basilar artery, and these hyperpolarizations were virtually abolished by 30 microM BaCl(2). RT-PCR experiments confirmed the presence of mRNA for Kir2.1 in the basilar artery. Thus K(+)-induced dilatation of the basilar artery in vivo appears to partly involve hyperpolarization mediated by Kir channel activity and possibly another mechanism that does not involve hyperpolarization, activation of Na(+)-K(+)-ATPase, or NOS.
Collapse
|
|
25 |
47 |