1
|
Han Z, Qiu F, Eisenberg R, Holland PL, Krauss TD. Robust Photogeneration of H2 in Water Using Semiconductor Nanocrystals and a Nickel Catalyst. Science 2012; 338:1321-4. [DOI: 10.1126/science.1227775] [Citation(s) in RCA: 655] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
13 |
655 |
2
|
Han Z, Boyle DL, Chang L, Bennett B, Karin M, Yang L, Manning AM, Firestein GS. c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 2001; 108:73-81. [PMID: 11435459 PMCID: PMC209341 DOI: 10.1172/jci12466] [Citation(s) in RCA: 593] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Accepted: 05/21/2001] [Indexed: 11/17/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are involved in inflammation and tissue destruction in rheumatoid arthritis (RA). In particular, c-Jun N-terminal kinase (JNK) is highly activated in RA fibroblast-like synoviocytes and synovium. However, defining the precise function of this kinase has been difficult because a selective JNK inhibitor has not been available. We now report the use of a novel selective JNK inhibitor and JNK knockout mice to determine the function of JNK in synoviocyte biology and inflammatory arthritis. The novel JNK inhibitor SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) completely blocked IL-1--induced accumulation of phospho-Jun and induction of c-Jun transcription in synoviocytes. Furthermore, AP-1 binding and collagenase mRNA accumulation were completely suppressed by SP600125. In contrast, complete inhibition of p38 had no effect, and ERK inhibition had only a modest effect. The essential role of JNK was confirmed in cultured synoviocytes from JNK1 knockout mice and JNK2 knockout mice, each of which had a partial defect in IL-1--induced AP-1 activation and collagenase-3 expression. Administration of SP600125 modestly decreased the rat paw swelling in rat adjuvant-induced arthritis. More striking was the near-complete inhibition of radiographic damage that was associated with decreased AP-1 activity and collagenase-3 gene expression. Therefore, JNK is a critical MAPK pathway for IL-1--induced collagenase gene expression in synoviocytes and in joint arthritis, indicating that JNK is an important therapeutic target for RA.
Collapse
|
Comparative Study |
24 |
593 |
3
|
Sluss HK, Han Z, Barrett T, Goberdhan DC, Wilson C, Davis RJ, Ip YT. A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev 1996; 10:2745-58. [PMID: 8946915 DOI: 10.1101/gad.10.21.2745] [Citation(s) in RCA: 332] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Drosophila MAP kinase DJNK is a homolog of the mammalian c-Jun amino-terminal kinase (JNK). Mutations in the DJNK gene correspond to the complementation group basket. DJNK is phosphorylated and activated by the Drosophila MAP kinase kinase HEP. Substrates of DJNK include the transcription factor DJun. DJNK participates in multiple physiological processes. Exposure to endotoxic lipopolysaccharide initiates an insect immune response and leads to DJNK activation. In addition, embryos lacking DJNK are defective in dorsal closure, a process in which the lateral epithelial cells migrate over the embryo and join at the dorsal midline. These data demonstrate that the DJNK signal transduction pathway mediates an immune response and morphogenesis in vivo.
Collapse
|
|
29 |
332 |
4
|
Kurokawa R, Yu VC, Näär A, Kyakumoto S, Han Z, Silverman S, Rosenfeld MG, Glass CK. Differential orientations of the DNA-binding domain and carboxy-terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers. Genes Dev 1993; 7:1423-35. [PMID: 8392479 DOI: 10.1101/gad.7.7b.1423] [Citation(s) in RCA: 287] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Retinoic acid, thyroid hormone, and vitamin D receptors preferentially activate target genes through response elements that consist of direct repeat arrangements of a core recognition motif of consensus sequence AGGTCA. We present evidence that the preference for direct repeat elements arises from two fundamental differences from steroid hormone receptors. First, retinoic acid, thyroid hormone, and vitamin D receptors are demonstrated to preferentially form heterodimers with the retinoid X receptors. These interactions are mediated by the carboxy-terminal dimerization interface, with heterodimer preference specified by actions of the DNA-binding domain. Second, the DNA-binding domains of heterodimeric receptors appear to be rotationally flexible with respect to the carboxy-terminal dimerization interface. Several independent lines of evidence suggest that, relative to the retinoid X and steroid hormone receptors, the DNA-binding domain of the thyroid hormone receptor is preferentially rotated by approximately 180 degrees with respect to its carboxy-terminal dimerization interface. As a result, solution interactions between the carboxy-terminal dimerization interfaces of the retinoid X and thyroid hormone receptors are predicted to lead to the preferential alignment of their respective DNA-binding domains in a direct repeat configuration. This alignment would position the retinoid X receptor over the upstream recognition motif of direct repeat response elements. Differential orientations of the DNA-binding domain, which contribute to the polarity of heterodimer binding, are regulated by a short sequence (the A box) that is located between the conserved DNA-binding and carboxy-terminal dimerization domains.
Collapse
|
|
32 |
287 |
5
|
Han Z, Boyle DL, Manning AM, Firestein GS. AP-1 and NF-kappaB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity 1999; 28:197-208. [PMID: 9892501 DOI: 10.3109/08916939808995367] [Citation(s) in RCA: 275] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine the expression and regulation of nuclear transcription factors AP-1 and NF-kappaB in rheumatoid arthritis and in collagen-induced arthritis in mice. METHODS AP-1 and NF-kappaB expression and function were determined in RA, OA and normal synovial tissue by electrophoretic mobility shift assay (EMSA) and immunohistochemistry. The kinetics of transcription factor expression were then examined in collagen-induced arthritis (CIA) in mice. EMSAs were performed with the nuclear extracts obtained from paws of CIA mice from 10 to 45d after immunization to determine AP-1 and NF-kappaB binding activity. The expression of collagenase-3 (MMP13) and stromelysin (MMP3) mRNA was examined by northern blot analysis. RESULTS Immunohistochemistry showed that NF-kappaB expression was increased in both RA and OA synovial intimal lining. AP-1 components Jun and Fos were also present in the intimal lining and was significantly greater in RA than OA. The DNA binding activities of both AP-1 and NF-kappaB were significantly higher RA patients compared with OA. In CIA, AP-1 and NF-kappaB expression increased by day 20, which was 1-2 weeks before onset of clinical arthritis. However, collagenase and stromelysin gene expression did not increase until day 35. CONCLUSION The DNA binding activity of AP-1 and NF-kappaB are markedly increased in both CIA and RA. In CIA, activation of AP-1 and NF-kappaB precede both clinical arthritis and metalloproteinase gene expression. NF-kappaB expression correlated better than AP-1 with metalloproteinase expression.
Collapse
|
|
26 |
275 |
6
|
Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S. Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications. J Biol Chem 1999; 274:962-71. [PMID: 9873038 DOI: 10.1074/jbc.274.2.962] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Preferential cleavage sites have been determined for Fe2+/H2O2-mediated oxidations of DNA. In 50 mM H2O2, preferential cleavages occurred at the nucleoside 5' to each of the dG moieties in the sequence RGGG, a sequence found in a majority of telomere repeats. Within a plasmid containing a (TTAGGG)81 human telomere insert, 7-fold more strand breakage occurred in the restriction fragment with the insert than in a similar-sized control fragment. This result implies that telomeric DNA could protect coding DNA from oxidative damage and might also link oxidative damage and iron load to telomere shortening and aging. In micromolar H2O2, preferential cleavage occurred at the thymidine within the sequence RTGR, a sequence frequently found to be required in promoters for normal responses of many procaryotic and eucaryotic genes to iron or oxygen stress. Computer modeling of the interaction of Fe2+ with RTGR in B-DNA suggests that due to steric hindrance with the thymine methyl, Fe2+ associates in a specific manner with the thymine flipped out from the base stack so as to allow an octahedrally-oriented coordination of the Fe2+ with the three purine N7 residues. Fe2+-dependent changes in NMR spectra of duplex oligonucleotides containing ATGA versus those containing AUGA or A5mCGA were consistent with this model.
Collapse
|
|
26 |
264 |
7
|
Han Z, Hendrickson EA, Bremner TA, Wyche JH. A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem 1997; 272:13432-6. [PMID: 9148968 DOI: 10.1074/jbc.272.20.13432] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The apoptotic cysteine protease, caspase-3, is expressed in cells as an inactive 32-kDa precursor from which 17 kDa (p17) and 12 kDa (p12) subunits of the mature caspase-3 are proteolytically generated during apoptosis. Two amino acid sequences, ESMD downward arrowS (amino acids 25-29) and IETD downward arrowS (amino acids 172-176), in the precursor have been defined as the cleavage sites for the production of the p17 and p12 subunits. Using a cell-free assay system, we demonstrate that the caspase-3 precursor appears to be cleaved first at the IETD downward arrowS site, producing the p12 subunit and a 20-kDa (p20) peptide. Subsequently, the p20 is cleaved at the ESMD downward arrowS site, generating the mature p17 subunit. The cleavage at the IETD downward arrowS site required a protease activity that was selectively inhibited by the peptide, Ac-IETD-CHO (acetyl-IETD-aldehyde), and other protease inhibitors, such as the cowpox viral serine protease inhibitor, CrmA, and N-alpha-tosyl-L-phenylalanine chloromethyl ketone. The protease that catalyzed the cleavage at the ESMD/S site was selectively inhibited by another peptide, Ac-ESMD-CHO (acetyl-ESMD-aldehyde). More interestingly, the caspase-3 inhibitor, Ac-DEVD-CHO, but not the caspase-1 inhibitor, Ac-YVAD-CHO, also selectively inhibited the protease activity that cleaves at the ESMD downward arrowS site. This indicated that the cleavage at the ESMD downward arrowS site was either autocatalytic or that it required a caspase-3-like activity. In summary, we demonstrate that production of the p17:p12 form of caspase-3 is a sequential two-step process and appears to require two distinct enzymatic activities.
Collapse
|
|
28 |
195 |
8
|
Papadopoulos V, Lecanu L, Brown RC, Han Z, Yao ZX. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience 2005; 138:749-56. [PMID: 16338086 DOI: 10.1016/j.neuroscience.2005.05.063] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 05/21/2005] [Indexed: 11/15/2022]
Abstract
The peripheral-type benzodiazepine receptor is a mitochondrial protein expressed at high levels in steroid synthesizing tissues, including the glial cells of the brain. Peripheral-type benzodiazepine receptor binds cholesterol with high affinity and is a key element of the cholesterol mitochondrial import machinery responsible for supplying the substrate cholesterol to the first steroidogenic enzyme, thus initiating and maintaining neurosteroid biosynthesis. Neurosteroid formation and metabolism of steroid intermediates are critical components of normal brain function. Peripheral-type benzodiazepine receptor also binds with high affinity various classes of compounds. Upon ligand activation peripheral-type benzodiazepine receptor-dependent cholesterol transport into mitochondria is accelerated leading in increased formation of neuroactive steroids. These steroids, such as allopregnanolone, have been shown to be involved in various neurological disorders, such as anxiety and mood disorders. Thus, peripheral-type benzodiazepine receptor drug ligand-induced neuroactive steroid formation offers a means to regulate brain dysfunction. Peripheral-type benzodiazepine receptor basal expression is upregulated in a number of neuropathologies, including gliomas and neurodegenerative disorders, as well as in various forms of brain injury and inflammation. In Alzheimer's disease pathology neurosteroid biosynthesis is altered and a decrease in the intermediate 22R-hydroxycholesterol levels is observed. This steroid was found to exert neuroprotective properties against beta-amyloid neurotoxicity. Based on this observation, a stable spirostenol derivative showing to display neuroprotective properties was identified, suggesting that compounds developed based on critical intermediates of neurosteroid biosynthesis could offer novel means for neuroprotection. In conclusion, changes in peripheral-type benzodiazepine receptor and neurosteroid levels are part of the phenotype seen in neuropathology and neurological disorders and offer potential targets for new therapies.
Collapse
|
Review |
20 |
185 |
9
|
Kravets VG, Jalil R, Kim YJ, Ansell D, Aznakayeva DE, Thackray B, Britnell L, Belle BD, Withers F, Radko IP, Han Z, Bozhevolnyi SI, Novoselov KS, Geim AK, Grigorenko AN. Graphene-protected copper and silver plasmonics. Sci Rep 2014; 4:5517. [PMID: 24980150 PMCID: PMC4076691 DOI: 10.1038/srep05517] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/13/2014] [Indexed: 12/23/2022] Open
Abstract
Plasmonics has established itself as a branch of physics which promises to revolutionize data processing, improve photovoltaics, and increase sensitivity of bio-detection. A widespread use of plasmonic devices is notably hindered by high losses and the absence of stable and inexpensive metal films suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
155 |
10
|
Magid LJ, Han Z, Warr GG, Cassidy MA, Butler PD, Hamilton WA. Effect of Counterion Competition on Micellar Growth Horizons for Cetyltrimethylammonium Micellar Surfaces: Electrostatics and Specific Binding. J Phys Chem B 1997. [DOI: 10.1021/jp970864f] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
28 |
143 |
11
|
Chiang CL, Xu C, Han Z, Ho W. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 2014; 344:885-8. [DOI: 10.1126/science.1253405] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
11 |
133 |
12
|
Wang L, Gao Y, Wen B, Han Z, Taniguchi T, Watanabe K, Koshino M, Hone J, Dean CR. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science 2015; 350:1231-4. [DOI: 10.1126/science.aad2102] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
10 |
128 |
13
|
Abstract
The production of the bacterial DNA replication inhibitor Microcin B17 is induced as cultures enter stationary phase. Using S1 nuclease protection assays we have shown that this induction is the result of increased levels of transcription initiation from a promoter located upstream from mcbA, the structural gene for Microcin B17. Upstream from the start site of transcription there is a rather typical -35 region. However, there is no good homology to the consensus -10 region. While most of the cell's transcription is shut off as a result of the cessation of growth, transcription from the mcbA promoter continues for several hours in stationary phase. A single-copy gene fusion between mcbA and lacZ was used to monitor the response of the promoter to different nutritional conditions and in different host backgrounds altered in metabolic regulatory loci. Starvation for nitrogen, phosphate or carbon sources all induced transcription from the promoter. Levels of transcription were reduced in ompR backgrounds. In contrast, mutations in other global regulatory loci, fnr, relA and cya had little or no effect.
Collapse
|
|
38 |
116 |
14
|
Han Z, Jiang YH, Wan Y, Wang Y, Chang JK, Han JS. Endomorphin-1 mediates 2 Hz but not 100 Hz electroacupuncture analgesia in the rat. Neurosci Lett 1999; 274:75-8. [PMID: 10553941 DOI: 10.1016/s0304-3940(99)00670-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work was designed to elucidate the possible involvement of endogenous endomorphin-I (EM1) in analgesia induced by electroacupuncture of low or high frequencies. Taking radiant heat tail flick latency (TFL) as an indication of nociception, rats were subjected to intrathecal (i.t.) injection of 10 microl antiserum against EM1 (EM1-AS) or normal rabbit serum (NRS, as control) and then followed by 2 or 100 Hz electroacupuncture stimulation for 30 min. The analgesia induced by 2 Hz electroacupuncture was attenuated by i.t. injection of EM1-AS at 1:10 and 1:100 but not at 1:1000 dilution. No such suppressive effect was observed for 100 Hz EA analgesia when EM1-AS was injected i.t. at any dilutions. These results indicate that EM1 is involved in 2 Hz but not 100 Hz electroacupuncture analgesia at spinal level.
Collapse
|
|
26 |
115 |
15
|
Luo Y, Han Z, Chin SM, Linn S. Three chemically distinct types of oxidants formed by iron-mediated Fenton reactions in the presence of DNA. Proc Natl Acad Sci U S A 1994; 91:12438-42. [PMID: 7809055 PMCID: PMC45453 DOI: 10.1073/pnas.91.26.12438] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Exposure of Escherichia coli to H2O2 leads to two kinetically distinguishable modes of killing: mode I killing occurs maximally near 2 mM H2O2, whereas mode II killing is essentially independent of H2O2 concentrations up to 20 mM. A major portion of H2O2 toxicity is attributed to DNA damage caused by the iron-mediated Fenton reaction. By studying DNA damage during Fenton reactions in vitro, the same complex kinetics were observed and three types of oxidants were distinguished based upon their reactivities toward H2O2 and alcohols and upon iron-chelator effects. Type I oxidants are sensitive to H2O2 but moderately resistant to ethanol; type II oxidants are resistant to both H2O2 and ethanol; type III oxidants are sensitive to H2O2, ethanol, and t-butanol. To explain these results, we hypothesize that type I oxidants are generated upon Fe2+ associated with DNA only through electrostatic interactions and cause mode I killing of E. coli; type II oxidants arise upon Fe2+, which is at least partially base-associated, and cause mode II killing; type III oxidants arise on Fe2+ free in solution and probably do not cause killing. Therefore, particular interactions of DNA with transition metals should be considered to be an integral part of the chemistry and toxicity of H2O2.
Collapse
|
research-article |
31 |
114 |
16
|
Han Z. Model study on particle size segregation and deposition during Asian dust events in March 2002. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jd004920] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
21 |
109 |
17
|
Niu N, Zhang J, Zhang N, Mercado-Uribe I, Tao F, Han Z, Pathak S, Multani AS, Kuang J, Yao J, Bast RC, Sood AK, Hung MC, Liu J. Linking genomic reorganization to tumor initiation via the giant cell cycle. Oncogenesis 2016; 5:e281. [PMID: 27991913 PMCID: PMC5177773 DOI: 10.1038/oncsis.2016.75] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/19/2016] [Accepted: 10/23/2016] [Indexed: 12/20/2022] Open
Abstract
To investigate the mechanisms underlying our recent paradoxical finding that mitotically incapacitated and genomically unstable polyploid giant cancer cells (PGCCs) are capable of tumor initiation, we labeled ovarian cancer cells with α-tubulin fused to green fluorescent protein, histone-2B fused to red fluorescent protein and FUCCI (fluorescent ubiquitination cell cycle indicator), and tracked the spatial and time-dependent change in spindle and chromosomal dynamics of PGCCs using live-cell fluorescence time-lapse recording. We found that single-dose (500 nm) treatment with paclitaxel paradoxically initiated endoreplication to form PGCCs after massive cell death. The resulting PGCCs continued self-renewal via endoreplication and further divided by nuclear budding or fragmentation; the small daughter nuclei then acquired cytoplasm, split off from the giant mother cells and acquired competency in mitosis. FUCCI showed that PGCCs divided via truncated endoreplication cell cycle (endocycle or endomitosis). Confocal microscopy showed that PGCCs had pronounced nuclear fragmentation and lacked expression of key mitotic proteins. PGCC-derived daughter cells were capable of long-term proliferation and acquired numerous new genome/chromosome alterations demonstrated by spectral karyotyping. These data prompt us to conceptualize a giant cell cycle composed of four distinct but overlapping phases, initiation, self-renewal, termination and stability. The giant cell cycle may represent a fundamental cellular mechanism to initiate genomic reorganization to generate new tumor-initiating cells in response to chemotherapy-induced stress and contributes to disease relapse.
Collapse
|
Journal Article |
9 |
107 |
18
|
Han Z, Wax MB, Patil RV. Regulation of aquaporin-4 water channels by phorbol ester-dependent protein phosphorylation. J Biol Chem 1998; 273:6001-4. [PMID: 9497312 DOI: 10.1074/jbc.273.11.6001] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms for regulating water balance in many tissues are unknown. Like the kidney, the eye contains multiple water channel proteins (aquaporins) that transport water through membranes, including two (AQP1 and AQP4) in the ciliary body, the site of aqueous humor production. However, because humans with defective AQP1 are phenotypically normal and because the ocular application of phorbol esters reduce intraocular pressure, we postulated that the water channel activity of AQP4 may be regulated by these agents. We now report that protein kinase C activators, phorbol 12,13-dibutyrate, and phorbol 12-myristate 13-acetate strongly stimulate the phosphorylation of AQP4 and inhibit its activity in a dose-dependent manner. Phorbol 12,13-dibutyrate (10 microM) and phorbol 12-myristate 13-acetate (10 nM) reduced the rate of AQP4-expressing oocyte swelling by 87 and 92%, respectively. Further, phorbol 12,13-dibutyrate significantly increased the amount of phosphorylated AQP4. These results demonstrate that protein kinase C can regulate the activity of AQP4 through a mechanism involving protein phosphorylation. Moreover, they suggest important potential roles for AQP4 in several clinical disorders involving rapid water transport such as glaucoma, brain edema, and swelling of premature infant lungs.
Collapse
|
|
27 |
106 |
19
|
Aupperle K, Bennett B, Han Z, Boyle D, Manning A, Firestein G. NF-kappa B regulation by I kappa B kinase-2 in rheumatoid arthritis synoviocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2705-11. [PMID: 11160335 DOI: 10.4049/jimmunol.166.4.2705] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IkappaB kinase-1 and IkappaB kinase-2 (IKK1 and IKK2; also called IKKalpha and IKKbeta, respectively) are part of the signal complex that regulates NF-kappaB activity in many cell types, including fibroblast-like synoviocytes (FLS). We determined which of these two kinases is responsible for cytokine-induced NF-kappaB activation in synoviocytes and assessed the functional consequences of IKK1 or IKK2 overexpression and inhibition. FLS were infected with adenovirus constructs encoding either wild-type (wt) IKK1 or IKK2, the dominant negative (dn) mutant of both kinases, or a control construct encoding green fluorescence protein. Analysis of the NF-kappaB pathway revealed that cytokine-induced IKK activation, IkappaB degradation, and NF-kappaB activation was prevented in cells expressing the IKK2 dn mutant, whereas baseline NF-kappaB activity was increased by IKK2 wt. In addition, synthesis of IL-6 and IL-8, as well as expression of ICAM-1 and collagenase, was only increased by IKK2 wt, and their cytokine-induced production was abrogated by IKK2 dn mutant. However, the IKK1 dn mutant did not inhibit cytokine-mediated activation of NF-kappaB or any of the functional assays. These data indicate that IKK2 is the key convergence pathway for cytokine-induced NF-kappaB activation. Furthermore, IKK2 regulates adhesion molecule, matrix metalloproteinase, and cytokine production in FLS.
Collapse
|
|
24 |
105 |
20
|
Han Z, Malik N, Carter T, Reeves WH, Wyche JH, Hendrickson EA. DNA-dependent protein kinase is a target for a CPP32-like apoptotic protease. J Biol Chem 1996; 271:25035-40. [PMID: 8798786 DOI: 10.1074/jbc.271.40.25035] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We demonstrate that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) is specifically, proteolytically cleaved in HL-60 cells treated with staurosporine (STS), a potent inducer of apoptosis. The proteolysis of DNA-PKcs correlated with or preceded apoptotic chromosomal DNA degradation. Cell-free extracts prepared from STS-treated HL-60 cells recapitulated the proteolysis of DNA-PKcs in an in vitro assay using purified DNA-PK as the substrate. Western blot analyses of the apoptotic cell extract showed that the 32-kDa precursor of CPP32 is expressed in HL-60 cells and processed following STS treatment. In addition, whereas the DNA-PKcs protease activity was not inhibitable by many conventional protease inhibitors, it was inhibitable by a highly selective peptide-derived inhibitor of CPP32. These data strongly suggest that CPP32, or a CPP32-like protease, is responsible for DNA-PKcs proteolysis. Finally, our results demonstrated that the cleavage of DNA-PKcs in vitro proceeded in the presence of Bcl-2, indicating that the function provided by Bcl-2 lies upstream the proteolysis of DNA-PKcs.
Collapse
|
|
29 |
100 |
21
|
Huang W, Han Z, Liu J, Yu L, Yu X. Risk Factors for Recurrent Lumbar Disc Herniation: A Systematic Review and Meta-Analysis. Medicine (Baltimore) 2016; 95:e2378. [PMID: 26765413 PMCID: PMC4718239 DOI: 10.1097/md.0000000000002378] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recurrent lumbar disc herniation (rLDH) is a common complication following primary discectomy. This systematic review aimed to investigate the current evidence on risk factors for rLDH.Cohort or case-control studies addressing risk factors for rLDH were identified by search in Pubmed (Medline), Embase, Web of Science, and Cochrane library from inception to June 2015. Relevant results were pooled to give overall estimates if possible. Heterogeneity among studies was examined and publication bias was also assessed.A total of 17 studies were included in this systematic review. Risk factors that had significant relation with rLDH were smoking (OR 1.99, 95% CI 1.53-2.58), disc protrusion (OR 1.79, 95% CI 1.15-2.79), and diabetes (OR 1.19, 95% CI 1.06-1.32). Gender, BMI, occupational work, level, and side of herniation did not correlate with rLDH significantly.Based on current evidence, smoking, disc protrusion, and diabetes were predictors for rLDH. Patients with these risk factors should be paid more attention for prevention of recurrence after primary surgery. More evidence provided by high-quality observational studies is still needed to further investigate risk factors for rLDH.
Collapse
|
Meta-Analysis |
9 |
93 |
22
|
Han Z, Ni J, Smits P, Underhill CB, Xie B, Chen Y, Liu N, Tylzanowski P, Parmelee D, Feng P, Ding I, Gao F, Gentz R, Huylebroeck D, Merregaert J, Zhang L. Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J 2001; 15:988-94. [PMID: 11292659 DOI: 10.1096/fj.99-0934com] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tumor growth and metastasis are critically dependent on the formation of new blood vessels. The present study found that extracellular matrix protein 1 (ECM1), a newly described secretory glycoprotein, promotes angiogenesis. This was initially suggested by in situ hybridization studies of mouse embryos indicating that the ECM1 message was associated with blood vessels and its expression pattern was similar to that of flk-1, a recognized marker for endothelium. More direct evidence for the role of ECM1 in angiogenesis was provided by the fact that highly purified recombinant ECM1 stimulated the proliferation of cultured endothelial cells and promoted blood vessel formation in the chorioallantoic membrane of chicken embryos. Immunohistochemical staining with specific antibodies indicated that ECM1 was expressed by the human breast cancer cell lines MDA-435 and LCC15, both of which are highly tumorigenic. In addition, staining of tissue sections from patients with breast cancer revealed that ECM1 was present in a significant proportion of primary and secondary tumors. Collectively, the results of this study suggest that ECM1 possesses angiogenic properties that may promote tumor progression.
Collapse
|
|
24 |
92 |
23
|
Han Z, Kuyatt BL, Kochman KA, DeSouza EB, Roth GS. Effect of aging on concentrations of D2-receptor-containing neurons in the rat striatum. Brain Res 1989; 498:299-307. [PMID: 2529020 DOI: 10.1016/0006-8993(89)91108-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Striatal D2 dopamine receptor concentrations were shown to decrease 30-35% during the lifespan of Wistar rats as assessed both radiochemically and autoradiographically. Binding densities and degree of age-change varied within the striatum; the latter ranging from 17 to 44% in 4 different regions. Overall neuronal loss during aging was 19%, and also varied considerably within the different striatal regions. Thus, it appears that neuronal loss may account for up to roughly half of the striatal D2 receptor loss during aging.
Collapse
|
|
36 |
90 |
24
|
Lilley CE, Groutsi F, Han Z, Palmer JA, Anderson PN, Latchman DS, Coffin RS. Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J Virol 2001; 75:4343-56. [PMID: 11287583 PMCID: PMC114179 DOI: 10.1128/jvi.75.9.4343-4356.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) has several potential advantages as a vector for delivering genes to the nervous system. The virus naturally infects and remains latent in neurons and has evolved the ability of highly efficient retrograde transport from the site of infection at the periphery to the site of latency in the spinal ganglia. HSV is a large virus, potentially allowing the insertion of multiple or very large transgenes. Furthermore, HSV does not integrate into the host chromosome, removing any potential for insertional activation or inactivation of cellular genes. However, the development of HSV vectors for the central nervous system that exploit these properties has been problematical. This has mainly been due to either vector toxicity or an inability to maintain transgene expression. Here we report the development of highly disabled versions of HSV-1 deleted for ICP27, ICP4, and ICP34.5/open reading frame P and with an inactivating mutation in VP16. These viruses express only minimal levels of any of the immediate-early genes in noncomplementing cells. Transgene expression is maintained for extended periods with promoter systems containing elements from the HSV latency-associated transcript promoter (J. A. Palmer et al., J. Virol. 74:5604-5618, 2000). Unlike less-disabled viruses, these vectors allow highly effective gene delivery both to neurons in culture and to the central nervous system in vivo. Gene delivery in vivo is further enhanced by the retrograde transport capabilities of HSV. Here the vector is efficiently transported from the site of inoculation to connected sites within the nervous system. This is demonstrated by gene delivery to both the striatum and substantia nigra following striatal inoculation; to the spinal cord, spinal ganglia, and brainstem following injection into the spinal cord; and to retinal ganglion neurons following injection into the superior colliculus and thalamus.
Collapse
MESH Headings
- Animals
- Biological Transport, Active
- Cell Line
- Cells, Cultured
- Central Nervous System/virology
- Chlorocebus aethiops
- Cricetinae
- Defective Viruses/genetics
- Defective Viruses/physiology
- Gene Expression
- Gene Transfer Techniques
- Genes, Immediate-Early
- Genes, Reporter
- Genes, Viral
- Genetic Vectors/genetics
- Genetic Vectors/physiology
- Green Fluorescent Proteins
- Herpes Simplex Virus Protein Vmw65/genetics
- Herpes Simplex Virus Protein Vmw65/physiology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/physiology
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/physiology
- Injections
- Lac Operon
- Luminescent Proteins/genetics
- Male
- Mutagenesis, Insertional
- Neurons/cytology
- Neurons/virology
- Promoter Regions, Genetic
- Rats
- Rats, Inbred Lew
- Transgenes
- Ubiquitin-Protein Ligases
- Vero Cells
- Viral Proteins/genetics
- Viral Proteins/physiology
- Viral Regulatory and Accessory Proteins
Collapse
|
research-article |
24 |
90 |
25
|
Sun J, Zhao M, Huang J, Liu Y, Wu Y, Cai B, Han Z, Huang H, Fan Z. Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127116. [PMID: 34523487 DOI: 10.1016/j.jhazmat.2021.127116] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 05/14/2023]
Abstract
Trace metal(loid)s (TMs) in soils can seriously threaten the ecological environment and human health. With the limitation of resources and costs, determining priority control factor is critical for managing soil TM pollution. To explore the pollution characteristics, source apportionment, and human health risk of TMs, a total of 209 surface soil samples were collected from Anqing City, China. Results showed that all the average values of TM concentration, except for Cr, were higher than their corresponding background value. Using a Positive matrix factorization model coupled with Correlation analysis, four sources (including agricultural sources, atmospheric deposition sources, industrial sources, and natural sources) were identified as the determinants for the accumulation of soil TMs, with the contribution rates of 12.4%, 8.1%, 64.1%, and 15.4%, respectively. The assessment of probabilistic health risks revealed that Non- carcinogenic risks of all populations were acceptable (HI < 1), while Carcinogenic risks were all at a high level (TCR > 10E-04). Agricultural pollution and As were identified as priority control factors, according to the analysis results of the relationship among TMs, pollution sources and health risks. Our findings provide scientific support for decision-makers to formulate target control policies and reduce management costs of soil pollution.
Collapse
|
|
3 |
88 |