1
|
Sang L, Fu L, Gao L, Adu-Amankwaah J, Gong Z, Li T, Ma Z, Wang Z, Xu J, Sun H. GPER-1 Rapid Regulation Influences p-Akt Expression to Resist Stress-Induced Injuries in a Sex-Specific Manner. Physiol Res 2024; 73:831-839. [PMID: 39530909 PMCID: PMC11629950 DOI: 10.33549/physiolres.935176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/01/2024] [Indexed: 12/13/2024] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER-1) has gained recognition for its role in conferring cardioprotection. However, the extent to which GPER-1 exerts equally important effects in both sexes remains unclear. The study found similar expressions of GPER-1 in rat heart apex in both sexes. In male rats, administering epinephrine (Epi) at a dose of 31.36 microg/100 g resulted in a rapid decline in cardiac function, accompanied by a sharp increase in bax/bcl-2 levels. In contrast, female rats did not display significant changes in cardiac function under the same conditions. Additionally, compared to the injection of Epi alone (at a dose of 15.68 microg/100 g), the administration of G15 (GPER-1 antagonist) further decreased cardiac function in both male and female rats. However, it only increased mortality and lung coefficient in male rats. Conversely, G1 (GPER-1 agonist) administration improved cardiac function in both sexes. Notably, the apex of the male heart exhibited lower levels of inhibitory G protein (Galphai). Furthermore, female and male rats treated with Epi displayed elevated phosphorylated protein kinase B (p-Akt). Compared to their respective Epi groups, the administration of G15 increased p-Akt levels in female rat hearts but decreased them in male rat hearts. Conversely, the administration of G1 decreased p-Akt levels in females but rapidly increased them in male rats. Our study uncovers the vital role of GPER-1 in protecting against stress-induced heart injuries in a sex-specific manner. These findings hold immense potential for advancing targeted cardiac therapies and enhancing outcomes for both females and males.
Collapse
|
2
|
Gong Z, Wang M, Song J. FEDM: a convolutional neural network based fertilised egg detection model. Br Poult Sci 2024; 65:546-558. [PMID: 38828843 DOI: 10.1080/00071668.2024.2356656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/01/2024] [Indexed: 06/05/2024]
Abstract
1. The production of goose eggs holds significant economic value on a global scale and the quality of fertilised eggs is crucial for the successful hatching and sustained development of the poultry industry. Developing a low-cost fertilised egg identification system that is suitable for large-scale testing is of great significance. However, existing methods are expensive and have high environmental detection requirements, which limit their promotion.2. To address this issue, an improved object detection model called FEDM based on YOLOv5 is proposed, which has been shown to be outstanding among nine models. The main network of YOLOv5 is enhanced with the SENet attention mechanism to improve the feature selection capability. The C3_DCNv3 is introduced to enhance the detection ability of blood vessels in the fertilised eggs. The application of Dyhead significantly improved the representation capacity of the object detection head without any computational overhead. The loss function is replaced with MPDIoU to simplify the calculation process.3. Experimental results from the augmented dataset showed that the average precision of the FEDM reached 96.7%, which is a 5.5% improvement compared to the YOLOv5s model. FEDM exhibited better detection performance on eggs from different shooting angles than the YOLOv5 algorithm and achieves high detection speed.4. The FEDM secured significant advancement on the detection rate of the fourth day fertilised egg compared to the YOLOv5 algorithm. Based on this result, savings and space utilisation can be made, which has practical application value.
Collapse
|
3
|
Gong Z, Xue L, Vlantis AC, van Hasselt CA, Chan JYK, Fang J, Wang R, Yang Y, Li D, Zeng X, Tong MCF, Chen GG. Brusatol attenuated proliferation and invasion induced by KRAS in differentiated thyroid cancer through inhibiting Nrf2. J Endocrinol Invest 2024; 47:1271-1280. [PMID: 38062319 DOI: 10.1007/s40618-023-02248-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 04/23/2024]
Abstract
BACKGROUND Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) can be developed from differentiated thyroid cancer, and this dedifferentiated transformation leads to poor prognosis and high mortality. The role of Nrf2 in the dedifferentiation of differentiated thyroid cancer (DTC) induced by KRAS remains unclear. METHODS AND MATERIALS In this study, two DTC cell lines, BCPAP and WRO, were used to evaluate the function of Nrf2 in the dedifferentiation caused by wild-type KRAS (KRAS-WT) and G12V point mutation KRAS (KRAS-G12V). RESULTS The overexpression of KRAS-WT and KRAS-G12V increased the proliferative and invasive ability of BCPAP and WRO cells. Aggressive morphology was observed in KRAS-WT and KRAS-G12V overexpressed WRO cells. These results suggested that overexpression of KRAS-WT or KRAS-G12V may induce dedifferentiation in DTC cells. The expression of Nrf2 was increased by KRAS-WT and KRAS-G12V in DTC cells. In addition, compared with normal thyroid tissues, the expression of Nrf2 protein was considerably higher in thyroid cancer tissues on immunohistochemistry (IHC) staining, and the increased expression of Nrf2 indicated a poor prognosis of thyroid cancer. These results indicated that Nrf2 is the KRAS downstream molecule in thyroid cancer. Functional studies showed that the Nrf2 inhibitor Brusatol counteracted the proliferative and invasive abilities induced by KRAS-WT and KRAS-G12V in BCPAP and WRO cells. In addition, the xenograft assay further confirmed that Brusatol inhibits tumor growth induced by KRAS-WT and KRAS-G12V. CONCLUSION Collectively, this study suggests that Nrf2 could be a promising therapeutic target in KRAS-mediated dedifferentiation of thyroid cancer.
Collapse
|
4
|
Liu H, Duan J, Zeng P, Shi M, Zeng J, Chen S, Gong Z, Chen Z, Qin J, Chen Z. Intelligently Quantifying the Entire Irregular Dental Structure. J Dent Res 2024; 103:378-387. [PMID: 38372132 DOI: 10.1177/00220345241226871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Quantitative analysis of irregular anatomical structures is crucial in oral medicine, but clinicians often typically measure only several representative indicators within the structure as references. Deep learning semantic segmentation offers the potential for entire quantitative analysis. However, challenges persist, including segmentation difficulties due to unclear boundaries and acquiring measurement landmarks for clinical needs in entire quantitative analysis. Taking the palatal alveolar bone as an example, we proposed an artificial intelligence measurement tool for the entire quantitative analysis of irregular dental structures. To expand the applicability, we have included lightweight networks with fewer parameters and lower computational demands. Our approach finally used the lightweight model LU-Net, addressing segmentation challenges caused by unclear boundaries through a compensation module. Additional enamel segmentation was conducted to establish a measurement coordinate system. Ultimately, we presented the entire quantitative information within the structure in a manner that meets clinical needs. The tool achieved excellent segmentation results, manifested by high Dice coefficients (0.934 and 0.949), intersection over union (0.888 and 0.907), and area under the curve (0.943 and 0.949) for palatal alveolar bone and enamel in the test set. In subsequent measurements, the tool visualizes the quantitative information within the target structure by scatter plots. When comparing the measurements against representative indicators, the tool's measurement results show no statistically significant difference from the ground truth, with small mean absolute error, root mean squared error, and errors interval. Bland-Altman plots and intraclass correlation coefficients indicate the satisfactory agreement compared with manual measurements. We proposed a novel intelligent approach to address the entire quantitative analysis of irregular image structures in the clinical setting. This contributes to enabling clinicians to swiftly and comprehensively grasp structural features, facilitating the design of more personalized treatment plans for different patients, enhancing clinical efficiency and treatment success rates in turn.
Collapse
|
5
|
Swinkels PJM, Sinaasappel R, Gong Z, Sacanna S, Meyer WV, Sciortino F, Schall P. Networks of Limited-Valency Patchy Particles. PHYSICAL REVIEW LETTERS 2024; 132:078203. [PMID: 38427857 DOI: 10.1103/physrevlett.132.078203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 03/03/2024]
Abstract
Equilibrium gels provide physically attractive counterparts of nonequilibrium gels, allowing statistical understanding and design of the equilibrium gel structure. Here, we assemble two-dimensional equilibrium gels from limited-valency "patchy" colloidal particles and follow their evolution at the particle scale to elucidate cluster-size distributions and free energies. By finely adjusting the patch attraction with critical Casimir forces, we let a mixture of two-valent and pseudo-three-valent patchy particles approach the percolated network state through a set of equilibrium states. Comparing this equilibrium route with a deep quench, we find that both routes approach the percolated state via the same equilibrium states, revealing that the network topology is uniquely set by the particle bond angles, independent of the formation history. The limited-valency system follows percolation theory remarkably well, approaching the percolation point with the expected universal exponents.
Collapse
|
6
|
Xu Y, Zhang G, Yang L, Qin H, Zhou Z, Li Q, Liu H, Wang R, Cai Z, Jing L, Li Y, Yao Y, Gong Z, Yuan P, Fu T, Zhao X, Peng T, Jia Y. Quantifying Personalized Shift-Work Molecular Portraits Underlying Alzheimer's Disease through Computational Biology. J Prev Alzheimers Dis 2024; 11:1721-1733. [PMID: 39559883 PMCID: PMC11573866 DOI: 10.14283/jpad.2024.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Shift work, the proven circadian rhythm-disrupting behavior, has been linked to the increased risk of Alzheimer's disease (AD). However, the putative causal effect and potential mechanisms of shift work for AD were still unclear. METHODS Mendelian randomization (MR) analysis was performed to discover the putative causal effect of shift work for AD. Expression quantitative trait loci (eQTLs) and transcriptome data were integrated to identify genes causally associated with AD from circadian-related genes. An in vitro experiment was also conducted to validate the expression of target genes. Based on the identified genes, a novel integrative program and 4,077 samples from 16 microarray datasets were leveraged to assess the extent of circadian rhythm disruption (CRD), defined as the clock deviation level (CDL). FINDINGS/RESULTS Shift work causally increased the risk of AD [odds ratio (OR) = 2.49, 95% CI = 1.79 - 3.19, p = 0.01]. Seven circadian-related genes were causally associated with AD, including CCS, CDS2, MYRIP, NRP1, PLEKHA5, POLR1D, and PPP4C. These genes were significantly correlated with the circadian rhythm pathway. CDL was higher in CRD mice group, shift work group, sleep restriction group, and AD patients compared to control mice group (p = 0.043), non-shift group (p = 0.004), sleep extension group (p = 0.025), and health controls (multiple cohorts, p < 0.05). Additionally, CDL was also significantly correlated with AD's clinical biomarkers. INTERPRETATIONS/CONCLUSION By combining GWAS and transcriptome data, this study demonstrated the causal role of CRD behavior in AD, identified the potential target genes in shift work-induced AD, and generated CDL to characterize CRD status, which provided evidence and prospects for disease prevention and future therapeutic interventions.
Collapse
|
7
|
Gong Z, Shi X, Xu W, Fang Y, Fang M, Yao M, Jiang Y, Sui H, Luo M. LncRNA PWRN2 promotes polycystic ovary syndrome progression via epigenetically reducing ATRX by recruiting LSD1. Reprod Biol 2023; 23:100782. [PMID: 37320994 DOI: 10.1016/j.repbio.2023.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Long non-coding RNA has been shown to mediate the progression of polycystic ovary syndrome (PCOS). However, the role and mechanism of Prader-Willi region nonprotein coding RNA 2 (PWRN2) in PCOS progression remain unclear. In our study, Sprague-Dawley rat was injected with dehydroepiandrosterone to mimic PCOS rat models. HE staining was used to assess the number of benign granular cells, and serum insulin and hormone levels were detected by ELISA kit. The expression of PWRN2 was examined by qRT-PCR. Ovarian granulosa cells (GCs) proliferation and apoptosis were examined by CCK-8 assay and flow cytometry. The protein levels of apoptosis markers and Alpha thalassemia retardation syndrome X-linked (ATRX) were determined by western blot. The interaction between lysine-specific demethylase 1 (LSD1) and PWRN2 or ATRX was confirmed by RIP and ChIP assay. Our data showed that PWRN2 was upregulated and ATRX was downregulated in the ovarium tissues and serum of PCOS rat. PWRN2 knockdown promoted GCs proliferation and inhibited apoptosis. In the mechanism, PWRN2 inhibited ATRX transcription by binding with LSD1. In addition, downregulation of ATRX also eliminated the effect of sh-PWRN2 on GCs growth. In conclusion, our data suggested that PWRN2 might restrain GCs growth to promote PCOS progression, which was achieved by binding with LSD1 to inhibit ATRX transcription.
Collapse
|
8
|
Yao M, Gong Z, Xu W, Shi X, Liu X, Tang Y, Xuan S, Su Y, Xu X, Luo M, Sui H. Establishment and optimization of an in vitro guinea pig oocyte maturation system. PLoS One 2023; 18:e0285016. [PMID: 37115798 PMCID: PMC10146542 DOI: 10.1371/journal.pone.0285016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Guinea pigs are a valuable animal model for studying various diseases, including reproductive diseases. However, techniques for generating embryos via embryo engineering in guinea pigs are limited; for instance, in vitro maturation (IVM) technique is preliminary for guinea pig oocytes. In this study, we aimed to establish and optimize an IVM method for guinea pig oocytes by investigating various factors, such as superovulation induced by different hormones, culture supplementation (e.g., amino acids, hormone, and inhibitors), culture conditions (e.g., oocyte type, culture medium type, and treatment time), and in vivo hCG stimulation. We found that oocytes collected from guinea pigs with superovulation induced by hMG have a higher IVM rate compared to those collected from natural cycling individuals. Moreover, we found that addition of L-cysteine, cystine, and ROS in the culture medium can increase the IVM rate. In addition, we demonstrated that in vivo stimulation with hCG for 3-8 h can further increase the IVM rate. As a result, the overall IVM rate of guinea pig oocytes under our optimized conditions can reach ~69%, and the mature oocytes have high GSH levels and normal morphology. In summary, we established an effective IVM method for guinea pig oocytes by optimizing various factors and conditions, which provides a basis for embryo engineering using guinea pigs as a model.
Collapse
|
9
|
Sui H, Xu X, Su Y, Gong Z, Yao M, Liu X, Zhang T, Jiang Z, Bai T, Wang J, Zhang J, Xu C, Luo M. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13:1015926. [PMID: 36304167 PMCID: PMC9592762 DOI: 10.3389/fphar.2022.1015926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.
Collapse
|
10
|
Huang H, Gong Z. Characterization and differentiation of pollen lipidomes and proteomes from different intrafloral stamens in heterantherous Senna bicapsularis. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:998-1009. [PMID: 35880492 DOI: 10.1111/plb.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Numerous compounds in pollen can affect the foraging decision-making of bees. Clarification of phytochemical components and identification of key substances for bee foraging preference in pollen are essential steps for apiculture and developing a conservation strategy. Senna bicapsularis, a heterantherous plant that possesses three different stamen types in the same flower, among which bees forage selectively, provides us with an ideal research model for identification of potential substances of bee foraging preference. The lipid and protein compositions of pollen from the anthers of different stamens of S. bicapsularis were investigated and compared. The polyunsaturated fatty acids (PUFAs) and monounsaturated FAs (MUFAs) were highest among lipid molecules in pollen from short (S) stamens than from long (L) and medium (M) stamens. This result is consistent with the FA content measurement, showing the highest FAs and UFAs content in S pollen, especially α-linolenic acid. We inferred that α-linolenic acid might be one of the key substances for bee foraging preference in pollen. Moreover, proteomic analysis showed that several differentially expressed proteins involved in lipid biosynthesis were highly accumulated in S pollen, such as choline kinase 2, 3-oxoacyl-ACP synthase-like protein and choline/ethanolamine phosphotransferase 1, in line with the highest FA content of S pollen. Additionally, DEPs involved in 'starch and sucrose metabolism', 'phenylpropanoid biosynthesis' and 'cyanoamino acid metabolism' were more represented in S compared with L and M pollen. The study suggests that differences in proteomic and lipidomic profiling among the three different stamen types might affect foraging decision-making of bumblebees.
Collapse
|
11
|
Sui H, Dongye S, Liu X, Xu X, Wang L, Jin CQ, Yao M, Gong Z, Jiang D, Zhang K, Liu Y, Liu H, Jiang G, Su Y. Immunotherapy of targeting MDSCs in tumor microenvironment. Front Immunol 2022; 13:990463. [PMID: 36131911 PMCID: PMC9484521 DOI: 10.3389/fimmu.2022.990463] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous cells which are abnormally accumulated during the differentiation of myeloid cells. Immunosuppression is the main functional feature of MDSCs, which inhibit T cell activity in the tumor microenvironment (TME) and promote tumoral immune escape. The main principle for immunotherapy is to modulate, restore, and remodel the plasticity and potential of immune system to have an effective anti-tumor response. In the TME, MDSCs are major obstacles to cancer immunotherapy through reducing the anti-tumor efficacy and making tumor cells more resistant to immunotherapy. Therefore, targeting MDSCs treatment becomes the priority of relevant studies and provides new immunotherapeutic strategy for cancer treatment. In this review, we mainly discuss the functions and mechanisms of MDSCs as well as their functional changes in the TME. Further, we review therapeutic effects of immunotherapy against MDSCs and potential breakthroughs regarding immunotherapy targeting MDSCs and immune checkpoint blockade (ICB) immunotherapy.
Collapse
|
12
|
Gong Z, Yuan Z, Niu Y, Zhang X, Geng J, Wei S. CARBONATED BEVERAGES AFFECT LEVELS OF ANDROGEN RECEPTOR AND TESTOSTERONE SECRETION IN MICE. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2022; 18:301-305. [PMID: 36699165 PMCID: PMC9867816 DOI: 10.4183/aeb.2022.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objectives This work aimed to study the influences of carbonated beverages (CBs) on the testis growth and the expression levels of androgen receptor (AR) of mice. Methods Two experimental groups of 30 mice each PEP-1 and PEP-2 drank 50% and 100% Pepsi-Cola, respectively for 15 days. Other 2 experimental groups of 30 mice each COC-1 and COC-2 drank 50% and 100% Coca-Cola, respectively for 15 days. The control group (CG) of 30 mice drank water. Bilateral testes were harvested aseptically on days 0, 5, 7, 10, 13 and 15. Real-time PCR and Western blot were implemented to detect levels of androgen receptor (AR) mRNA and protein in testis tissues. Results Testes masses of PEP-2, COC-1 and COC-2 were greater than those of PEP-1 and CG (P < 0.05). On day 15, testis longitudinal diameter (TLD) of CBs-treated mice was increased as compared to CG. TLD, testes transverse diameters (TTD) and AR proteins levels of PEP-2 and COC-2 were increased in comparison with CG (P<0.05). Serum testosterone concentrations of PEP-2 were higher than that of COC-1 and CG (P < 0.05). Levels of AR mRNAs of four CBs-treated mice were increased by 60.18%, 67.26%, 65.93% and 78.76%. Conclusions A high concentration of Coca-Cola and Pepsi-Cola could raise TLD and TDD, enhance testosterone secretion, and increase serum EGF concentrations.
Collapse
|
13
|
Lu Z, Gong Z, Wang H, Zhu M, Jiang H, Cao Y. P-382 Decrease of serum estradiol prior to human chorionic gonadotrophin administration have an impact on live birth in IVF/ICSI cycles. Hum Reprod 2022. [DOI: 10.1093/humrep/deac107.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Study question
Whether decrease of serum estradiol prior to human chorionic gonadotrophin administration have an impact on live birth in IVF/ICSI cycles?
Summary answer
The E2 change before the day of hCG administration had significant correlation with live birth. The live birth rate decreased with decreasing serum E2 level.
What is known already
The objective of this study was to assess the effects of a decrease of estradiol (E2) levels on the day of human chorionic gonadotrophin (hCG) administration on in vitro fertilization /intracytoplasmic sperm injection (IVF/ICSI) outcomes, including cycles with long, antagonist and micro stimulus protocols.
Study design, size, duration
In this retrospective cohort study, 1303 patients who received IVF/ICSI non-donor treatment were identified. Patients were divided into two groups according to live birth and the characteristics of IVF/ICSI cycles were compared between groups, including baseline infertility parameters, ovarian stimulation characteristics and embryo laboratory manipulation parameters.
Participants/materials, setting, methods
In this retrospective cohort study, 1303 patients who received IVF/ICSI non-donor treatment were identified. Patients were divided into two groups according to live birth and the characteristics of IVF/ICSI cycles were compared between groups, including baseline infertility parameters, ovarian stimulation characteristics and embryo laboratory manipulation parameters. The multivariate logistic regression model was performed to adjust potential confounders and assess correlation between E2 dynamics before hCG administration and live birth.
Main results and the role of chance
Our results revealed that patients without live birth had higher age (32.13 ± 4.33 vs. 30.21 ± 3.71, P < 0.001) and pervious miscarriages (0.57 ± 0.95 vs. 0.46 ± 0.83, P = 0.0295), while had lower number of oocytes retrieved (8.95 ± 4.69 vs. 12.36 ± 5.54, P < 0.001), day of hCG E2 (8269.53 ± 4104.22 vs. 9580.71 ± 3534.11, P < 0.001) and endometrium thickness (10.37 ± 3.66 vs. 11.50 ± 3.40, P < 0.001) compared with patients with live birth. Additionally, the multivariate logistic regression analysis displayed significant impact of serum E2 change on the live birth, and the achievement of live birth [OR (95%CI) 0.81 (0.71, 0.92), P = 0.001] decreased with the decreasing level of serum E2 before hCG trigger day. Estradiol stratification analyses displayed the OR and 95% CI for the association between △E2 and live birth among patients with different levels of estradiol decline (<25%, 25%–50%, 50%–75%, >75%). Compared with the <25% decline and 25%–50% decline groups, the ORs of 50%–75% and >75% decline groups were 1.66 (95% CI: 1.12-2.45, P = 0.012) and 2.00 (95% CI: 1.39-2.89, P < 0.001), respectively, after adjusting potential confounders.
Limitations, reasons for caution
There was concealment of randomization and blinding of outcome assessments reducing the risk of selection and measurement bias.
Wider implications of the findings
In summary, the E2 change before the day of hCG administration had significant correlation with live birth, and the live birth decreased with the decreasing level of serum E2 before hCG trigger day. The patients with a greater decline in the E2 level more likely to had poor clinical outcomes.
Trial registration number
Chi CTR1900026088
Collapse
|
14
|
Gong Z, Da W, Tian Y, Zhao R, Qiu S, Wu Q, Wen K, Shen L, Zhou R, Tao L, Zhu Y. Exogenous melatonin prevents type 1 diabetes mellitus-induced bone loss, probably by inhibiting senescence. Osteoporos Int 2022; 33:453-466. [PMID: 34519833 PMCID: PMC8813725 DOI: 10.1007/s00198-021-06061-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
UNLABELLED Exogenous melatonin inhibited the senescence of preosteoblast cells in type 1 diabetic (T1D) mice and those cultured in high glucose (HG) by multiple regulations. Exogenous melatonin had a protective effect on diabetic osteoporosis, which may depend on the inhibition of senescence. INTRODUCTION Senescence is thought to play an important role in the pathophysiological mechanisms underlying diabetic bone loss. Increasing evidence has shown that melatonin exerts anti-senescence effects. In this study, we investigated whether melatonin can inhibit senescence and prevent diabetic bone loss. METHODS C57BL/6 mice received a single intraperitoneal injection of 160 mg/kg streptozotocin, followed by the oral administration of melatonin or vehicle for 2 months. Then, tissues were harvested and subsequently examined. MC3T3-E1 cells were cultured under HG conditions for 7 days and then treated with melatonin or not for 24 h. Sirt1-specific siRNAs and MT1- or MT2-specific shRNA plasmids were transfected into MC3T3-E1 cells for mechanistic study. RESULTS The total protein extracted from mouse femurs revealed that melatonin prevented senescence in T1D mice. The micro-CT results indicated that melatonin prevented bone loss in T1D mice. Cellular experiments indicated that melatonin administration prevented HG-induced senescence, whereas knockdown of the melatonin receptors MT1 or MT2 abolished these effects. Sirt1 expression was upregulated by melatonin administration but significantly reduced after MT1 or MT2 was knocked down. Knockdown of Sirt1 blocked the anti-senescence effects of melatonin. Additionally, melatonin promoted the expression of CDK2, CDK4, and CyclinD1, while knockdown of MT1 or MT2 abolished these effects. Furthermore, melatonin increased the expression of the polycomb repressive complex (PRC), but knockdown of MT1 or MT2 abolished these effects. Furthermore, melatonin increased the protein levels of Sirt1, PRC1/2 complex-, and cell cycle-related proteins. CONCLUSION This work shows that melatonin protects against T1D-induced bone loss, probably by inhibiting senescence. Targeting senescence in the investigation of diabetic osteoporosis may lead to novel discoveries.
Collapse
|
15
|
Wu G, Wang H, Zhao C, Cao C, Chai C, Huang L, Guo Y, Gong Z, Tirschwell D, Zhu C, Xia S. Large Culprit Plaque and More Intracranial Plaques Are Associated with Recurrent Stroke: A Case-Control Study Using Vessel Wall Imaging. AJNR Am J Neuroradiol 2022; 43:207-215. [PMID: 35058299 PMCID: PMC8985671 DOI: 10.3174/ajnr.a7402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Intracranial atherosclerotic plaque features are potential factors associated with recurrent stroke, but previous studies only focused on a single lesion, and few studies investigated them with perfusion impairment. This study aimed to investigate the association among whole-brain plaque features, perfusion deficit, and stroke recurrence. MATERIALS AND METHODS Patients with ischemic stroke due to intracranial atherosclerosis were retrospectively collected and categorized into first-time and recurrent-stroke groups. Patients underwent high-resolution vessel wall imaging and DSC-PWI. Intracranial plaque number, culprit plaque features (such as plaque volume/burden, degree of stenosis, enhancement ratio), and perfusion deficit variables were recorded. Logistic regression analyses were performed to determine the independent factors associated with recurrent stroke. RESULTS One hundred seventy-five patients (mean age, 59 [SD, 12] years; 115 men) were included. Compared with the first-time stroke group (n = 100), the recurrent-stroke group (n = 75) had a larger culprit volume (P = .006) and showed more intracranial plaques (P < .001) and more enhanced plaques (P = .003). After we adjusted for other factors, culprit plaque volume (OR, 1.16 per 10-mm3 increase; 95% CI, 1.03-1.30; P = .015) and total plaque number (OR, 1.31; 95% CI, 1.13-1.52; P < .001) were independently associated with recurrent stroke. Combining these factors increased the area under the curve to 0.71. CONCLUSIONS Large culprit plaque and more intracranial plaques were independently associated with recurrent stroke. Performing whole-brain vessel wall imaging may help identify patients with a higher risk of recurrent stroke.
Collapse
|
16
|
Ding L, Zhou R, Yuan Y, Yang H, Li J, Yu T, Liu C, Wang J, Li S, Gao H, Deng Z, Li N, Wang Z, Gong Z, Liu G, Xie J, Wang S, Rong Z, Deng D, Wang X, Han S, Wan W, Richter L, Huang L, Gou S, Liu Z, Yu H, Jia Y, Chen B, Dang Z, Zhang K, Li L, He X, Liu S, Di K. A 2-year locomotive exploration and scientific investigation of the lunar farside by the Yutu-2 rover. Sci Robot 2022; 7:eabj6660. [PMID: 35044796 DOI: 10.1126/scirobotics.abj6660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The lunar nearside has been investigated by many uncrewed and crewed missions, but the farside of the Moon remains poorly known. Lunar farside exploration is challenging because maneuvering rovers with efficient locomotion in harsh extraterrestrial environment is necessary to explore geological characteristics of scientific interest. Chang'E-4 mission successfully targeted the Moon's farside and deployed a teleoperated rover (Yutu-2) to explore inside the Von Kármán crater, conveying rich information regarding regolith, craters, and rocks. Here, we report mobile exploration on the lunar farside with Yutu-2 over the initial 2 years. During its journey, Yutu-2 has experienced varying degrees of mild slip and skid, indicating that the terrain is relatively flat at large scales but scattered with local gentle slopes. Cloddy soil sticking on its wheels implies a greater cohesion of the lunar soil than encountered at other lunar landing sites. Further identification results indicate that the regolith resembles dry sand and sandy loam on Earth in bearing properties, demonstrating greater bearing strength than that identified during the Apollo missions. In sharp contrast to the sparsity of rocks along the traverse route, small fresh craters with unilateral moldable ejecta are abundant, and some of them contain high-reflectance materials at the bottom, suggestive of secondary impact events. These findings hint at notable differences in the surface geology between the lunar farside and nearside. Experience gained with Yutu-2 improves the understanding of the farside of the Moon, which, in return, may lead to locomotion with improved efficiency and larger range.
Collapse
|
17
|
Lin Q, Lun J, Zhang J, He X, Gong Z, Gao X, Cao H. [Gut microbiome composition in pre-adolescent children with different meat consumption patterns]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1801-1088. [PMID: 35012911 DOI: 10.12122/j.issn.1673-4254.2021.12.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To compare the composition of gut microbiome in pre-adolescent children with different meat consumption patterns. METHODS This study was conducted among 44 healthy school-age children (age range 8-10 years) in Shenzhen. According to the monthly intake frequency ratio of white meat and red meat, the children were divided into red-meat group (n=15), balanced group (n=16) and white-meat group (n=13). The Food Frequency Questionnaire (FFQ) was used to investigate the children's diet, and samples of morning feces were collected to study the gut microbiome. The fecal DNA was extracted and amplified, and the composition of the intestinal microbiome of the children was analyzed using Illumina Miseq high-throughput sequencing. RESULTS The children in red meat and white meat groups showed significantly lower abundance and diversity of gut microbiota than those with a balanced diet (P < 0.05). LEfSe analysis of the genus in the fecal samples showed that Escherichia-Shigella, Coprobacillus and Peptoniphilus were enriched in red-meat group and Holdemanella was enriched in the white-meat group as compared with the balanced group. In the samples of the balanced group, 31 and 25 genus (such as Laurespirillum and Rumenococcus) were significantly enriched as compared with the samples of the red-meat group and the white-meat group, respectively. Prediction of the gut microbiota KEGG pathway using PICRUSt2 suggested that compared with that in the balanced group, the gut microbiota in red-meat group had significant activation of the pathways involving lipopolysaccharide biosynthesis (P < 0.01), arachidonic acid metabolism (P < 0.01), thyroid hormone synthesis (P < 0.001), and carbohydrate digestion and absorption (P < 0.05). But compared with the white-meat group, the red-meat group showed only significant activation of the pathways of arachidonic acid metabolism (P < 0.05) and thyroid hormone synthesis (P < 0.05). CONCLUSION The preference of red meat and white meat consumption may significantly reduce the abundance and diversity of gut microbiota in pre-adolescent children. A red meat-rich diet may cause enrichment of Escherichia-Shigella and significant activation of lipopolysaccharide biosynthesis pathway, suggesting the potential benefit of a balanced diet for pre-adolescent children.
Collapse
|
18
|
Zhang Y, Gong S, Su Y, Yao M, Liu X, Gong Z, Sui H, Luo M. Follicular development in livestock: Influencing factors and underlying mechanisms. Anim Sci J 2021; 92:e13657. [PMID: 34796578 DOI: 10.1111/asj.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022]
Abstract
Livestock farming development has become increasingly important in recent years. It not only provides us with meat nutrition and pet feeding but also increases the economic value by providing numerous employment opportunities, which improves our life quality. The livestock farming development depends on successful animal reproduction. As a vital process in animal reproduction, folliculogenesis and its influencing factors as well as their underlying mechanisms need to be understood thoroughly. This review is aimed at summarizing the factors such as cellular processes, gene regulation, noncoding RNAs and other endocrine or paracrine regulatory factors that affect follicular development, and their underlying mechanisms of action in livestock in order to provide novel insights for future studies. The above factors were found as significant determinants influencing the follicular development in livestock through various signaling pathways.
Collapse
|
19
|
Liu Y, Su Z, Wang J, Gong Z, Lyu H, Xie Z. Molecularly imprinted polymer with mixed-mode mechanism for selective extraction and on-line detection of ochratoxin A in beer sample. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Zeller AN, Selle M, Gong Z, Winkelmann M, Krettek C, Bundkirchen K, Neunaber C, Noack S. Osteoporosis is accompanied by reduced CD274 expression in human bone marrow-derived mesenchymal stem cells. Eur Cell Mater 2021; 41:603-615. [PMID: 34056703 DOI: 10.22203/ecm.v041a39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Underlying pathomechanisms of osteoporosis are still not fully elucidated. Cell-based therapy approaches pose new possibilities to treat osteoporosis and its complications. The aim of this study was to quantify differences in human bone marrow-derived mesenchymal stem cells (hBMSCs) between healthy donors and those suffering from clinically manifest osteoporosis. Cell samples of seven donors for each group were selected retrospectively from the hBMSC cell bank of the Trauma Department of Hannover Medical School. Cells were evaluated for their adipogenic, osteogenic and chondrogenic differentiation potential, for their proliferation potential and expression of surface antigens. Furthermore, a RT2 Osteoporosis Profiler PCR array, as well as quantitative real-time PCR were carried out to evaluate changes in gene expression. Cultivated hBMSCs from osteoporotic donors showed significantly lower cell surface expression of CD274 (4.98 % ± 2.38 %) than those from the control group (26.03 % ± 13.39 %; p = 0.007), as assessed by flow cytometry. In osteoporotic patients, genes involved in inhibition of the anabolic WNT signalling pathway and those associated with stimulation of bone resorption were significantly upregulated. Apart from these changes, no significant differences were found for the other cell surface antigens, adipogenic, osteogenic and chondrogenic differentiation ability as well as proliferation potential. These findings supported the theory of an influence of CD274 on the regulation of bone metabolism. CD274 might be a promising target for further investigations of the pathogenesis of osteoporosis and of cell-based therapies involving MSCs.
Collapse
|
21
|
Swinkels PJM, Stuij SG, Gong Z, Jonas H, Ruffino N, Linden BVD, Bolhuis PG, Sacanna S, Woutersen S, Schall P. Revealing pseudorotation and ring-opening reactions in colloidal organic molecules. Nat Commun 2021; 12:2810. [PMID: 33990609 PMCID: PMC8121934 DOI: 10.1038/s41467-021-23144-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Colloids have a rich history of being used as 'big atoms' mimicking real atoms to study crystallization, gelation and the glass transition of condensed matter. Emulating the dynamics of molecules, however, has remained elusive. Recent advances in colloid chemistry allow patchy particles to be synthesized with accurate control over shape, functionality and coordination number. Here, we show that colloidal alkanes, specifically colloidal cyclopentane, assembled from tetrameric patchy particles by critical Casimir forces undergo the same chemical transformations as their atomic counterparts, allowing their dynamics to be studied in real time. We directly observe transitions between chair and twist conformations in colloidal cyclopentane, and we elucidate the interplay of bond bending strain and entropy in the molecular transition states and ring-opening reactions. These results open the door to investigate complex molecular kinetics and molecular reactions in the high-temperature classical limit, in which the colloidal analogue becomes a good model.
Collapse
|
22
|
Jia M, Xu Y, Shao B, Guo Z, Hu L, Pataer P, Abass K, Ling B, Gong Z. Diagnostic magnetic resonance imaging in synovial chondromatosis of the temporomandibular joint. Br J Oral Maxillofac Surg 2021; 60:140-144. [PMID: 34848098 DOI: 10.1016/j.bjoms.2021.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
The aim of this paper was to investigate the clinical and magnetic resonance imaging (MRI) features of synovial chondromatosis (SC) of the temporomandibular joint (TMJ). Fourteen patients with SC of the TMJ were included in the study. Clinical and MRI features were analysed and divided into three types based on MRI classification: type I with loose bodies, type II with homogeneous masses, and type III with a mixture of loose bodies and homogeneous masses. All SCs occurred in the superior compartment of the TMJ. There were two patients (14%) categorised as type I, five (36%) as type II and seven (50%) as type III. Four patients (29%) had disc perforation, and nine had bone erosion; among those nine, seven (78%) had type III and two (22%) type II. Histological examination showed inflammation and calcification in the synovial membrane and, and cartilage of the hyaline type in all cases. MRI has advantages in the diagnosis of SC.
Collapse
|
23
|
Gong Z, Wang H, Lin Z. Glycine substitution mutation of COL5A1 in classic Ehlers-Danlos syndrome: a case report and literature review. Clin Exp Dermatol 2021; 46:987-989. [PMID: 33656776 DOI: 10.1111/ced.14568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
|
24
|
Geng J, Niu Y, Wei L, Li Q, Gong Z, Wei S. Triplex qRT-PCR with specific probe for synchronously detecting Bovine parvovirus, bovine coronavirus, bovine parainfluenza virus and its applications. Pol J Vet Sci 2021; 23:481-489. [PMID: 33480488 DOI: 10.24425/pjvs.2020.134696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bovine parvovirus (BPV), bovine coronavirus (BCoV) and bovine parainfluenza virus (BPIV) are common etiologies causing gastrointestinal and respiratory diseases in dairy herds. However, there are few reports on the synchronous detection of BPV, BCoV and BPIV. The present article aimed to develop a quick and accurate RT-PCR assay to synchronously detect BPV, BCoV and BPIV based on their specific probes. One pair universal primers, one pair specific primers and one specific probe was designed and synthesized. After the concentrations of primer and probe and annealing temperature were strictly optimized, the specificity, sensitivity and repeatability of the established triplex probe qRT-PCR were evaluated, respectively. The results showed the recombinant plasmids of pMD18-T-BPV, pMD18-T-BCoV and pMD18-T-BPIV were 554bp, 699bp and 704bp, respectively. The optimal annealing temperature was set at 45.0°C for triplex qRT-PCR. The triplex probe qRT-PCR can only synchronously detect BPV, BCoV and BPIV. Detection sensitivities were 2.0×102, 2.0×102 and 2.0×101 copies/μL for BPV, BCoV and BPIV, being 1000-fold greater than that in the conventional PCR. Detection of clinical samples demonstrated that triplex probe qRT-PCR had a higher sensitivity and specificity. The intra-assay and inter-assay coefficient of variation were lower than 2.0%. Clinical specimens verified that the triplex qRT-PCR had a higher sensitivity and specificity than universal PCR. In conclusion, this triplex probe qRT-PCR could detect only BPV, BCoV and BPIV. Minimum detection limits were 2.0×102 copies/μL for BPV and BCoV, and 2.0×101 copies/μL for BPIV. The sensitivity of this triplex probe qRT-PCR was 1000-fold greater than that in the conventional PCR. The newly qRT-PCR could be used to monitor or differentially diagnose virus infection.
Collapse
|
25
|
Zhang H, Gao J, He X, Gong Z, Wan Y, Hu T, Li Y, Cao H. Lactobacillus rhamnosus GG-derived postbiotic prevents intestinal infection with enterohaemorrhagic E. coli O157: H7. Int J Infect Dis 2020. [DOI: 10.1016/j.ijid.2020.09.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|