1
|
Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C, Hong SM, Koorstra JB, Rajeshkumar NV, He X, Goggins M, Iacobuzio-Donahue C, Berman DM, Laheru D, Jimeno A, Hidalgo M, Maitra A, Matsui W. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 2010; 102:340-51. [PMID: 20164446 DOI: 10.1093/jnci/djp535] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Specific populations of highly tumorigenic cells are thought to exist in many human tumors, including pancreatic adenocarcinoma. However, the clinical significance of these tumor-initiating (ie, cancer stem) cells remains unclear. Aldehyde dehydrogenase (ALDH) activity can identify tumor-initiating cells and normal stem cells from several human tissues. We examined the prognostic significance and functional features of ALDH expression in pancreatic adenocarcinoma. METHODS ALDH expression was analyzed by immunohistochemistry in 269 primary surgical specimens of pancreatic adenocarcinoma and examined for association with clinical outcomes and in paired primary tumors and metastatic lesions from eight pancreatic cancer patients who had participated in a rapid autopsy program. The clonogenic growth potential of ALDH-positive pancreatic adenocarcinoma cells was assessed in vitro by a colony formation assay and by tumor growth in immunodeficient mice (10-14 mice per group). Mesenchymal features of ALDH-positive pancreatic tumor cells were examined by using quantitative reverse transcription-polymerase chain reaction and an in vitro cell invasion assay. Gene expression levels and the invasive potential of ADLH-positive pancreatic cancer cells relative to the bulk cell population were examined by reverse transcription-polymerase chain reaction and an in vitro invasion assays, respectively. All statistical tests were two-sided. RESULTS ALDH-positive tumor cells were detected in 90 of the 269 primary surgical specimens, and their presence was associated with worse survival (median survival for patients with ALDH-positive vs ALDH-negative tumors: 14 vs 18 months, hazard ratio of death = 1.28, 95% confidence interval = 1.02 to 1.68, P = .05). Six (75%) of the eight patients with matched primary and metastatic tumor samples had ALDH-negative primary tumors, and in four (67%) of these six patients, the matched metastatic lesions (located in liver and lung) contained ALDH-positive cells. ALDH-positive cells were approximately five- to 11-fold more clonogenic in vitro and in vivo compared with unsorted or ALHD-negative cells, expressed genes consistent with a mesenchymal state, and had in vitro migratory and invasive potentials that were threefold greater than those of unsorted cells. CONCLUSIONS ALDH expression marks pancreatic cancer cells that have stem cell and mesenchymal features. The enhanced clonogenic growth and migratory properties of ALDH-positive pancreatic cancer cells suggest that they play a key role in the development of metastatic disease that negatively affects the overall survival of patients with pancreatic adenocarcinoma.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
328 |
2
|
Bailey JM, Alsina J, Rasheed ZA, McAllister FM, Fu YY, Plentz R, Zhang H, Pasricha PJ, Bardeesy N, Matsui W, Maitra A, Leach SD. DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer. Gastroenterology 2014; 146:245-56. [PMID: 24096005 PMCID: PMC3910427 DOI: 10.1053/j.gastro.2013.09.050] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS As in other tumor types, progression of pancreatic cancer may require a functionally unique population of cancer stem cells. Although such cells have been identified in many invasive cancers, it is not clear whether they emerge during early or late stages of tumorigenesis. Using mouse models and human pancreatic cancer cell lines, we investigated whether preinvasive pancreatic neoplasia contains a subpopulation of cells with distinct morphologies and cancer stem cell-like properties. METHODS Pancreatic tissue samples were collected from the KC(Pdx1), KPC(Pdx1), and KC(iMist1) mouse models of pancreatic intraepithelial neoplasia (PanIN) and analyzed by confocal and electron microscopy, lineage tracing, and fluorescence-activated cell sorting. Subpopulations of human pancreatic ductal adenocarcinoma (PDAC) cells were similarly analyzed and also used in complementary DNA microarray analyses. RESULTS The microtubule regulator DCLK1 marked a morphologically distinct and functionally unique population of pancreatic cancer-initiating cells. These cells displayed morphological and molecular features of gastrointestinal tuft cells. Cells that expressed DCLK1 also expressed high levels of ATAT1, HES1, HEY1, IGF1R, and ABL1, and manipulation of these pathways in PDAC cell lines inhibited their clonogenic potential. Pharmacological inhibition of γ-secretase activity reduced the abundance of these cells in murine PanIN in a manner that correlated with inhibition of PanIN progression. CONCLUSIONS Human PDAC cells and pancreatic neoplasms in mice contain morphologically and functionally distinct subpopulations that have cancer stem cell-like properties. These populations can be identified at the earliest stages of pancreatic tumorigenesis and provide new cellular and molecular targets for pancreatic cancer treatment and/or chemoprevention.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
245 |
3
|
Jimeno A, Feldmann G, Suárez-Gauthier A, Rasheed Z, Solomon A, Zou GM, Rubio-Viqueira B, García-García E, López-Ríos F, Matsui W, Maitra A, Hidalgo M. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 2009; 8:310-4. [PMID: 19174553 DOI: 10.1158/1535-7163.mct-08-0924] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is an enormous gap between the antiproliferative and in vivo antitumor efficacy of gemcitabine in cell line-based models and its clinical efficacy. This may be due to insensitiveness of the precursor, cancer stem cell (CSC) compartment to cytotoxic agents. The hedgehog pathway is associated with CSC signaling and control. We used a direct xenograft model of pancreatic cancer and a two-stage approach was used to test the hypotheses that targeting CSC could increase the efficacy of gemcitabine. Tumors from a gemcitabine-sensitive xenograft were treated with gemcitabine first, and randomized, after tumor regression to continuing treatment with gemcitabine, a hedgehog inhibitor alone or in combination with gemcitabine. We tested markers described as associated with CSC such as CD24, CD44, ALDH, nestin, and the hedgehog pathway. After induction with gemcitabine, treated tumor showed an enrichment in CSC markers such as ALDH and CD24. Subsequently, a release from gemcitabine prompted a repopulation of proliferating cells and a decrease in such markers to equilibrate from pretreatment levels. Combined treatment with gemcitabine and cyclopamine induced tumor regression and decrease in CSC markers and hedgehog signaling. Cytoplasmic CD24 and ALDH were inversely and strongly associated with growth and were expressed in a minority of cells that we propose constitute the CSC compartment. Hedgehog inhibitors as part of a dual compartment therapeutic approach were able to further reduce tumor growth and decreased both static and dynamic markers of CSC. Direct tumor xenografts are a valid platform to test multicompartment therapeutic approaches in pancreatic cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
207 |
4
|
Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E, Pereira K, Karamboulas C, Moghal N, Rajeshkumar NV, Hidalgo M, Tsao M, Ailles L, Waddell TK, Maitra A, Neel BG, Matsui W. Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 2010; 7:279-82. [PMID: 20804964 DOI: 10.1016/j.stem.2010.08.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/13/2010] [Accepted: 07/30/2010] [Indexed: 12/14/2022]
Abstract
Tumor-initiating cells (TICs) are defined by their ability to form tumors after xenotransplantation in immunodeficient mice and appear to be relatively rare in most human cancers. Recent data in melanoma indicate that the frequency of TICs increases dramatically via more permissive xenotransplantation conditions, raising the possibility that the true frequency of TICs has been greatly underestimated in most human tumors. We compared the growth of human pancreatic, non-small cell lung, and head and neck carcinomas in NOD/SCID and NSG mice. Although TIC frequency was detected up to 10-fold higher in NSG mice, it remained low (<1 in 2500 cells) in all cases. Moreover, aldehyde dehydrogenase-positive (ALDH(+)) and CD44(+)CD24(+) cells, phenotypically distinct cells enriched in TICs, were equally tumorigenic in NOD/SCID and NSG mice. Our findings demonstrate that TICs are rare in these cancers and that the identification of TICs and their frequency in other human malignancies should be validated via primary tumors and highly permissive xenotransplantation conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
180 |
5
|
Rajendra R, Malegaonkar D, Pungaliya P, Marshall H, Rasheed Z, Brownell J, Liu LF, Lutzker S, Saleem A, Rubin EH. Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J Biol Chem 2004; 279:36440-4. [PMID: 15247280 DOI: 10.1074/jbc.c400300200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human topoisomerase I- and p53-binding protein topors contains a highly conserved, N-terminal C3HC4-type RING domain that is homologous to the RING domains of known E3 ubiquitin ligases. We demonstrate that topors functions in vitro as a RING-dependent E3 ubiquitin ligase with the E2 enzymes UbcH5a, UbcH5c, and UbcH6 but not with UbcH7, CDC34, or UbcH2b. Additional studies indicate that a conserved tryptophan within the topors RING domain is required for ubiquitination activity. Furthermore, both in vitro and cellular studies implicate p53 as a ubiquitination substrate for topors. Similar to MDM2, overexpression of topors results in a proteasome-dependent decrease in p53 protein expression in a human osteosarcoma cell line. These results are similar to the recent finding that a Drosophila topors orthologue ubiquitinates the Hairy transcriptional repressor and suggest that topors functions as a ubiquitin ligase for multiple transcription factors.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
153 |
6
|
Abstract
DNA topoisomerases are a class of enzymes that alter the topology of DNA and are targets of several anticancer drugs. Camptothecins (CPTs) are a relatively new family of compounds that specifically target topoisomerase I (Top1). These compounds "poison" Top1 by binding to the Top1-DNA complex in a manner that prevents the religation of DNA. Topotecan and irinotecan are two CPTs that are approved for the treatment of a variety of malignancies, including colorectal, ovarian, and small cell lung cancers, as well as myeloid malignancies. Although CPTs have proven to be effective anticancer drugs, resistance is still a critical clinical problem. The mechanisms underlying de novo and acquired clinical resistance to CPTs and the newer classes of Top1 poisons are unclear. However, based on preclinical studies, it is likely that clinical resistance to these drugs is the result of: (1) inadequate accumulation of drug in the tumor, (2) resistance-conferring alterations in Top1, or (3) alterations in the cellular response to the Top1-CPT interaction. This review will focus on the current knowledge regarding mechanisms of resistance to CPTs and other Top1-targeting drugs.
Collapse
|
Review |
22 |
124 |
7
|
Yabuuchi S, Pai SG, Campbell NR, de Wilde RF, De Oliveira E, Korangath P, Streppel MM, Rasheed ZA, Hidalgo M, Maitra A, Rajeshkumar NV. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett 2013; 335:41-51. [PMID: 23402814 DOI: 10.1016/j.canlet.2013.01.054] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/26/2013] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) remains a lethal human malignancy with historically limited success in treatment. The role of aberrant Notch signaling, which requires the constitutive activation of γ-secretase, in the initiation and progression of PDA is well defined and inhibitors of this pathway are currently in clinical trials. Here we investigated the in vivo therapeutic effect of PF-03084014, a selective γ-secretase inhibitor, alone and in combination with gemcitabine in pancreatic cancer xenografts. PF-03084014 treatment inhibited the cleavage of nuclear Notch 1 intracellular domain and Notch targets Hes-1 and Hey-1. Gemcitabine treatment showed good response but not capable of inducing tumor regressions and targeting the tumor-resident cancer stem cells (CD24(+)CD44(+) and ALDH(+) tumor cells). A combination of PF-03084014 and gemcitabine treatment resulted tumor regression in 3 of 4 subcutaneously implanted xenograft models. PF-03084014, and in combination with gemcitabine reduced putative cancer stem cells, indicating that PF-03084014 target the especially dangerous and resilient cancer stem cells within pancreatic tumors. Tumor re-growth curves plotted after drug treatments demonstrated that the effect of the combination therapy was sustainable than that of gemcitabine. Notably, in a highly aggressive orthotopic model, PF-03084014 and gemcitabine combination was effective in inducing apoptosis, inhibition of tumor cell proliferation and angiogenesis, resulting in the attenuation of primary tumor growth as well as controlling metastatic dissemination, compared to gemcitabine treatment. In summary, our preclinical data suggest that PF-03084014 has greater anti-tumor activity in combination with gemcitabine in PDA and provides rationale for further investigation of this combination in PDA.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
112 |
8
|
De Jesus-Acosta A, Sugar EA, O'Dwyer PJ, Ramanathan RK, Von Hoff DD, Rasheed Z, Zheng L, Begum A, Anders R, Maitra A, McAllister F, Rajeshkumar NV, Yabuuchi S, de Wilde RF, Batukbhai B, Sahin I, Laheru DA. Phase 2 study of vismodegib, a hedgehog inhibitor, combined with gemcitabine and nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma. Br J Cancer 2020; 122:498-505. [PMID: 31857726 PMCID: PMC7029016 DOI: 10.1038/s41416-019-0683-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/12/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The Hedgehog (Hh) signalling pathway is overexpressed in pancreatic ductal adenocarcinoma (PDA). Preclinical studies have shown that Hh inhibitors reduce pancreatic cancer stem cells (pCSC), stroma and Hh signalling. METHODS Patients with previously untreated metastatic PDA were treated with gemcitabine and nab-paclitaxel. Vismodegib was added starting on the second cycle. The primary endpoint was progression-free survival (PFS) as compared with historical controls. Tumour biopsies to assess pCSC, stroma and Hh signalling were obtained before treatment and after cycle 1 (gemcitabine and nab-paclitaxel) or after cycle 2 (gemcitabine and nab-paclitaxel plus vismodegib). RESULTS Seventy-one patients were enrolled. Median PFS and overall survival (OS) were 5.42 months (95% confidence interval [CI]: 4.37-6.97) and 9.79 months (95% CI: 7.85-10.97), respectively. Of the 67 patients evaluable for response, 27 (40%) had a response: 26 (38.8%) partial responses and 1 complete response. In the tumour samples, there were no significant changes in ALDH + pCSC following treatment. CONCLUSIONS Adding vismodegib to chemotherapy did not improve efficacy as compared with historical rates observed with chemotherapy alone in patients with newly diagnosed metastatic pancreatic cancer. This study does not support the further evaluation of Hh inhibitors in this patient population. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01088815.
Collapse
|
Clinical Trial, Phase II |
5 |
110 |
9
|
Feldmann G, Mishra A, Bisht S, Karikari C, Garrido-Laguna I, Rasheed Z, Ottenhof NA, Dadon T, Alvarez H, Fendrich V, Rajeshkumar NV, Matsui W, Brossart P, Hidalgo M, Bannerji R, Maitra A, Nelkin BD. Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models. Cancer Biol Ther 2011; 12:598-609. [PMID: 21768779 DOI: 10.4161/cbt.12.7.16475] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal of human malignancies, and potent therapeutic options are lacking. Inhibition of cell cycle progression through pharmacological blockade of cyclin-dependent kinases (CDK) has been suggested as a potential treatment option for human cancers with deregulated cell cycle control. Dinaciclib (SCH727965) is a novel small molecule multi-CDK inhibitor with low nanomolar potency against CDK1, CDK2, CDK5 and CDK9 that has shown favorable toxicity and efficacy in preliminary mouse experiments, and has been well tolerated in Phase I clinical trials. In the current study, the therapeutic efficacy of SCH727965 on human pancreatic cancer cells was tested using in vitro and in vivo model systems. Treatment with SCH727965 significantly reduced in vitro cell growth, motility and colony formation in soft agar of MIAPaCa-2 and Pa20C cells. These phenotypic changes were accompanied by marked reduction of phosphorylation of Retinoblastoma (Rb) and reduced activation of RalA. Single agent therapy with SCH727965 (40 mg/kg i.p. twice weekly) for 4 weeks significantly reduced subcutaneous tumor growth in 10/10 (100%) of tested low-passage human pancreatic cancer xenografts. Treatment of low passage pancreatic cancer xenografts with a combination of SCH727965 and gemcitabine was significantly more effective than either agent alone. Gene Set Enrichment Analysis identified overrepresentation of the Notch and Transforming Growth Factor-β (TGF-β) signaling pathways in the xenografts least responsive to SCH727965 treatment. Treatment with the cyclin-dependent kinase inhibitor SCH727965 alone or in combination is a highly promising novel experimental therapeutic strategy against pancreatic cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
99 |
10
|
Poruk KE, Blackford AL, Weiss MJ, Cameron JL, He J, Goggins M, Rasheed ZA, Wolfgang CL, Wood LD. Circulating Tumor Cells Expressing Markers of Tumor-Initiating Cells Predict Poor Survival and Cancer Recurrence in Patients with Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2016; 23:2681-2690. [PMID: 27789528 DOI: 10.1158/1078-0432.ccr-16-1467] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 12/12/2022]
Abstract
Purpose: Circulating tumor cells (CTCs) have been identified in the blood of patients with pancreatic adenocarcinoma (PDAC), but little is known about the exact phenotype of these cells. We assessed expression of aldehyde dehydrogenase (ALDH), CD133, and CD44 as markers of CTCs with a tumor-initiating cell (TIC) phenotype in patients with PDAC and the relationship of this expression to patient outcomes.Experimental Design: Peripheral blood from 60 consecutive patients with PDAC undergoing surgical resection was obtained and processed using the Isolation by Size of Epithelial Tumor (ISET) method. Immunofluorescence was used to identify CTCs expressing cytokeratin, CD133, CD44, and ALDH.Results: Forty-seven patients (78%) had epithelial CTCs staining positive for pan-cytokeratin and at least one TIC marker. Forty-six patients (77%) had epithelial CTCs that labeled with antibodies to cytokeratin and ALDH. By separate analysis, 34 (57%) had cytokeratin-positive, CD133-positive, and CD44-positive (triple-positive) CTCs, whereas 40 (67%) had cytokeratin-positive, CD133-positive, CD44-negative CTCs. The remaining 13 patients did not have CTCs, as defined by cytokeratin expression. ALDH-positive CTCs and triple-positive CTCs were significantly associated with worse survival by univariate analysis, even when accounting for other significant prognostic factors (all, P ≤ 0.01). ALDH-positive CTCs, triple-positive CTCs, and dual cytokeratin- and CD133-positive CTCs were independent predictors of tumor recurrence by logistic regression analysis and associated with decreased disease-free survival (all, P ≤ 0.03).Conclusions: CTCs labeling with one or more markers of TICs are found in a majority of patients with PDAC and are independently predictive of decreased disease-free and overall survival. Clin Cancer Res; 23(11); 2681-90. ©2016 AACR.
Collapse
|
Journal Article |
9 |
87 |
11
|
Rajeshkumar NV, Rasheed ZA, García-García E, López-Ríos F, Fujiwara K, Matsui WH, Hidalgo M. A combination of DR5 agonistic monoclonal antibody with gemcitabine targets pancreatic cancer stem cells and results in long-term disease control in human pancreatic cancer model. Mol Cancer Ther 2010; 9:2582-92. [PMID: 20660600 DOI: 10.1158/1535-7163.mct-10-0370] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy with one of the worst outcomes among all cancers. PDA often recurs after initial treatment to result in patient death despite the use of chemotherapy or radiation therapy. PDA contains a subset of tumor-initiating cells capable of extensive self-renewal known as cancer stem cells (CSC), which may contribute to therapeutic resistance and metastasis. At present, conventional chemotherapy and radiotherapy are largely ineffective in depleting CSC pool, suggesting the need for novel therapies that specifically target the cancer-sustaining stem cells for tumor eradication and to improve the poor prognosis of PDA patients. In this study, we report that death receptor 5 (DR5) is enriched in pancreatic CSCs compared with the bulk of the tumor cells. Treating a collection of freshly generated patient-derived PDA xenografts with gemcitabine, the first-line chemotherapeutic agent for PDA, is initially effective in reducing tumor size, but largely ineffective in diminishing the CSC populations, and eventually culminated in tumor relapse. However, a combination of tigatuzumab, a fully humanized DR5 agonist monoclonal antibody, with gemcitabine proved to be more efficacious by providing a double hit to kill both CSCs and bulk tumor cells. The combination therapy produced remarkable reduction in pancreatic CSCs, tumor remissions, and significant improvements in time to tumor progression in a model that is considered more difficult to treat. These data provide the rationale to explore the DR5-directed therapies in combination with chemotherapy as a therapeutic option to improve the current standard of care for pancreatic cancer patients.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
75 |
12
|
Ooki A, Del Carmen Rodriguez Pena M, Marchionni L, Dinalankara W, Begum A, Hahn NM, VandenBussche CJ, Rasheed ZA, Mao S, Netto GJ, Sidransky D, Hoque MO. YAP1 and COX2 Coordinately Regulate Urothelial Cancer Stem-like Cells. Cancer Res 2017; 78:168-181. [PMID: 29180467 DOI: 10.1158/0008-5472.can-17-0836] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/30/2017] [Accepted: 11/03/2017] [Indexed: 12/24/2022]
Abstract
Overcoming acquired drug resistance remains a core challenge in the clinical management of human cancer, including in urothelial carcinoma of the bladder (UCB). Cancer stem-like cells (CSC) have been implicated in the emergence of drug resistance but mechanisms and intervention points are not completely understood. Here, we report that the proinflammatory COX2/PGE2 pathway and the YAP1 growth-regulatory pathway cooperate to recruit the stem cell factor SOX2 in expanding and sustaining the accumulation of urothelial CSCs. Mechanistically, COX2/PGE2 signaling induced promoter methylation of let-7, resulting in its downregulation and subsequent SOX2 upregulation. YAP1 induced SOX2 expression more directly by binding its enhancer region. In UCB clinical specimens, positive correlations in the expression of SOX2, COX2, and YAP1 were observed, with coexpression of COX2 and YAP1 particularly commonly observed. Additional investigations suggested that activation of the COX2/PGE2 and YAP1 pathways also promoted acquired resistance to EGFR inhibitors in basal-type UCB. In a mouse xenograft model of UCB, dual inhibition of COX2 and YAP1 elicited a long-lasting therapeutic response by limiting CSC expansion after chemotherapy and EGFR inhibition. Our findings provide a preclinical rationale to target these pathways concurrently with systemic chemotherapy as a strategy to improve the clinical management of UCB.Significance: These findings offer a preclinical rationale to target the COX2 and YAP1 pathways concurrently with systemic chemotherapy to improve the clinical management of UCB, based on evidence that these two pathways expand cancer stem-like cell populations that mediate resistance to chemotherapy. Cancer Res; 78(1); 168-81. ©2017 AACR.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
75 |
13
|
Rasheed ZA, Kowalski J, Smith BD, Matsui W. Concise review: Emerging concepts in clinical targeting of cancer stem cells. Stem Cells 2011; 29:883-7. [PMID: 21509907 DOI: 10.1002/stem.648] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are functionally defined by their ability to self-renew and recapitulate tumors in the ectopic setting. They have been identified in a growing number of human malignancies and their association with poor clinical outcomes has suggested that they are the major factors in dictating clinical outcomes. Moreover, recent studies have demonstrated that CSCs may display other functional attributes, such as drug resistance and invasion and migration, that implicate a broad role in clinical oncology spanning initial tumor formation, relapse following treatment, and disease progression. Although our knowledge regarding the basic biology of CSCs continues to improve, proof that they are clinically relevant is still lacking, and translation of the CSC hypothesis from the laboratory to the clinic is of paramount importance. We will review current evidence supporting the role of CSCs in clinical oncology and discuss potential barriers and strategies in designing trials examining CSC-targeting agents.
Collapse
|
Review |
14 |
74 |
14
|
Begum A, Ewachiw T, Jung C, Huang A, Norberg KJ, Marchionni L, McMillan R, Penchev V, Rajeshkumar NV, Maitra A, Wood L, Wang C, Wolfgang C, DeJesus-Acosta A, Laheru D, Shapiro IM, Padval M, Pachter JA, Weaver DT, Rasheed ZA, Matsui W. The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma. PLoS One 2017; 12:e0180181. [PMID: 28692661 PMCID: PMC5503247 DOI: 10.1371/journal.pone.0180181] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/12/2017] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) play an important role in the clonogenic growth and metastasis of pancreatic ductal adenocarcinoma (PDAC). A hallmark of PDAC is the desmoplastic reaction, but the impact of the tumor microenvironment (TME) on CSCs is unknown. In order to better understand the mechanisms, we examined the impact of extracellular matrix (ECM) proteins on PDAC CSCs. We quantified the effect of ECM proteins, β1-integrin, and focal adhesion kinase (FAK) on clonogenic PDAC growth and migration in vitro and tumor initiation, growth, and metastasis in vivo in nude mice using shRNA and overexpression constructs as well as small molecule FAK inhibitors. Type I collagen increased PDAC tumor initiating potential, self-renewal, and the frequency of CSCs through the activation of FAK. FAK overexpression increased tumor initiation, whereas a dominant negative FAK mutant or FAK kinase inhibitors reduced clonogenic PDAC growth in vitro and in vivo. Moreover, the FAK inhibitor VS-4718 extended the anti-tumor response to gemcitabine and nab-paclitaxel in patient-derived PDAC xenografts, and the loss of FAK expression limited metastatic dissemination of orthotopic xenografts. Type I collagen enhances PDAC CSCs, and both kinase-dependent and independent activities of FAK impact PDAC tumor initiation, self-renewal, and metastasis. The anti-tumor impact of FAK inhibitors in combination with standard chemotherapy support the clinical testing of this combination.
Collapse
|
research-article |
8 |
68 |
15
|
Cidado J, Wong HY, Rosen DM, Cimino-Mathews A, Garay JP, Fessler AG, Rasheed ZA, Hicks J, Cochran RL, Croessmann S, Zabransky DJ, Mohseni M, Beaver JA, Chu D, Cravero K, Christenson ES, Medford A, Mattox A, De Marzo AM, Argani P, Chawla A, Hurley PJ, Lauring J, Park BH. Ki-67 is required for maintenance of cancer stem cells but not cell proliferation. Oncotarget 2017; 7:6281-93. [PMID: 26823390 PMCID: PMC4868756 DOI: 10.18632/oncotarget.7057] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 01/08/2023] Open
Abstract
Ki-67 expression is correlated with cell proliferation and is a prognostic marker for various cancers; however, its function is unknown. Here we demonstrate that genetic disruption of Ki-67 in human epithelial breast and colon cancer cells depletes the cancer stem cell niche. Ki-67 null cells had a proliferative disadvantage compared to wildtype controls in colony formation assays and displayed increased sensitivity to various chemotherapies. Ki-67 null cancer cells showed decreased and delayed tumor formation in xenograft assays, which was associated with a reduction in cancer stem cell markers. Immunohistochemical analyses of human breast cancers revealed that Ki-67 expression is maintained at equivalent or greater levels in metastatic sites of disease compared to matched primary tumors, suggesting that maintenance of Ki-67 expression is associated with metastatic/clonogenic potential. These results elucidate Ki-67's role in maintaining the cancer stem cell niche, which has potential diagnostic and therapeutic implications for human malignancies.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
67 |
16
|
Haluska P, Saleem A, Rasheed Z, Ahmed F, Su EW, Liu LF, Rubin EH. Interaction between human topoisomerase I and a novel RING finger/arginine-serine protein. Nucleic Acids Res 1999; 27:2538-44. [PMID: 10352183 PMCID: PMC148458 DOI: 10.1093/nar/27.12.2538] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The N-terminus of human topoisomerase I participates in the binding of this enzyme to helicases and other proteins. Using the N-terminal 250 amino acids of human topoisomerase I and a yeast two-hybrid/ in vitro binding screen, a novel arginine-serine-rich peptide was identified as a human topoisomerase I-binding protein. The corresponding full-length protein, named topors, contains a consensus RING zinc finger domain and nuclear localization signals in addition to the arginine-serine-rich region. The RING finger domain of topors is homologous to a similar domain in a family of viral proteins that are involved in the regulation of viral transcription. When expressed in HeLa cells as a green fluorescent protein fusion, topors localizes in the nucleus in a punctate pattern and co-immunoprecipitates with topoisomerase I. These data suggest that topors is involved in trans-cription, possibly recruiting topoisomerase I to RNA polymerase II transcriptional complexes.
Collapse
|
research-article |
26 |
65 |
17
|
Mizuma M, Rasheed ZA, Yabuuchi S, Omura N, Campbell NR, de Wilde RF, De Oliveira E, Zhang Q, Puig O, Matsui W, Hidalgo M, Maitra A, Rajeshkumar NV. The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models. Mol Cancer Ther 2012; 11:1999-2009. [PMID: 22752426 DOI: 10.1158/1535-7163.mct-12-0017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, with most patients facing an adverse clinical outcome. Aberrant Notch pathway activation has been implicated in the initiation and progression of PDAC, specifically the aggressive phenotype of the disease. We used a panel of human PDAC cell lines as well as patient-derived PDAC xenografts to determine whether pharmacologic targeting of Notch pathway could inhibit PDAC growth and potentiate gemcitabine sensitivity. MRK-003, a potent and selective γ-secretase inhibitor, treatment resulted in the downregulation of nuclear Notch1 intracellular domain, inhibition of anchorage-independent growth, and reduction of tumor-initiating cells capable of extensive self-renewal. Pretreatment of PDAC cells with MRK-003 in cell culture significantly inhibited the subsequent engraftment in immunocompromised mice. MRK-003 monotherapy significantly blocked tumor growth in 5 of 9 (56%) PDAC xenografts. A combination of MRK-003 and gemcitabine showed enhanced antitumor effects compared with gemcitabine in 4 of 9 (44%) PDAC xenografts, reduced tumor cell proliferation, and induced both apoptosis and intratumoral necrosis. Gene expression analysis of untreated tumors indicated that upregulation of NF-κB pathway components was predictive of sensitivity to MRK-003, whereas upregulation in B-cell receptor signaling and nuclear factor erythroid-derived 2-like 2 pathway correlated with response to the combination of MRK-003 with gemcitabine. Our findings strengthen the rationale for small-molecule inhibition of Notch signaling as a therapeutic strategy in PDAC.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
65 |
18
|
Penchev VR, Rasheed ZA, Maitra A, Matsui W. Heterogeneity and targeting of pancreatic cancer stem cells. Clin Cancer Res 2013; 18:4277-84. [PMID: 22896694 DOI: 10.1158/1078-0432.ccr-11-3112] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSC) have been identified in an ever-increasing number of human malignancies on the basis of their ability to recapitulate tumors in the ectopic setting and maintain long-term tumorigenic potential. In addition, in pancreatic adenocarcinoma, CSCs may display additional properties, such as relative drug resistance and enhanced invasive and migratory potential that implicate a role in disease pathogenesis spanning initial tumor formation to metastatic disease progression. Importantly, these findings also indicate that the development of novel therapeutic strategies capable of inhibiting or eliminating CSCs will improve clinical outcomes. Preclinical studies have already described a wide array of potential approaches that target CSC-specific surface antigens and cellular pathways involved in cell survival, adhesion, self-renewal, and differentiation. Further, progress in this area should continue to move forward as the unique biology of CSCs is better understood. All preclinical studies to date have focused on targeting specific and phenotypically defined CSCs, but multiple cell populations with the ability to form tumors and self-renew have been identified in pancreatic carcinoma. As the clinical efficacy of CSC-directed therapies will depend on the inhibition of all sources of tumor self-renewal, better understanding of how specific CSC populations are related to one another and whether each possesses specific functional properties will be critical. In this CCR Focus article, we discuss the potential relationships between different pancreatic CSC populations and strategies to identify novel targeting approaches.
Collapse
|
Review |
12 |
60 |
19
|
Abstract
Cancer stem cells (CSC) have been identified in a growing number of human malignancies. CSC are functionally defined by their ability to self-renew and recapitulate tumors in the ectopic setting, and a growing number of studies have shown that they display other functional characteristics, such as invasion and drug resistance. These unique functional properties implicate a role for CSC in clinical consequences, such as initial tumor formation, relapse following treatment, metastasis, and resistance, suggesting they are a major factor in directing clinical outcomes. Pancreatic adenocarcinoma is a highly-aggressive disease with a propensity for early metastasis and drug resistance. Tumorigenic pancreatic cancer cells have been identified using the cell surface antigens CD44, CD24, and CD133, as well as the high expression of aldehyde dehydrogenase (ALDH). In vitro and in vivo studies have shown that ALDH- and CD133-expressing pancreatic CSC have a greater propensity for metastasis, and ALDH-expressing CSC have been shown to be resistant to conventional chemotherapy. In clinical samples from patients with resected pancreatic adenocarcinoma, the presence of ALDH-expressing CSC was associated with worse overall survival. The development of CSC-targeting therapies might be important in changing the clinical outcomes of patients with this disease, and others and we have begun to identify novel compounds that block CSC function. This review will discuss the biological and clinical relevance of CSC in pancreatic cancer, and will discuss novel therapeutic strategies to target them.
Collapse
|
research-article |
13 |
47 |
20
|
Begum A, McMillan RH, Chang YT, Penchev VR, N.V. R, Maitra A, Goggins MG, Eshelman JR, Wolfgang CL, Rasheed ZA, Matsui W. Direct Interactions With Cancer-Associated Fibroblasts Lead to Enhanced Pancreatic Cancer Stem Cell Function. Pancreas 2019; 48:329-334. [PMID: 30747824 PMCID: PMC6411432 DOI: 10.1097/mpa.0000000000001249] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cancer-associated fibroblasts (CAFs) play an important role in the progression of pancreatic ductal adenocarcinoma (PDAC) by promoting tumor cell migration and drug resistance. We determined the impact of CAFs on PDAC cancer stem cells (CSCs). METHODS Fibroblast cell lines from patients' tumors were cocultured with PDAC cells and examined for clonogenic growth and self-renewal using colony-forming assays and migration in vitro. Changes in the frequency of CSCs was determined by flow cytometry. The effect of integrin-focal adhesion kinase (FAK) signaling on CAF-mediated clonogenic growth was evaluated using short hairpin RNAs against β1 integrin and FAK as well as a small-molecule FAK inhibitor. RESULTS Cancer-associated fibroblasts enhanced PDAC clonogenic growth, self-renewal, and migration that was associated with an increase in the frequency of CSCs. These fibroblast cells were activated by PDAC cells and increased collagen synthesis resulting in FAK activation in PDAC cells. Knockdown of β1-integrin and FAK or the inhibition of FAK kinase activity in PDAC cells abrogated the impact of CAFs on clonogenic growth. CONCLUSION Therefore, CAFs enhance PDAC clonogenic growth, self-renewal, and the frequency of CSCs through type I collagen production that enhances integrin-FAK signaling in PDAC cells.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
44 |
21
|
Rasheed ZA, Saleem A, Ravee Y, Pandolfi PP, Rubin EH. The topoisomerase I-binding RING protein, topors, is associated with promyelocytic leukemia nuclear bodies. Exp Cell Res 2002; 277:152-60. [PMID: 12083797 DOI: 10.1006/excr.2002.5550] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously identified topors as a topoisomerase I-binding protein that localizes in punctate nuclear regions when expressed as a GFP fusion protein. We now demonstrate that both the GFP-topors fusion protein and endogenous topors are associated with promyelocytic leukemia (PML) nuclear bodies in exponentially growing HeLa cells. Studies using isogenic PML+/+ and PML-/- murine embryonic fibroblasts indicate that the punctate nuclear localization of topors is dependent on PML. A basic C-terminal region but not the N-terminal RING domain of topors is required for the punctate nuclear localization of this protein. Additional studies indicate that topors, but not PML, rapidly relocalizes from nuclear bodies to the nucleoplasm in cells exposed to the transcription inhibitor dichloro-1-beta-d-ribofuranolsylbenzimidazole or to the topoisomerase I-targeting drug camptothecin. These results identify topors as a new member of the group of proteins that associate dynamically with PML nuclear bodies and suggest that topors may be involved in the cellular response to camptothecin.
Collapse
|
|
23 |
43 |
22
|
Abstract
Camptothecins are broad-spectrum anticancer drugs that specifically target DNA topoisomerase I. Although the availability of camptothecins has had a significant impact on cancer therapeutics, de novo or acquired clinical resistance to camptothecins is common. Studies of camptothecin resistance using yeast and mammalian cell culture models suggest three general mechanisms of resistance: (1) reduced cellular accumulation of camptothecins, (2) alteration in the structure or location of topoisomerase I, and (3) alterations in the cellular response to camptothecin-DNA-ternary complex formation. The relevance of these mechanisms to clinical drug resistance is not yet known, but evaluation of these models in clinical specimens should enhance the use of camptothecins both as single agents and in combination with other anticancer drugs.
Collapse
|
Review |
24 |
41 |
23
|
Saleem A, Dutta J, Malegaonkar D, Rasheed F, Rasheed Z, Rajendra R, Marshall H, Luo M, Li H, Rubin EH. The topoisomerase I- and p53-binding protein topors is differentially expressed in normal and malignant human tissues and may function as a tumor suppressor. Oncogene 2004; 23:5293-300. [PMID: 15107820 DOI: 10.1038/sj.onc.1207700] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Topors was identified recently as a human protein that binds to topoisomerase I and p53. Topors contains a highly conserved RING domain and localizes in promyelocytic leukemia nuclear bodies. Relatively little is known regarding topors expression patterns or function. We now demonstrate that topors mRNA and protein are widely expressed in normal human tissues. By contrast, topors mRNA and protein levels are decreased or undetectable in colon adenocarcinomas relative to normal colon tissue, and expression of the topors protein is not detectable in several colon cancer cell lines. The human TOPORS gene is located on chromosome 9p21, with loss of heterozygosity in this region frequently observed in several different malignancies. While we were unable to detect loss of heterozygosity of the TOPORS gene in 16 sporadic colon cancer cases, increased methylation of a CpG island in the TOPORS promoter was evident in colon adenocarcinoma specimens relative to matched normal tissues. Additional studies indicate that forced expression of topors inhibits cellular proliferation and is associated with an accumulation of cells in the G(0)/G(1) phase of the cell cycle. This effect is independent of the topors RING domain and maps to a C-terminal region of the protein. These results suggest that topors functions as a negative regulator of cell growth, and possibly as a tumor suppressor.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
35 |
24
|
Wang GM, Wong HY, Konishi H, Blair BG, Abukhdeir AM, Gustin JP, Rosen DM, Denmeade SR, Rasheed Z, Matsui W, Garay JP, Mohseni M, Higgins MJ, Cidado J, Jelovac D, Croessmann S, Cochran RL, Karnan S, Konishi Y, Ota A, Hosokawa Y, Argani P, Lauring J, Park BH. Single copies of mutant KRAS and mutant PIK3CA cooperate in immortalized human epithelial cells to induce tumor formation. Cancer Res 2013; 73:3248-61. [PMID: 23580570 DOI: 10.1158/0008-5472.can-12-1578] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The selective pressures leading to cancers with mutations in both KRAS and PIK3CA are unclear. Here, we show that somatic cell knockin of both KRAS G12V and oncogenic PIK3CA mutations in human breast epithelial cells results in cooperative activation of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways in vitro, and leads to tumor formation in immunocompromised mice. Xenografts from double-knockin cells retain single copies of mutant KRAS and PIK3CA, suggesting that tumor formation does not require increased copy number of either oncogene, and these results were also observed in human colorectal cancer specimens. Mechanistically, the cooperativity between mutant KRAS and PIK3CA is mediated in part by Ras/p110α binding, as inactivating point mutations within the Ras-binding domain of PIK3CA significantly abates pathway signaling. In addition, Pdk1 activation of the downstream effector p90RSK is also increased by the combined presence of mutant KRAS and PIK3CA. These results provide new insights into mutant KRAS function and its role in carcinogenesis.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
33 |
25
|
De Jesus-Acosta A, O'Dwyer PJ, Ramanathan RK, Von Hoff DD, Maitra A, Rasheed Z, Zheng L, Rajeshkumar NV, Le DT, Hoering A, Bolejack V, Yabuuchi S, Laheru DA. A phase II study of vismodegib, a hedgehog (Hh) pathway inhibitor, combined with gemcitabine and nab-paclitaxel (nab-P) in patients (pts) with untreated metastatic pancreatic ductal adenocarcinoma (PDA). J Clin Oncol 2014. [DOI: 10.1200/jco.2014.32.3_suppl.257] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
257 Background: The Hh pathway is overexpressed in PDA tumors. Pre-clinically, Hh inhibitors have demonstrated a reduction in pancreatic cancer stem cells (pCSC) and stroma. Vismodegib, an oral small-molecule antagonist of the Hh pathway, has previously been safely combined with Gemcitabine chemotherapy. Methods: Pts with untreated, metastatic PDA were treated with Gemcitabine (1000 mg/m2) + nab-P (125 mg/m2) on days 1, 8 and 15 of 28 days cycle. Vismodegib (150mg PO daily) was started on the second cycle. All drugs were continued until disease progression or unacceptable toxicities. Primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS), response rate (RR), and toxicity. Pre and post treatment tumor biopsies were obtained from primary or metastatic lesions. Results: 59 patients have been enrolled at 3 sites. Median age 60 (range 42-86); ECOG PS 0/1: 23 (40%)/ 34 (60%); male/female 32 (54%)/ 27 (46%). Estimated median PFS and OS in ITT population was 5.5 and 10 mo respectively (95% CI: 5.2-5.9 / 7.3-11). Of the 49 pts evaluable for response to date, 1 (2%) had CR, 20 (41%) had PR, 21 (43%) had SD and 7 (14%) had PD. Common Gr ≥3 toxicities: neutropenia 37.5% (n=21), anemia 21.4% (n=12), neuropathy 16.1% (n=9) and fatigue 9.4% (n=5). All patients with partial response had response within the primary pancreatic tumor. CA19-9 declines of >70% occurred in 57% of patients with measurable levels. Conclusions: Addition of Vismodegib to Gemcitabine/nab-P is well tolerated in patients with untreated PDA. This trial is ongoing to complete 80 patients. Blood and tumor tissue biomarker analyses for stem cells, Hh signaling and stromal activity are ongoing and will be reported in ASCO GI 2014. Clinical trial information: NCT01088815.
Collapse
|
|
11 |
32 |