1
|
Hirata H, Hinoda Y, Shahryari V, Deng G, Nakajima K, Tabatabai ZL, Ishii N, Dahiya R. Long Noncoding RNA MALAT1 Promotes Aggressive Renal Cell Carcinoma through Ezh2 and Interacts with miR-205. Cancer Res 2015; 75:1322-31. [PMID: 25600645 DOI: 10.1158/0008-5472.can-14-2931] [Citation(s) in RCA: 462] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/26/2014] [Indexed: 01/17/2023]
Abstract
Recently, long noncoding RNAs (lncRNA) have emerged as new gene regulators and prognostic markers in several cancers, including renal cell carcinoma (RCC). In this study, we investigated the contributions of the lncRNA MALAT1 in RCC with a specific focus on its transcriptional regulation and its interactions with Ezh2 and miR-205. We found that MALAT1 expression was higher in human RCC tissues, where it was associated with reduced patient survival. MALAT1 silencing decreased RCC cell proliferation and invasion and increased apoptosis. Mechanistic investigations showed that MALAT1 was transcriptionally activated by c-Fos and that it interacted with Ezh2. After MALAT1 silencing, E-cadherin expression was increased, whereas β-catenin expression was decreased through Ezh2. Reciprocal interaction between MALAT1 and miR-205 was also observed. Lastly, MALAT1 bound Ezh2 and oncogenesis facilitated by MALAT1 was inhibited by Ezh2 depletion, thereby blocking epithelial-mesenchymal transition via E-cadherin recovery and β-catenin downregulation. Overall, our findings illuminate how overexpression of MALAT1 confers an oncogenic function in RCC that may offer a novel theranostic marker in this disease.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
462 |
2
|
Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, Schmitt L, Carroll PR, Shinohara K, Vigneron DB, Kurhanewicz J. Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med 2006; 55:1257-64. [PMID: 16685733 DOI: 10.1002/mrm.20909] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method was developed to quantify prostate metabolite concentrations using (1)H high-resolution magic angle spinning (HR-MAS) spectroscopy. T(1) and T(2) relaxation times (in milliseconds) were determined for the major prostate metabolites and an internal TSP standard, and used to optimize the acquisition and repetition times (TRs) at 11.7 T. At 1 degrees C, polyamines (PAs; T(1mean) = 100 +/- 13, T(2mean) = 30.8 +/- 7.4) and citrate (Cit; T(1mean) = 237 +/- 39, T(2mean) = 68.1 +/- 8.2) demonstrated the shortest relaxation times, while taurine (Tau; T(1mean) = 636 +/- 78, T(2mean) = 331 +/- 71) and choline (Cho; T(1mean) = 608 +/- 60, T(2mean) = 393 +/- 81) demonstrated the longest relaxation times. Millimolal metabolite concentrations were calculated for 60 postsurgical tissues using metabolite and TSP peak areas, and the mass of tissue and TSP. Phosphocholine plus glycerophosphocholine (PC+GPC), total choline (tCho), lactate (Lac), and alanine (Ala) concentrations were higher in prostate cancer ([PC+GPC](mean) = 9.34 +/- 6.43, [tCho](mean) = 13.8 +/- 7.4, [Lac](mean) = 69.8 +/- 27.1, [Ala](mean) = 12.6 +/- 6.8) than in healthy glandular ([PC+GPC](mean) = 3.55 +/- 1.53, P < 0.01; [tCho](mean) = 7.06 +/- 2.36, P < 0.01; [Lac](mean) = 46.5 +/- 17.4, P < 0.01; [Ala](mean) = 8.63 +/- 4.91, P = 0.051) and healthy stromal tissues ([PC+GPC](mean) = 4.34 +/- 2.46, P < 0.01; [tCho](mean) = 7.04 +/- 3.10, P < 0.01; [Lac](mean) = 45.1 +/- 18.6, P < 0.01; [Ala](mean) = 6.80 +/- 2.95, P < 0.01), while Cit and PA concentrations were significantly higher in healthy glandular tissues ([Cit](mean) = 43.1 +/- 21.2, [PAs](mean) = 18.5 +/- 15.6) than in healthy stromal ([Cit](mean) = 16.1 +/- 5.6, P < 0.01; [PAs](mean) = 3.15 +/- 1.81, P < 0.01) and prostate cancer tissues ([Cit](mean) = 19.6 +/- 12.7, P < 0.01; [PAs](mean) = 5.28 +/- 5.44, P < 0.01). Serial spectra acquired over 12 hr indicated that the degradation of Cho-containing metabolites was minimized by acquiring HR-MAS data at 1 degree C compared to 20 degrees C.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
182 |
3
|
Swanson MG, Vigneron DB, Tabatabai ZL, Males RG, Schmitt L, Carroll PR, James JK, Hurd RE, Kurhanewicz J. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med 2004; 50:944-54. [PMID: 14587005 DOI: 10.1002/mrm.10614] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proton high-resolution magic angle spinning ((1)H HR-MAS) NMR spectroscopy and quantitative histopathology were performed on the same 54 MRI/3D-MRSI-targeted postsurgical prostate tissue samples. Presurgical MRI/3D-MRSI targeted healthy and malignant prostate tissues with an accuracy of 81%. Even in the presence of substantial tissue heterogeneity, distinct (1)H HR-MAS spectral patterns were observed for different benign tissue types and prostate cancer. Specifically, healthy glandular tissue was discriminated from prostate cancer based on significantly higher levels of citrate (P = 0.04) and polyamines (P = 0.01), and lower (P = 0.02) levels of the choline-containing compounds choline, phosphocholine (PC), and glycerophosphocholine (GPC). Predominantly stromal tissue lacked both citrate and polyamines, but demonstrated significantly (P = 0.01) lower levels of choline compounds than cancer. In addition, taurine, myo-inositol, and scyllo-inositol were all higher in prostate cancer vs. healthy glandular and stromal tissues. Among cancer samples, larger increases in choline, and decreases in citrate and polyamines (P = 0.05) were observed with more aggressive cancers, and a MIB-1 labeling index correlated (r = 0.62, P = 0.01) with elevated choline. The elucidation of spectral patterns associated with mixtures of different prostate tissue types and cancer grades, and the inclusion of new metabolic markers for prostate cancer may significantly improve the clinical interpretation of in vivo prostate MRSI data.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
164 |
4
|
Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, Liu J, Tabatabai ZL, Kakar S, Deng G, Tanaka Y, Dahiya R. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 2011; 32:772-8. [PMID: 21349819 DOI: 10.1093/carcin/bgr036] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
MiR-145 is downregulated in various cancers including prostate cancer. However, the underlying mechanisms of miR-145 downregulation are not fully understood. Here, we reported that miR-145 was silenced through DNA hypermethylation and p53 mutation status in laser capture microdissected (LCM) prostate cancer and matched adjacent normal tissues. In 22 of 27 (81%) prostate tissues, miR-145 was significantly downregulated in the cancer compared with the normal tissues. Further studies on miR-145 downregulation mechanism showed that miR-145 is methylated at the promoter region in both prostate cancer tissues and 50 different types of cancer cell lines. In seven cancer cell lines with miR-145 hypermethylation, 5-aza-2'-deoxycytidine treatment dramatically induced miR-145 expression. Interestingly, we also found a significant correlation between miR-145 expression and the status of p53 gene in both LCM prostate tissues and 47 cancer cell lines. In 29 cell lines with mutant p53, miR-145 levels were downregulated in 28 lines (97%), whereas in 18 cell lines with wild-type p53 (WT p53), miR-145 levels were downregulated in only 6 lines (33%, P < 0.001). Electrophoretic mobility shift assay showed that p53 binds to the p53 response element upstream of miR-145, but the binding was inhibited by hypermethylation. To further confirm that p53 binding to miR-145 could regulate miR-145 expression, we transfected WT p53 and MUT p53 into PC-3 cells and found that miR-145 is upregulated by WT p53 but not with MUTp53. The apoptotic cells are increased after WT p53 transfection. In summary, this is the first report documenting that downregulation of miR-145 is through DNA methylation and p53 mutation pathways in prostate cancer.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
163 |
5
|
Tessem MB, Swanson MG, Keshari KR, Albers MJ, Joun D, Tabatabai ZL, Simko JP, Shinohara K, Nelson SJ, Vigneron DB, Gribbestad IS, Kurhanewicz J. Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn Reson Med 2009; 60:510-6. [PMID: 18727052 DOI: 10.1002/mrm.21694] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The goal of this study was to investigate the use of lactate and alanine as metabolic biomarkers of prostate cancer using (1)H high-resolution magic angle spinning (HR-MAS) spectroscopy of snap-frozen transrectal ultrasound (TRUS)-guided prostate biopsy tissues. A long-echo-time rotor-synchronized Carr-Purcell-Meiboom-Gill (CPMG) sequence including an electronic reference to access in vivo concentrations (ERETIC) standard was used to determine the concentrations of lactate and alanine in 82 benign and 16 malignant biopsies (mean 26.5% +/- 17.2% of core). Low concentrations of lactate (0.61 +/- 0.28 mmol/kg) and alanine (0.14 +/- 0.06 mmol/kg) were observed in benign prostate biopsies, and there was no significant difference between benign predominantly glandular (N = 54) and stromal (N = 28) biopsies between patients with (N = 38) and without (N = 44) a positive clinical biopsy. In biopsies containing prostate cancer there was a highly significant (P < 0.0001) increase in lactate (1.59 +/- 0.61 mmol/kg) and alanine (0.26 +/- 0.07 mmol/kg), and minimal overlap with lactate concentrations in benign biopsies. This study demonstrates for the first time very low concentrations of lactate and alanine in benign prostate biopsy tissues. The significant increase in the concentration of both lactate and alanine in biopsy tissue containing as little as 5% cancer could be exploited in hyperpolarized (13)C spectroscopic imaging (SI) studies of prostate cancer patients.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
151 |
6
|
Hirata H, Ueno K, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL, Hinoda Y, Dahiya R. MicroRNA-182-5p promotes cell invasion and proliferation by down regulating FOXF2, RECK and MTSS1 genes in human prostate cancer. PLoS One 2013; 8:e55502. [PMID: 23383207 PMCID: PMC3559583 DOI: 10.1371/journal.pone.0055502] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/23/2012] [Indexed: 01/05/2023] Open
Abstract
Recently miR-182 has been reported to be over-expressed in prostate cancer (PC) tissues, however detailed functional analysis of miR-182-5p has not been carried out. The purpose of this study was to: 1. analyze the function of miR-182-5p in prostate cancer, 2. assess its usefulness as a tumor marker, 3. identify miR-182-5p target genes in PC, 4. investigate the potential for miR-182-5p inhibitor to be used in PC treatment. Initially we found that miR-182-5p expression was significantly higher in prostate cancer tissues and cell lines compared to normal prostate tissues and cells. Moreover high miR-182-5p expression was associated with shorter overall survival in PC patients. To study the functional significance of miR-182-5p, we knocked down miR-182-5p with miR-182-5p inhibitor. After miR-182-5p knock-down, prostate cancer cell proliferation, migration and invasion were decreased. We identified FOXF2, RECK and MTSS1 as potential target genes of miR-182-5p using several algorithms which was confirmed by 3’UTR luciferase assay and Western analysis. Knock-down of miR-182-5p also significantly decreased in vivo prostate tumor growth. In conclusion this is the first report documenting that over-expression of miR-182-5p is associated with prostate cancer progression and potentially useful as a prognostic biomarker. Also knock down of miR-182-5p in order to increase expression of tumor suppressor genes FOXF2, RECK and MTSS1 may be of therapeutic benefit in prostate cancer treatment.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
127 |
7
|
Chiyomaru T, Yamamura S, Fukuhara S, Hidaka H, Majid S, Saini S, Arora S, Deng G, Shahryari V, Chang I, Tanaka Y, Tabatabai ZL, Enokida H, Seki N, Nakagawa M, Dahiya R. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PLoS One 2013; 8:e58929. [PMID: 23554959 PMCID: PMC3595226 DOI: 10.1371/journal.pone.0058929] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/08/2013] [Indexed: 12/25/2022] Open
Abstract
Genistein has been shown to inhibit cancers both in vitro and in vivo, by altering the expression of several microRNAs (miRNAs). In this study, we focused on tumor suppressor miRNAs regulated by genistein and investigated their function in prostate cancer (PCa) and target pathways. Using miRNA microarray analysis and real-time RT-PCR we observed that miR-574-3p was significantly up-regulated in PCa cells treated with genistein compared with vehicle control. The expression of miR-574-3p was significantly lower in PCa cell lines and clinical PCa tissues compared with normal prostate cells (RWPE-1) and adjacent normal tissues. Low expression level of miR-574-3p was correlated with advanced tumor stage and higher Gleason score in PCa specimens. Re-expression of miR-574-3p in PCa cells significantly inhibited cell proliferation, migration and invasion in vitro and in vivo. miR-574-3p restoration induced apoptosis through reducing Bcl-xL and activating caspase-9 and caspase-3. Using GeneCodis software analysis, several pathways affected by miR-574-3p were identified, such as 'Pathways in cancer', 'Jak-STAT signaling pathway', and 'Wnt signaling pathway'. Luciferase reporter assays demonstrated that miR-574-3p directly binds to the 3' UTR of several target genes (such as RAC1, EGFR and EP300) that are components of 'Pathways in cancer'. Quantitative real-time PCR and Western analysis showed that the mRNA and protein expression levels of the three target genes in PCa cells were markedly down-regulated with miR-574-3p. Loss-of-function studies demonstrated that the three target genes significantly affect cell proliferation, migration and invasion in PCa cell lines. Our results show that genistein up-regulates tumor suppressor miR-574-3p expression targeting several cell signaling pathways. These findings enhance understanding of how genistein regulates with miRNA in PCa.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
126 |
8
|
Swanson MG, Keshari KR, Tabatabai ZL, Simko JP, Shinohara K, Carroll PR, Zektzer AS, Kurhanewicz J. Quantification of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy. Magn Reson Med 2008; 60:33-40. [PMID: 18581409 DOI: 10.1002/mrm.21647] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A fast and quantitative 2D high-resolution magic angle spinning (HR-MAS) total correlation spectroscopy (TOCSY) experiment was developed to resolve and quantify the choline- and ethanolamine-containing metabolites in human prostate tissues in approximately 1 hr prior to pathologic analysis. At a 40-ms mixing time, magnetization transfer efficiency constants were empirically determined in solution and used to calculate metabolite concentrations in tissue. Phosphocholine (PC) was observed in 11/15 (73%) cancer tissues but only 6/32 (19%) benign tissues. PC was significantly higher (0.39 +/- 0.40 mmol/kg vs. 0.02 +/- 0.07 mmol/kg, z = 3.5), while ethanolamine (Eth) was significantly lower in cancer versus benign prostate tissues (1.0 +/- 0.8 mmol/kg vs. 2.3 +/- 1.9 mmol/kg, z = 3.3). Glycerophosphocholine (GPC) (0.57 +/- 0.87 mmol/kg vs. 0.29 +/- 0.26 mmol/kg, z = 1.2), phosphoethanolamine (PE) (4.4 +/- 2.2 mmol/kg vs. 3.4 +/- 2.6 mmol/kg, z = 1.4), and glycerophosphoethanolamine (GPE) (0.54 +/- 0.82 mmol/kg vs. 0.15 +/- 0.15 mmol/kg, z = 1.8) were higher in cancer versus benign prostate tissues. The ratios of PC/GPC (3.5 +/- 4.5 vs. 0.32 +/- 1.4, z = 2.6), PC/PE (0.08 +/- 0.08 vs. 0.01 +/- 0.03, z = 3.5), PE/Eth (16 +/- 22 vs. 2.2 +/- 2.0, z = 2.4), and GPE/Eth (0.41 +/- 0.51 vs. 0.06 +/- 0.06, z = 2.6) were also significantly higher in cancer versus benign tissues. All samples were pathologically interpretable following HR-MAS analysis; however, degradation experiments showed that PC, GPC, PE, and GPE decreased 7.7 +/- 2.2%, while Cho+mI and Eth increased 18% in 1 hr at 1 degrees C and a 2250 Hz spin rate.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
90 |
9
|
Ueno K, Hirata H, Majid S, Yamamura S, Shahryari V, Tabatabai ZL, Hinoda Y, Dahiya R. Tumor suppressor microRNA-493 decreases cell motility and migration ability in human bladder cancer cells by downregulating RhoC and FZD4. Mol Cancer Ther 2011; 11:244-53. [PMID: 22057916 DOI: 10.1158/1535-7163.mct-11-0592] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to identify new tumor suppressor microRNAs (miRNA; miR) in bladder cancer, conduct functional analysis of their suppressive role, and identify their specific target genes. To explore tumor suppressor miRs in bladder cancer, miR microarray was conducted using SV-HUC-1, T24, J82, and TCCSUP cells. Expression of miR-493 in bladder cancer (T24, J82, and TCCSUP) cells was downregulated compared with normal SV-HUC-1 cells. Also, the expression of miR-493 was significantly lower in bladder cancer tissues than in their corresponding noncancerous tissues. Transfection of miR-493 into T24 or J82 cells decreased their cell growth and migration abilities. On the basis of this result, to identify potential miR-493 target genes, we used target scan algorithms to identify target oncogenes related to invasion and migration. miR-493 decreased 3'-untranslated region luciferase activity and protein expression of FZD4 and RhoC. miR-493 also decreased binding of RhoC and Rock-1. miR-493 is a new tumor suppressor miRNA in bladder cancer and inhibits cell motility through downregulation of RhoC and FZD4.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
85 |
10
|
Chiyomaru T, Yamamura S, Zaman MS, Majid S, Deng G, Shahryari V, Saini S, Hirata H, Ueno K, Chang I, Tanaka Y, Tabatabai ZL, Enokida H, Nakagawa M, Dahiya R. Genistein suppresses prostate cancer growth through inhibition of oncogenic microRNA-151. PLoS One 2012; 7:e43812. [PMID: 22928040 PMCID: PMC3426544 DOI: 10.1371/journal.pone.0043812] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
Abstract
Genistein has been shown to suppress the growth of several cancers through modulation of various pathways. However, the effects of genistein on the regulation of oncogenic microRNA-151 (miR-151) have not been reported. In this study, we investigated whether genistein could alter the expression of oncogenic miR-151 and its target genes that are involved in the progression and metastasis of prostate cancer (PCa). Real-time RT-PCR showed that the expression of miR-151 was higher in PC3 and DU145 cells compared with RWPE-1 cells. Treatment of PC3 and DU145 cells with 25 µM genistein down-regulated the expression of miR-151 compared with vehicle control. Inhibition of miR-151 in PCa cells by genistein significantly inhibited cell migration and invasion. In-silico analysis showed that several genes (CASZ1, IL1RAPL1, SOX17, N4BP1 and ARHGDIA) suggested to have tumor suppressive functions were target genes of miR-151. Luciferase reporter assays indicated that miR-151 directly binds to specific sites on the 3′UTR of target genes. Quantitative real-time PCR analysis showed that the mRNA expression levels of the five target genes in PC3 and DU145 were markedly changed with miR-151 mimics and inhibitor. Kaplan-Meier curves and log-rank tests revealed that high expression levels of miR-151 had an adverse effect on survival rate. This study suggests that genistein mediated suppression of oncogenic miRNAs can be an important dietary therapeutic strategy for the treatment of PCa.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
82 |
11
|
Dasgupta P, Kulkarni P, Majid S, Shahryari V, Hashimoto Y, Bhat NS, Shiina M, Deng G, Saini S, Tabatabai ZL, Yamamura S, Tanaka Y, Dahiya R. MicroRNA-203 Inhibits Long Noncoding RNA HOTAIR and Regulates Tumorigenesis through Epithelial-to-mesenchymal Transition Pathway in Renal Cell Carcinoma. Mol Cancer Ther 2018; 17:1061-1069. [PMID: 29440295 PMCID: PMC5932222 DOI: 10.1158/1535-7163.mct-17-0925] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/27/2017] [Accepted: 02/09/2018] [Indexed: 12/28/2022]
Abstract
This study aims to investigate the role of miR-203-HOTAIR interaction in the suppression of renal cell carcinoma (RCC). We employed series of in vitro assays such as proliferation, invasion, migration, and colony formation along with in vivo tumor xenograft model. Profiling of miR-203 and HOTAIR expression revealed that miR-203 was significantly underexpressed, whereas HOTAIR was overexpressed in RCC cell lines and clinical specimens compared with normal cell line and tissue. Both miR-203 and HOTAIR expression significantly distinguished malignant from normal tissues and significantly correlated with clinicopathologic characteristics of patients. Overexpression of miR-203 significantly inhibited proliferation, migration, and invasion with an induction of apoptosis and cell-cycle arrest. However, HOTAIR suppression resulted in the similar functional effects in the same RCC cell lines. In silico, RNA-22 algorithm showed a binding site for miR-203 in HOTAIR. We observed a direct interaction between miR-203 and HOTAIR by RNA-immunoprecipitation (RIP) and luciferase reporter assays. We show that miR-203-HOTAIR interaction resulted in the inhibition of epithelial-to-mesenchymal transition (EMT) and metastatic genes as indicated by induction of key metastasis-suppressing proteins E-cadherin, claudin (epithelial markers), and PTEN along with induction of tumor suppressor genes p21 and p27. A significant decrease in vimentin (mesenchymal marker), KLF4, and Nanog (stemness markers) was also observed. This is the first report demonstrating miR-203-mediated regulation of HOTAIR induces tumor suppressor effects in RCC by regulating EMT and metastatic pathway genes. Thus, the study suggests that therapeutic regulation of HOTAIR by miR-203 overexpression may provide an opportunity to regulate RCC growth and metastasis. Mol Cancer Ther; 17(5); 1061-9. ©2018 AACR.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
79 |
12
|
Enokida H, Shiina H, Urakami S, Igawa M, Ogishima T, Pookot D, Li LC, Tabatabai ZL, Kawahara M, Nakagawa M, Kane CJ, Carroll PR, Dahiya R. Ethnic group-related differences in CpG hypermethylation of the GSTP1 gene promoter among African-American, Caucasian and Asian patients with prostate cancer. Int J Cancer 2005; 116:174-81. [PMID: 15800905 DOI: 10.1002/ijc.21017] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The incidence and mortality of prostate cancer (PC) is approximately 2-fold higher among African-Americans as compared to Caucasians and very low in Asian. We hypothesize that inactivation of GSTP1 genes through CpG methylation plays a role in the pathogenesis of PC, and its ability to serve as a diagnostic marker that differs among ethnic groups. GSTP1 promoter hypermethylation and its correlation with clinico-pathological findings were evaluated in 291 PC (Asian = 170; African-American = 44; Caucasian = 77) and 172 benign prostate hypertrophy samples (BPH) (Asian = 96; African-American = 38; Caucasian = 38) using methylation-specific PCR. In PC cells, 5-aza-dC treatment increased expression of GSTP1 mRNA transcripts. The methylation of all CpG sites was found in 191 of 291 PC (65.6%), but only in 34 of 139 BPH (24.5%). The GSTP1 hypermethylation was significantly higher in PC as compared to BPH in each ethnic group (p < 0.0001). Logistic regression analysis (PC vs. BPH) showed that African-Americans had a higher hazard ratio (HR) (13.361) compared to Caucasians (3.829) and Asian (8.603). Chi-square analysis showed correlation of GSTP1 hypermethylation with pathological findings (pT categories and higher Gleason sum) in Asian PC (p < 0.0001) but not in African-Americans and Caucasian PC. Our results suggest that GSTP1 hypermethylation is a sensitive biomarker in African-Americans as compared to that in Caucasians or Asian, and that it strongly influences tumor progression in Asian PC. Ours is the first study investigating GSTP1 methylation differences in PC among African-American, Caucasian and Asian.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
72 |
13
|
Farrell JM, Pang JC, Kim GE, Tabatabai ZL. Pancreatic neuroendocrine tumors: accurate grading with Ki-67 index on fine-needle aspiration specimens using the WHO 2010/ENETS criteria. Cancer Cytopathol 2014; 122:770-8. [PMID: 25044931 DOI: 10.1002/cncy.21457] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/06/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The natural history of pancreatic neuroendocrine tumors (panNETs) is extremely variable. One of the most controversial problems in diagnosis is the accurate prediction of the clinical behavior of these tumors. PanNETs that behave aggressively with a malignant course may have bland cytologic features, while some tumors with previously described "malignant" features may behave in a benign or indolent fashion. Various classification schemes have been proposed for grading panNETs. The European Neuroendocrine Tumor Society (ENETS) and 2010 World Health Organization (WHO) classification schemes include counting the mitotic index and/or the Ki-67 proliferation index for grading. The current study was undertaken to determine whether tumors sampled by endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) can be accurately graded based on the Ki-67 index when compared to surgical samples. METHODS Corresponding EUS-FNA cytology and surgical tissue specimens were obtained for 22 tumors and stained for hematoxylin and eosin (H&E) and the Ki-67 proliferation marker (MIB-1 antibody). Samples were graded by scoring Ki-67 staining indices in accordance with the 2010 ENETS/WHO criteria. The grading scores assigned to the EUS-FNA cytology samples were compared with the scores assigned to the corresponding histological samples. RESULTS The majority (86%) of EUS-FNA cytology samples and corresponding surgical tissue specimens demonstrated concordant grading based on Ki-67 indices. CONCLUSIONS These results indicate that EUS-FNA cytology samples can be accurately graded based on the WHO Ki-67 labeling scheme. Thus, Ki-67 scoring in EUS-FNA cytology samples is an alternative approach for establishing the grade of panNETs. Accurate grading of panNETs is critical for predicting tumor biology, patient prognosis, and making informed decisions regarding patient management and treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
71 |
14
|
Hirata H, Hinoda Y, Ueno K, Shahryari V, Tabatabai ZL, Dahiya R. MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer. Carcinogenesis 2011; 33:41-8. [PMID: 22049531 DOI: 10.1093/carcin/bgr239] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Wnt/beta-catenin (CTNNB1) and Ras-Raf-MEK-ERK signaling pathway play an important role in bladder cancer (BC) progression. Tumor-suppressive microRNAs (miRNAs) targeting these cancer pathways may provide a new therapeutic approach for BC. We initially identified miRNA-1826 potentially targeting CTNNB1, VEGFC and MEK1 using several target scan algorithms. Also 3' untranslated region luciferase activity and protein expression of these target genes were significantly downregulated in miR-1826-transfected BC cells (J82 and T24). The expression of miR-1826 was lower in BC tissues and inverse correlation of miR-1826 with several clinical parameters (pT, grade) was observed. Also the expression of miR-1826 was much lower in three BC cell lines (J82, T24 and TCCSUP) compared with a normal bladder cell line (SV-HUC-1). We then performed analyses to look at miR-1826 function and found that miR-1826 inhibited BC cell viability, invasion and migration. We also found increased apoptosis and G(1) cell cycle arrest in miR-1826-transfected BC cells. To examine whether the effect of miR-1826 was through CTNNB1 (beta-catenin) or MEK1 knockdown, we knocked down CTNNB1/MEK1 messenger RNA using a small interfering RNA (siRNA) technique. We observed that CTNNB1 or MEK1 siRNA knockdown resulted in effects similar to those with miR-1826 in BC cells. In conclusion, our data suggest that the miR-1826 plays an important role as tumor suppressor via CTNNB1/MEK1/VEGFC downregulation in BC.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
67 |
15
|
Bhagirath D, Yang TL, Tabatabai ZL, Majid S, Dahiya R, Tanaka Y, Saini S. BRN4 Is a Novel Driver of Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer and Is Selectively Released in Extracellular Vesicles with BRN2. Clin Cancer Res 2019; 25:6532-6545. [PMID: 31371344 DOI: 10.1158/1078-0432.ccr-19-0498] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/21/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Neuroendocrine prostate cancer (NEPC), an aggressive variant of castration-resistant prostate cancer (CRPC), often emerges after androgen receptor-targeted therapies such as enzalutamide or de novo, via trans-differentiation process of neuroendocrine differentiation. The mechanistic basis of neuroendocrine differentiation is poorly understood, contributing to lack of effective predictive biomarkers and late disease recognition. The purpose of this study was to examine the role of novel proneural Pit-Oct-Unc-domain transcription factors (TF) in NEPC and examine their potential as noninvasive predictive biomarkers.Experimental Design: Prostate cancer patient-derived xenograft models, clinical samples, and cellular neuroendocrine differentiation models were employed to determine the expression of TFs BRN1 and BRN4. BRN4 levels were modulated in prostate cancer cell lines followed by functional assays. Furthermore, extracellular vesicles (EV) were isolated from patient samples and cell culture models, characterized by nanoparticle tracking analyses, Western blotting, and real-time PCR. RESULTS We identify for the first time that: (i) BRN4 is amplified and overexpressed in NEPC clinical samples and that BRN4 overexpression drives neuroendocrine differentiation via its interplay with BRN2, a TF that was previously implicated in NEPC; (ii) BRN4 and BRN2 mRNA are actively released in prostate cancer EVs upon neuroendocrine differentiation induction; and (iii) enzalutamide treatment augments release of BRN4 and BRN2 in prostate cancer EVs, promoting neuroendocrine differentiation induction. CONCLUSIONS Our study identifies a novel TF that drives NEPC and suggests that as adaptive mechanism to enzalutamide treatment, prostate cancer cells express and secrete BRN4 and BRN2 in EVs that drive oncogenic reprogramming of prostate cancer cells to NEPC. Importantly, EV-associated BRN4 and BRN2 are potential novel noninvasive biomarkers to predict neuroendocrine differentiation in CRPC.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
60 |
16
|
Li Y, Tabatabai ZL, Lee TL, Hatakeyama S, Ohyama C, Chan WY, Looijenga LHJ, Lau YFC. The Y-encoded TSPY protein: a significant marker potentially plays a role in the pathogenesis of testicular germ cell tumors. Hum Pathol 2007; 38:1470-81. [PMID: 17521702 PMCID: PMC2744854 DOI: 10.1016/j.humpath.2007.03.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 12/31/2022]
Abstract
The testis-specific protein Y-encoded (TSPY) gene is the putative gene for the gonadoblastoma locus on the Y chromosome (GBY) that predisposes dysgenetic gonads of intersex patients to gonadoblastoma development. TSPY is expressed at high levels in gonadoblastoma tissues, supporting its possible oncogenic function in this type of germ cell tumors. To explore the possibility that this Y chromosome gene is also involved in pathogenesis of the more common testicular germ cell tumors (TGCTs), we have conducted various expression studies using immunohistochemistry, Western blotting, and reverse transcription-polymerase chain reaction analysis on 171 cases of TGCTs and selected normal testis controls. Our results demonstrated that TSPY protein is abundantly expressed in the precursor, carcinoma in situ or intratubular germ cell neoplasia unclassified, and seminoma, but only minimally or not expressed in various types of nonseminomas. TSPY coexpresses with established germ cell tumor markers (such as placental-like alkaline phosphatase, c-KIT, OCT4) and proliferative markers (such as Ki-67 and cyclin B1) in the same tumor cells at both RNA and protein levels. Ectopic TSPY expression in cultured cells up-regulates progrowth genes, including those at chromosome 12p13, frequently gained/amplified in TGCTs. Our results suggest that TSPY, in combination with other markers, could be an important marker for diagnosis and subclassification of TGCTs and support its role in the pathogenesis of both gonadoblastoma and TGCTs.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
53 |
17
|
Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chang I, Yamamura S, Chiyomaru T, Fukuhara S, Tanaka Y, Deng G, Tabatabai ZL, Dahiya R. MicroRNA-1280 inhibits invasion and metastasis by targeting ROCK1 in bladder cancer. PLoS One 2012; 7:e46743. [PMID: 23056431 PMCID: PMC3464246 DOI: 10.1371/journal.pone.0046743] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/30/2012] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are non-protein-coding sequences that can function as oncogenes or tumor suppressor genes. This study documents the tumor suppressor role of miR-1280 in bladder cancer. Quantitative real-time PCR and in situ hybridization analyses showed that miR-1280 is significantly down-regulated in bladder cancer cell lines and tumors compared to a non-malignant cell line or normal tissue samples. To decipher the functional significance of miR-1280 in bladder cancer, we ectopically over-expressed miR-1280 in bladder cancer cell lines. Over-expression of miR-1280 had antiproliferative effects and impaired colony formation of bladder cancer cell lines. FACS (fluorescence activated cell sorting) analysis revealed that re-expression of miR-1280 in bladder cancer cells induced G2-M cell cycle arrest and apoptosis. Our results demonstrate that miR-1280 inhibited migration and invasion of bladder cancer cell lines. miR-1280 also attenuated ROCK1 and RhoC protein expression. Luciferase reporter assays demonstrated that oncogene ROCK1 is a direct target of miR-1280 in bladder cancer. This study also indicates that miR-1280 may be of diagnostic and prognostic importance in bladder cancer. For instance, ROC analysis showed that miR-1280 expression can distinguish between malignant and normal bladder cancer cases and Kaplan-Meier analysis revealed that patients with miR-1280 high expression had higher overall survival compared to those with low miR-1280 expression. In conclusion, this is the first study to document that miR-1280 functions as a tumor suppressor by targeting oncogene ROCK1 to invasion/migration and metastasis. Various compounds are currently being used as ROCK1 inhibitors; therefore restoration of tumor suppressor miR-1280 might be therapeutically useful either alone or in combination with these compounds in the treatment of bladder cancer.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
52 |
18
|
Nip H, Dar AA, Saini S, Colden M, Varahram S, Chowdhary H, Yamamura S, Mitsui Y, Tanaka Y, Kato T, Hashimoto Y, Shiina M, Kulkarni P, Dasgupta P, Imai-Sumida M, Tabatabai ZL, Greene K, Deng G, Dahiya R, Majid S. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer. Oncotarget 2016; 7:68371-68384. [PMID: 27634912 PMCID: PMC5356562 DOI: 10.18632/oncotarget.12031] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/26/2016] [Indexed: 12/25/2022] Open
Abstract
Prostate carcinogenesis involves alterations in several signaling pathways, the most prominent being the PI3K/AKT pathway. This pathway is constitutively active and drives prostate cancer (PCa) progression to advanced metastatic disease. PTEN, a critical tumor and metastasis suppressor gene negatively regulates cell survival, proliferation, migration and angiogenesis via the PI3K/Akt pathway. PTEN is mutated, downregulated/dysfunctional in many cancers and its dysregulation correlates with poor prognosis in PCa. Here, we demonstrate that microRNA-4534 (miR-4534) is overexpressed in PCa and show that miR-4534 is hypermethylated in normal tissues and cell lines compared to PCa tissues/cells. miR-4534 exerts its oncogenic effects partly by downregulating the tumor suppressor PTEN gene. Knockdown of miR-4534 impaired cell proliferation, migration/invasion and induced G0/G1 cell cycle arrest and apoptosis in PCa. Suppression of miR-4534 and its effects on tumor growth was confirmed in a xenograft mouse model. We performed parallel experiments in non-cancer RWPE1 cells by overexpessing miR-4534 followed by functional assays. Overexpression of miR-4534 induced pro-cancerous characteristics in this non-cancer cell line. Statistical analyses revealed that miR-4534 has potential to independently distinguish malignant from normal tissues and positively correlated with poor overall and PSA recurrence free survival. Taken together, our results show that depletion of miR-4534 in PCa induces a tumor suppressor phenotype partly through induction of PTEN. These results have important implications for identifying and defining the role of new PTEN regulators such as microRNAs in prostate tumorigenesis. Understanding aberrantly overexpressed miR-4534 and its downregulation of PTEN will provide mechanistic insight and therapeutic targets for PCa therapy.
Collapse
|
research-article |
9 |
49 |
19
|
Ueno K, Hirata H, Majid S, Chen Y, Zaman MS, Tabatabai ZL, Hinoda Y, Dahiya R. Wnt antagonist DICKKOPF-3 (Dkk-3) induces apoptosis in human renal cell carcinoma. Mol Carcinog 2011; 50:449-57. [PMID: 21268126 DOI: 10.1002/mc.20729] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/20/2010] [Accepted: 11/29/2010] [Indexed: 01/04/2023]
Abstract
The Wnt signaling pathway is activated in most cancers while Wnt antagonist genes are inactivated. However, the functional significance and mechanisms of inactivation of Wnt antagonist Dkk-3 gene in renal cell carcinoma (RCC) has not been reported. In this study, we examined potential epigenetic mechanisms regulating Dkk-3 expression in RCC cells and whether Dkk-3 expression affects cell growth and apoptosis. The expression of Dkk-3 is regulated by histone modification rather than CpG island DNA methylation in renal cancer cells. Renal cancer cell proliferation was significantly inhibited and apoptosis was promoted in Dkk-3 transfected renal cancer cells. Dkk-3 did not inhibit the Wnt/beta-catenin signaling pathway but induced apoptosis via the noncanonical JNK pathway in renal cancer cells. Expression of p21, MDM-2, and Puma genes were increased after transfecting RCC cell lines with a Dkk-3 expression plasmid. Overexpression of Dkk-3 induced G(0)/G(1) arrest together with an increase in p21 expression. Growth of stable Dkk-3 transfected cells in nude mice was decreased compared to controls. Our data show for the first time that mRNA expression of Dkk-3 is regulated by histone modification and that Dkk-3 inhibits renal cancer growth through modulation of cell cycle and apoptotic pathways.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
48 |
20
|
Hirata H, Hinoda Y, Nakajima K, Kikuno N, Yamamura S, Kawakami K, Suehiro Y, Tabatabai ZL, Ishii N, Dahiya R. Wnt antagonist gene polymorphisms and renal cancer. Cancer 2009; 115:4488-503. [PMID: 19562778 DOI: 10.1002/cncr.24491] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epigenetic silencing of several wingless-type mouse mammary tumor virus integration site (Wnt) pathway-related genes has been reported in renal cancer. Except for the T-cell factor 4 gene TCF4, there are no reports regarding Wnt pathway gene polymorphisms in renal cancer. Therefore, the authors of this report hypothesized that the polymorphisms in Wnt signaling genes may be risk factors for renal cancer. METHODS In total, 210 patients (145 men and 65 women) with pathologically confirmed renal cell carcinoma (RCC) and 200 age-matched and sex-matched control individuals were enrolled in this study. We genotyped 14 single nucleotide polymorphisms (SNPs) in 6 genes. including Dickkopf 2 (DKK2) (reference SNP identification number 17037102 [rs17037102], rs419558, and rs447372), DKK3 (rs3206824, rs11022095, rs1472189, rs7396187, and rs2291599), DKK4 (rs2073664), secreted frizzled-related protein 4 (sFRP4) (rs1802073 and rs1802074), mothers against decapentaplegic homolog (SMAD) family member 7 or SMAD7 (rs12953717), and disheveled associated activator of morphogenesis 2 or DAAM2 (rs6937133 and rs2504106) using polymerase chain reaction-restriction fragment length polymorphism analysis and direct sequencing in the patients with RCC and in the healthy, age-matched control group. The relations also were tested between these polymorphisms and clinicopathologic data, including sex, tumor grade, tumor stage, lymph node involvement, distant metastasis, and overall survival. RESULTS A significant decrease in the frequency of the guanine/adenine (G/A) + A/A genotypes in the DKK3 codon 335 rs3206824 was observed in the patients with RCC compared with the control group. The frequency of the rs3206824 (G/A) A-rs7396187 (guanine/cytosine [G/C]) C haplotype was significantly lower in patients with RCC compared with other haplotypes. In addition, DKK3 rs1472189 cytosine/thymine (C/T) was associated with distant metastasis, and, DKK2 rs17037102 G-homozygous patients had a decreased risk for death in multivariate Cox regression analysis. CONCLUSIONS To the authors' knowledge, this is the first report documenting that DKK3 polymorphisms are associated with RCC and that the DKK2 rs17037102 polymorphism may be a predictor for survival in patients with RCC after radical nephrectomy.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
46 |
21
|
Ueno K, Hirata H, Majid S, Tabatabai ZL, Hinoda Y, Dahiya R. IGFBP-4 activates the Wnt/beta-catenin signaling pathway and induces M-CAM expression in human renal cell carcinoma. Int J Cancer 2011; 129:2360-9. [PMID: 21207373 DOI: 10.1002/ijc.25899] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 12/02/2010] [Indexed: 01/29/2023]
Abstract
The Wnt/β-catenin signaling pathway is inactivated by Wnt antagonists in most cancers and IGFBP-4 is an antagonist of the Wnt/ β-catenin signaling pathway. However, the function of IGFBP-4 is not currently understood in renal cell carcinoma (RCC). We initially found that the expression of IGFBP-4 was significantly lower in primary RCC and higher in metastatic RCC compared to normal human kidney tissues. To assess the function of IGFBP4, we established IGFBP4 transfectants (primary renal cancer cell line) and performed functional analyses including Tcf reporter assays, cell viability, invasive capability, mortality, and in vivo tumor growth. Interestingly IGFBP-4 transfectants promoted cell growth (in vitro and in vivo), invasion, and motility in primary renal cancer. Tcf transcriptional activity was significantly increased in IGFBP-4 transfectants compared to mock cells and β-catenin expression was increased. Also the β-catenin downstream effector, MT1-MMP showed increased expression in IGFBP4 transfectants. Additionally IGFBP4 induced the expression of M-CAM, a marker of tumor progression. In order to assess the role of IGFBP4 in metastatic renal cancer, IGFBP-4 mRNA in a metastatic renal cancer cell lines (ACHN) was knocked-down using a siRNA technique. The cell growth and motility was decreased in si-IGFBP4 transfected ACHN cells compared to cells transfected with control siRNA. Tcf activity in ACHN cells was also decreased with si-IGFBP-4 transfection. This is a first report documenting that IGFBP-4 expression in RCC activates cell growth, metastasis, Wnt/beta-catenin signaling and may be involved in RCC metastasis.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
46 |
22
|
Chang I, Mitsui Y, Fukuhara S, Gill A, Wong DK, Yamamura S, Shahryari V, Tabatabai ZL, Dahiya R, Shin DM, Tanaka Y. Loss of miR-200c up-regulates CYP1B1 and confers docetaxel resistance in renal cell carcinoma. Oncotarget 2016; 6:7774-87. [PMID: 25860934 PMCID: PMC4480715 DOI: 10.18632/oncotarget.3484] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022] Open
Abstract
Despite high protein expression and enzymatic activity of cytochrome P450 1B1 (CYP1B1) in renal cell cancer (RCC), its functional significance has not been elucidated. Here we explored the functional role and regulatory mechanism of CYP1B1 in RCC. Reduction of CYP1B1 levels fail to prevent in vitro tumorigenicity such as proliferation, apoptosis, and cell cycle progression of RCC cells. Moreover, the expression levels are not associated with tumor type, stage, Fuhrman grade and 5-year survival probability after surgery. Instead, alteration of CYP1B1 expression regulates the chemosensitivity of RCC cells to docetaxel suggesting its critical contribution to the chemoresistance. Additionally, miR-200c, which is significantly down-regulated in RCC regulates CYP1B1 expression and activity. An inverse association was also observed between the expression levels of miR-200c and CYP1B1 protein in RCC tissues. Finally, alteration of miR-200c levels affects the chemosensitivity of RCC cells. Restoration of docetaxel resistance by exogenous expression of CYP1B1 in miR-200c-over-expressing cells indicates that CYP1B1 is a functional target of miR-200c. These results suggest that CYP1B1 up-regulation mediated by low miR-200c is one of the mechanisms underlying resistance of RCC cells to docetaxel. Therefore, expression of CYP1B1 and miR-200c in RCC may be useful as a prediction for docetaxel response.
Collapse
|
Journal Article |
9 |
44 |
23
|
Hyun TS, Barnes M, Tabatabai ZL. The diagnostic utility of D2-40, calretinin, CK5/6, desmin and MOC-31 in the differentiation of mesothelioma from adenocarcinoma in pleural effusion cytology. Acta Cytol 2012; 56:527-32. [PMID: 23075894 DOI: 10.1159/000339586] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/17/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate the utility of the lymphatic endothelial marker D2-40, along with calretinin, CK5/6, desmin and MOC-31, in differentiating mesothelioma and adenocarcinoma in pleural effusion cytology. STUDY DESIGN Forty-five pleural effusion cases representing confirmed reactive effusions (13), mesotheliomas (11) and metastatic adenocarcinomas (21) were immunostained with antibodies against D2-40, calretinin, CK5/6, desmin and MOC-31. RESULTS D2-40 showed membranous staining in 82% of mesotheliomas and 77% of reactive effusions. Calretinin and CK5/6 were positive in 100 and 64% of mesotheliomas, and 92 and 31% of reactive effusions, respectively. All adenocarcinomas showed lack of staining with these markers. Desmin was negative in all malignant cases and positive in 85% of reactive effusions. All adenocarcinomas were positive for MOC-31 and negative for the remaining markers. CONCLUSION Calretinin was the most sensitive in detecting mesothelial differentiation, followed by D2-40. Although useful, D2-40 necessitated cautious interpretation due to occasional focal/weak positivity, particularly in limited cellularity samples. The muscle marker desmin was useful in differentiating benign from malignant effusions but not in distinguishing mesotheliomas from adenocarcinomas. MOC-31 was both highly sensitive and specific for detecting adenocarcinoma and was useful as part of a panel of stains in differentiating cells of mesothelial origin from adenocarcinoma.
Collapse
|
|
13 |
43 |
24
|
Keshari KR, Tsachres H, Iman R, Delos Santos L, Tabatabai ZL, Shinohara K, Vigneron DB, Kurhanewicz J. Correlation of phospholipid metabolites with prostate cancer pathologic grade, proliferative status and surgical stage - impact of tissue environment. NMR IN BIOMEDICINE 2011; 24:691-9. [PMID: 21793074 PMCID: PMC3653775 DOI: 10.1002/nbm.1738] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study investigates the relationship between phospholipid metabolite concentrations, Gleason score, rate of cellular proliferation and surgical stage in malignant prostatectomy samples by performing one- and two-dimensional, high-resolution magic angle spinning, total correlation spectroscopy, pathology and Ki-67 staining on the same surgical samples. At radical prostatectomy, surgical samples were obtained from 49 patients [41 with localized TNM stage T1 and T2, and eight with local cancer spread (TNM stage T3)]. Thirteen of the tissue samples were high-grade prostate cancer [Gleason score: 4 + 3 (n = 7); 4 + 4 (n = 6)], 22 low-grade prostate cancer [Gleason score: 3 + 3 (n = 17); 3 + 4 (n = 5)] and 14 benign prostate tissues. This study demonstrates that high-grade prostate cancer shows significantly higher Ki-67 staining and concentrations of phosphocholine (PC) and glycerophosphocholine (GPC) than does low-grade prostate cancer (2.4 ± 2.8% versus 7.6 ± 3.5%, p < 0.005, and 0.671 ± 0.461 versus 1.87 ± 2.15 mmolal, p < 0.005, respectively). In patients with local cancer spread, increases in [PC + GPC + PE + GPE] (PE, phosphoethanolamine; GPE, glycerophosphoethanolamine] and Ki-67 index approached significance (4.2 ± 2.5 versus 2.7 ± 2.4 mmolal, p = 0.07, and 5.3 ± 3.8% versus 2.9 ± 3.8%, p = 0.07, respectively). PC and Ki-67 were significantly lower and GPC higher in prostate tissues when compared with cell cultures, presumably because of a lack of important stromal-epithelial interactions in cell cultures. The findings of this study will need to be validated in a larger cohort of surgical patients with clinical outcome data, but support the role of in vivo (1)H MRSI in discriminating between low- and high-grade prostate cancer based on the magnitude of elevation of the in vivo total choline resonance.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
43 |
25
|
Kulkarni P, Dasgupta P, Bhat NS, Shahryari V, Shiina M, Hashimoto Y, Majid S, Deng G, Saini S, Tabatabai ZL, Yamamura S, Tanaka Y, Dahiya R. Elevated miR-182-5p Associates with Renal Cancer Cell Mitotic Arrest through Diminished MALAT-1 Expression. Mol Cancer Res 2018; 16:1750-1760. [PMID: 30037856 DOI: 10.1158/1541-7786.mcr-17-0762] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/03/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022]
Abstract
The molecular heterogeneity of clear cell renal carcinoma (ccRCC) makes prediction of disease progression and therapeutic response difficult. Thus, this report investigates the functional significance, mechanisms of action, and clinical utility of miR-182-5p and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1/NEAT2), a long noncoding RNA (lncRNA), in the regulation of kidney cancer using human kidney cancer tissues as well as in vitro and in vivo model systems. Profiling of miR-182-5p and MALAT-1 in human renal cancer cells and clinical specimens was done by quantitative real-time PCR (qPCR). The biological significance was determined by series of in vitro and in vivo experiments. The interaction between miR-182-5p and MALAT-1 was investigated using luciferase reporter assays. In addition, the effects of miR-182-5p overexpression and MALAT-1 downregulation on cell-cycle progression were assessed in ccRCC cells. The data indicate that miR-182-5p is downregulated in ccRCC; the mechanism being CpG hypermethylation as observed from 5-Aza CdR treatment that decreased promoter methylation and expression of key methylation regulatory genes like DNMT1, DNMT3a, and DNMT3b Overexpression of miR-182-5p-inhibited cell proliferation, colony formation, apoptosis, and led to G2-M-phase cell-cycle arrest by directly targeting MALAT-1 Downregulation of MALAT-1 led to upregulation of p53, downregulation of CDC20, AURKA, drivers of the cell-cycle mitotic phase. Transient knockdown of MALAT-1 mimicked the effects of miR-182-5p overexpression. Finally, overexpression of miR-182-5p decreased tumor growth in mice, compared with controls; thus, demonstrating its antitumor effect in vivo Implications: This is the first study that offers new insight into role of miR-182-5p/MALAT-1 interaction on inhibition of ccRCC progression. Mol Cancer Res; 16(11); 1750-60. ©2018 AACR.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
39 |