1
|
Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L. Two-Dimensional Phonon Transport in Supported Graphene. Science 2010; 328:213-6. [DOI: 10.1126/science.1184014] [Citation(s) in RCA: 1488] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
15 |
1488 |
2
|
Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, Spriggs MK. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 1995; 3:811-21. [PMID: 8777726 DOI: 10.1016/1074-7613(95)90070-5] [Citation(s) in RCA: 727] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herpesvirus Saimiri gene 13 (HVS13) exhibits 57% identity with the predicted sequence of a T cell-derived molecule termed CTLA8. Recombinant HVS13 and CTLA8 stimulate transcriptional factor NF-kappa B activity and interleukin-6 (IL-6) secretion in fibroblasts, and costimulate T cell proliferation. An HVS13.Fc fusion protein was used to isolate a cDNA encoding a novel receptor that also binds CTLA8. This receptor is unrelated to previously identified cytokine receptor families. A recombinant soluble receptor inhibited T cell proliferation and IL-2 production induced by PHA, concanavalin A (conA), and anti-TCR MAb. These results define CTLA8 and HVS13 as novel cytokines that bind to a novel cytokine receptor. We propose to call these molecules IL-17, vIL-17, and IL-17R, respectively.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/immunology
- Antigens, Viral/isolation & purification
- Antigens, Viral/pharmacology
- Base Sequence
- Cell Division/drug effects
- Cell Line
- Cloning, Molecular
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/immunology
- Interleukin-17
- Interleukins/immunology
- Interleukins/isolation & purification
- Interleukins/pharmacology
- Mice
- Molecular Sequence Data
- Receptors, Cytokine/immunology
- Receptors, Cytokine/isolation & purification
- Receptors, Immunologic/immunology
- Receptors, Immunologic/isolation & purification
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes/immunology
Collapse
|
|
30 |
727 |
3
|
Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, Murphy M, Moloney MK, Schmehl M, Harris M. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 1994; 343:950-1. [PMID: 7909011 DOI: 10.1016/s0140-6736(94)90067-1] [Citation(s) in RCA: 443] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Identification of a biocompatible immunoprotective membrane to prevent graft rejection remained elusive until the development of microcapsules formulated in alginate high in guluronic acid. We report insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Encapsulated human islets were injected intraperitoneally in a diabetic patient with a functioning kidney graft. Insulin independence with tight glycaemic control was demonstrated 9 months after the procedure. These results warrant a trial of a high dose of encapsulated islets in early-onset diabetic patients.
Collapse
|
Case Reports |
31 |
443 |
4
|
Yao Z, Kane CL, Dekker C. High-field electrical transport in single-wall carbon nanotubes. PHYSICAL REVIEW LETTERS 2000; 84:2941-4. [PMID: 11018981 DOI: 10.1103/physrevlett.84.2941] [Citation(s) in RCA: 356] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/1999] [Indexed: 05/22/2023]
Abstract
Using low-resistance electrical contacts, we have measured the intrinsic high-field transport properties of metallic single-wall carbon nanotubes. Individual nanotubes appear to be able to carry currents with a density exceeding 10(9) A/cm(2). As the bias voltage is increased, the conductance drops dramatically due to scattering of electrons. We show that the current-voltage characteristics can be explained by considering optical or zone-boundary phonon emission as the dominant scattering mechanism at high field.
Collapse
|
|
25 |
356 |
5
|
Otsuka F, Yao Z, Lee T, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem 2000; 275:39523-8. [PMID: 10998422 DOI: 10.1074/jbc.m007428200] [Citation(s) in RCA: 302] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In developing ovarian follicles, the regulation of cell proliferation and differentiation is tightly coordinated. Precisely how this coordination is achieved is unknown, but recent observations have suggested that molecules emitted by the oocyte are involved in the process. The newly discovered oocyte-specific growth factor, bone morphogenetic protein-15 (BMP-15), is one such molecule. At present, nothing is known about the target cells and biological functions of BMP-15. To fill this gap in our knowledge, recombinant BMP-15 and its antibody were produced and used to determine BMP-15 expression and bioactivity. BMP-15 mRNA and protein were shown to be co-expressed in oocytes throughout folliculogenesis, supporting the idea that BMP-15 is a physiological regulator of follicle cell proliferation and/or differentiation. To test this, we used primary cultures of rat granulosa cells (GCs). We found that BMP-15 is a potent stimulator of GC proliferation, and importantly, the mitogenic effect was follicle-stimulating hormone (FSH)-independent. By contrast, BMP-15 alone had no effect on steroidogenesis. However, it produced a marked decrease in FSH-induced progesterone production, but had no effect on FSH-stimulated estradiol production. This result indicates that BMP-15 is a selective modulator of FSH action. In summary, this study identifies GCs as the first target cells for BMP-15. Moreover, it identifies the stimulation of GC proliferation and the differential regulation of two crucial steroid hormones as the first biological functions of BMP-15. Significantly, BMP-15 is the first growth factor that can coordinate GC proliferation and differentiation in a way that reflects normal physiology.
Collapse
|
|
25 |
302 |
6
|
Postma HW, Teepen T, Yao Z, Grifoni M, Dekker C. Carbon nanotube single-electron transistors at room temperature. Science 2001; 293:76-9. [PMID: 11441175 DOI: 10.1126/science.1061797] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Room-temperature single-electron transistors are realized within individual metallic single-wall carbon nanotube molecules. The devices feature a short (down to approximately 20 nanometers) nanotube section that is created by inducing local barriers into the tube with an atomic force microscope. Coulomb charging is observed at room temperature, with an addition energy of 120 millielectron volts, which substantially exceeds the thermal energy. At low temperatures, we resolve the quantum energy levels corresponding to the small island. We observe unconventional power-law dependencies in the measured transport properties for which we suggest a resonant tunneling Luttinger-liquid mechanism.
Collapse
|
|
24 |
286 |
7
|
Wang XS, Diener K, Manthey CL, Wang S, Rosenzweig B, Bray J, Delaney J, Cole CN, Chan-Hui PY, Mantlo N, Lichenstein HS, Zukowski M, Yao Z. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem 1997; 272:23668-74. [PMID: 9295308 DOI: 10.1074/jbc.272.38.23668] [Citation(s) in RCA: 268] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The p38 mitogen-activated protein kinases (MAPK) are activated by cellular stresses and play an important role in regulating gene expression. We have isolated a cDNA encoding a novel protein kinase that has significant homology (57% amino acid identity) to human p38alpha/CSBP. The novel kinase, p38delta, has a nucleotide sequence encoding a protein of 365 amino acids with a putative TGY dual phosphorylation motif. Dot-blot analysis of p38delta mRNA in 50 human tissues revealed a distribution profile of p38delta that differs from p38alpha. p38delta is highly expressed in salivary gland, pituitary gland, and adrenal gland, whereas p38alpha is highly expressed in placenta, cerebellum, bone marrow, thyroid gland, peripheral leukocytes, liver, and spleen. Like p38alpha, p38delta is activated by cellular stress and proinflammatory cytokines. p38delta phosphorylates ATF-2 and PHAS-I, but not MAPK-activated protein kinase-2 and -3, known in vivo and in vitro substrates of p38alpha. We also observed that p38delta was strongly activated by MKK3 and MKK6, while p38alpha was preferentially activated by MKK6. Other experiments showed that a potent p38alpha kinase inhibitor AMG 2372 minimally inhibited the kinase activity of p38delta. Taken together, these data indicate that p38delta is a new member of the p38 MAPK family and that p38delta likely has functions distinct from that of p38alpha.
Collapse
|
|
28 |
268 |
8
|
Li H, Yao Z, Degenhardt B, Teper G, Papadopoulos V. Cholesterol binding at the cholesterol recognition/ interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. Proc Natl Acad Sci U S A 2001; 98:1267-72. [PMID: 11158628 PMCID: PMC14743 DOI: 10.1073/pnas.98.3.1267] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously defined a cholesterol recognition/interaction amino acid consensus (CRAC; ATVLNYYVWRDNS) in the carboxyl terminus of the peripheral-type benzodiazepine receptor (PBR), an outer mitochondrial membrane protein involved in the regulation of cholesterol transport into the mitochondria, the rate-determining step in steroid biosynthesis. We examined (i) the PBR-cholesterol interaction by UV crosslinking of the C17 side-chain containing progestin, promegestone, and (ii) the role of the CRAC domain of PBR in Leydig cell steroidogenesis by using a transducible peptide composed of the TAT domain of HIV and the CRAC domain of PBR. [(3)H]Promegestone photoincorporated into recombinant PBR, and this labeling was displaced by cholesterol. [(3)H]Promegestone also photoincorporated into the TAT-CRAC peptide. [(3)H]Promegestone crosslinking to TAT-CRAC could be displaced by cholesterol and promegestone, with IC50 values of 1 and 200 microM, respectively. TAT-CRAC efficiently transduced into MA-10 Leydig cells and inhibited the hCG- and cAMP-stimulated steroid production in a dose-dependent manner. TAT-CRAC did not affect the hCG-induced cAMP synthesis and the 22R-hydroxycholesterol-supported steroidogenesis. Mutated TAT-CRAC lost its ability to bind [(3)H]promegestone and to inhibit the hCG-stimulated steroidogenesis. These results show that TAT-CRAC binds cholesterol and competes for cholesterol interaction with endogenous PBR, suggesting that the cytosolic carboxyl-terminal domain of PBR is responsible for taking up and bringing steroidogenic cholesterol into the mitochondria.
Collapse
|
|
24 |
212 |
9
|
Yao Z, Spriggs MK, Derry JM, Strockbine L, Park LS, VandenBos T, Zappone JD, Painter SL, Armitage RJ. Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine 1997; 9:794-800. [PMID: 9367539 DOI: 10.1006/cyto.1997.0240] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human interleukin 17 (hIL-17) is a T-cell derived cytokine that exhibits 63% amino acid sequence identity to mouse IL-17 (mIL-17) and 57% identity to a viral protein encoded by the herpesvirus saimiri (HSV) gene 13 (HVS13). The IL-17 family of proteins binds to a unique mouse receptor (mIL-17R). Using nucleic acid hybridization techniques, a cDNA encoding a human homologue of the mIL-17R (hIL-17R) was isolated from a human T cell library. The predicted amino acid sequence of the hIL-17R is 69% identical to the mIL-17R, shares no homology with previously identified cytokine receptor families, and exhibits a broad tissue distribution. The hIL-17R gene was localized to chromosome 22. Monoclonal antibodies (mAbs) generated against the hIL-17R were able to block the IL-17-induced production of cytokine from human foreskin fibroblast (HFF) cells. Binding studies suggest that recombinant hIL-17 binds to the hIL-17R with low affinity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal
- Antigens, Differentiation, T-Lymphocyte/chemistry
- Cell Separation
- Chromosome Mapping
- Chromosomes, Human, Pair 22
- Electrophoresis, Polyacrylamide Gel
- Flow Cytometry
- Humans
- Interleukin-17
- Interleukin-6/biosynthesis
- Interleukins/antagonists & inhibitors
- Interleukins/metabolism
- Mice
- Molecular Sequence Data
- Molecular Weight
- RNA, Messenger/metabolism
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-17
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- T-Lymphocytes/chemistry
- Tissue Distribution
Collapse
|
|
28 |
193 |
10
|
Soon-Shiong P, Feldman E, Nelson R, Heintz R, Yao Q, Yao Z, Zheng T, Merideth N, Skjak-Braek G, Espevik T. Long-term reversal of diabetes by the injection of immunoprotected islets. Proc Natl Acad Sci U S A 1993; 90:5843-7. [PMID: 8516335 PMCID: PMC46819 DOI: 10.1073/pnas.90.12.5843] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The intraperitoneal injection of insulin-producing islets immunoprotected by an alginate-poly(amino acid) membrane is a potential method of reversing diabetes without the need for lifelong immunosuppression. Previous attempts to demonstrate this technology in large animals have failed, preventing application in humans. We have determined that key factors responsible for these past failures include cytokine (interleukins 1 and 6 and tumor necrosis factor) stimulation by mannuronic acid monomers from alginate capsules with weak mechanical integrity, which results in fibroblast proliferation. With this insight, we formulated mechanically stable microcapsules by using alginate high in guluronic acid content and report prolonged reversal of diabetes in the spontaneous diabetic dog model by the intraperitoneal injection of encapsulated canine islet allografts. Euglycemia, independent of any exogenous insulin requirement, was noted for up to 172 days. Graft survival, evidenced by positive C-peptide release, was noted for as long as 726 days in a recipient receiving a single injection of immunoprotected islets. Histological evidence of viable islets retrieved from the peritoneal cavity 6 months posttransplant confirmed the biocompatibility and immunoprotective nature of this capsule formulation. The finding that intraperitoneal injection of alginate-immunoprotected islets, a minimally invasive surgical procedure, is effective in prolonged (> 1 year) maintenance of glycemic control, without the need for lifelong immunosuppression, may have significant implications for the future therapy of type I diabetes in humans.
Collapse
|
research-article |
32 |
168 |
11
|
Gordon DA, Jamil H, Sharp D, Mullaney D, Yao Z, Gregg RE, Wetterau J. Secretion of apolipoprotein B-containing lipoproteins from HeLa cells is dependent on expression of the microsomal triglyceride transfer protein and is regulated by lipid availability. Proc Natl Acad Sci U S A 1994; 91:7628-32. [PMID: 8052632 PMCID: PMC44455 DOI: 10.1073/pnas.91.16.7628] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To elucidate the role of the microsomal triglyceride transfer protein (MTP) in lipoprotein assembly, MTP and apolipoprotein B-53 (apoB 53; the N-terminal 53% of apoB) were expressed in HeLa cells. The results showed that apoB-53 could be expressed in HeLa cells with or without expression of MTP. In contrast, efficient secretion of apoB-53 required expression of MTP. Ultracentrifugal density flotation analysis showed that apoB-53 was secreted predominantly as a particle with the density of high density lipoprotein. An essentially identical apoB-53 particle density distribution was obtained after transient expression of apoB-53 in McArdle RH-7777 rat hepatoma cells. The mass of apoB-53 secreted was greater, and the flotation density was lower, from cells fed lipid, suggesting that apoB secretion in HeLa cells was regulated by lipid availability, similar to what has been described for lipoprotein-producing cell lines. These results indicate that MTP is necessary and sufficient to direct the regulated secretion of apoB-53 in HeLa cells.
Collapse
|
research-article |
31 |
166 |
12
|
Wang W, Zhou G, Hu MC, Yao Z, Tan TH. Activation of the hematopoietic progenitor kinase-1 (HPK1)-dependent, stress-activated c-Jun N-terminal kinase (JNK) pathway by transforming growth factor beta (TGF-beta)-activated kinase (TAK1), a kinase mediator of TGF beta signal transduction. J Biol Chem 1997; 272:22771-5. [PMID: 9278437 DOI: 10.1074/jbc.272.36.22771] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor beta (TGF-beta)-activated kinase (TAK1) is known for its involvement in TGF-beta signaling and its ability to activate the p38-mitogen-activated protein kinase (MAPK) pathway. This report shows that TAK1 is also a strong activator of c-Jun N-terminal kinase (JNK). Both the wild-type and a constitutively active mutant of TAK1 stimulated JNK in transient transfection assays. Mitogen-activated protein kinase kinase 4 (MKK4)/stress-activated protein kinase/extracellular signal-regulated kinase (SEK1), a dual-specificity kinase that phosphorylates and activates JNK, synergized with TAK1 in activating JNK. Conversely, a dominant-negative (MKK4/SEK1 mutant inhibited TAK1-induced JNK activation. A kinasedefective mutant of TAK1 effectively suppressed hematopoietic progenitor kinase-1 (HPK1)-induced JNK activity but had little effect on germinal center kinase activation of JNK. There are two additional MAPK kinase kinases, MEKK1 and mixed lineage kinase 3 (MLK3), that are also downstream of HPK1 and upstream of MKK4/SEK mutant. However, because the dominant-negative mutants of MEKK1 and MLK3 did not inhibit TAK1-induced JNK activity, we conclude that activation of JNK1 by TAK1 is independent of MEKK1 and MLK3. In addition to TAK1, TGF-beta also stimulated JNK activity. Taken together, these results identify TAK1 as a regulator in the HPK1 --> TAK1 --> MKK4/SEK1 --> JNK kinase cascade and indicate the involvement of JNK in the TGF-beta signaling pathway. Our results also suggest the potential roles of TAK1 not only in the TGF-beta pathway but also in the other HPK1/JNK1-mediated pathways.
Collapse
|
|
28 |
156 |
13
|
Yao Z, Shafer OT. The Drosophila circadian clock is a variably coupled network of multiple peptidergic units. Science 2014; 343:1516-20. [PMID: 24675961 DOI: 10.1126/science.1251285] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Daily rhythms in behavior emerge from networks of neurons that express molecular clocks. Drosophila's clock neuron network consists of a diversity of cell types, yet is modeled as two hierarchically organized groups, one of which serves as a master pacemaker. Here, we establish that the fly's clock neuron network consists of multiple units of independent neuronal oscillators, each unified by its neuropeptide transmitter and mode of coupling to other units. Our work reveals that the circadian clock neuron network is not orchestrated by a small group of master pacemakers but rather consists of multiple independent oscillators, each of which drives rhythms in activity.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
155 |
14
|
Yao Z, Zhou G, Wang XS, Brown A, Diener K, Gan H, Tan TH. A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway. J Biol Chem 1999; 274:2118-25. [PMID: 9890973 DOI: 10.1074/jbc.274.4.2118] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast serine/threonine kinase STE20 activates a signaling cascade that includes STE11 (mitogen-activated protein kinase kinase kinase), STE7 (mitogen-activated protein kinase kinase), and FUS3/KSS1 (mitogen-activated protein kinase) in response to signals from both Cdc42 and the heterotrimeric G proteins associated with transmembrane pheromone receptors. Using degenerate polymerase chain reaction, we have isolated a human cDNA encoding a protein kinase homologous to STE20. This protein kinase, designated HPK/GCK-like kinase (HGK), has nucleotide sequences that encode an open reading frame of 1165 amino acids with 11 kinase subdomains. HGK was a serine/threonine protein kinase that specifically activated the c-Jun N-terminal kinase (JNK) signaling pathway when transfected into 293T cells, but it did not stimulate either the extracellular signal-regulated kinase or p38 kinase pathway. HGK also increased AP-1-mediated transcriptional activity in vivo. HGK-induced JNK activation was inhibited by the dominant-negative MKK4 and MKK7 mutants. The dominant-negative mutant of TAK1, but not MEKK1 or MAPK upstream kinase (MUK), strongly inhibited HGK-induced JNK activation. TNF-alpha activated HGK in 293T cells, as well as the dominant-negative HGK mutants, inhibited TNF-alpha-induced JNK activation. These results indicate that HGK, a novel activator of the JNK pathway, may function through TAK1, and that the HGK --> TAK1 --> MKK4, MKK7 --> JNK kinase cascade may mediate the TNF-alpha signaling pathway.
Collapse
|
|
26 |
148 |
15
|
Yao Z, Gross GJ. Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation 1994; 89:1769-75. [PMID: 8149542 DOI: 10.1161/01.cir.89.4.1769] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The major purpose of the present study was to determine the effect of the potassium channel opener bimakalim, administered intracoronary only during the initial 10 minutes of ischemia, on myocardial infarct size in anesthetized dogs. A second aim was to test the possibility that bimakalim mediates its cardioprotective effects by accelerating the rate of myocyte action potential shortening during early ischemia. A third aim was to determine the relative potency of bimakalim to open coronary vascular ATP-regulated potassium (KATP) channels versus myocyte KATP channels. METHODS AND RESULTS Barbital-anesthetized open-chest dogs were used. In the initial studies, bimakalim (0.1 to 10 micrograms/min) was infused into the left anterior descending coronary artery (LAD), and changes in coronary blood flow and monophasic action potential duration (MAPD) were used as indexes of coronary vascular KATP channel and myocyte KATP channel activity, respectively. In subsequent infarct studies, dogs were subjected to 60 minutes of LAD occlusion followed by 4 hours of reperfusion. Based on preliminary studies, two doses of bimakalim that did not shorten MAPD during nonischemic conditions (0.1 and 0.3 microgram/min) and one that markedly shortened MAPD during nonischemic conditions (3.0 micrograms/min) or an equal volume of vehicle were infused into the LAD during the initial 10 minutes of coronary artery occlusion. Transmural myocardial blood flow was measured at 5 and 30 minutes of occlusion by the radioactive microsphere technique, and infarct size was determined at the end of 4 hours of reperfusion by triphenyltetrazolium staining. The monophasic action potential duration at 50% repolarization (MAPD50) was measured by an epicardial probe placed in the center of the ischemic area. Bimakalim had an approximately 10-fold greater affinity for the coronary vascular than the myocardial KATP channel (ED50 coronary, approximately 0.3 microgram/min; ED50 myocyte, approximately 3.0 micrograms/min). Three doses of bimakalim (0.1, 0.3, and 3.0 micrograms/min) all markedly reduced infarct size expressed as percent of the area at risk (12.6 +/- 3.3%, 14.5 +/- 2.2%, and 14.2 +/- 5.3%, respectively, versus 27.2 +/- 5.7% in controls) to nearly equal extents. Subsequently, we found that the two higher doses of bimakalim (0.3 and 3.0 micrograms/min) markedly accelerated yet the 0.1-microgram/min dose of bimakalim did not significantly affect the ischemia-related shortening of the action potential during the initial 5 minutes of occlusion. In addition, 0.1 and 0.3 microgram/min bimakalim did not increase the incidence of ventricular fibrillation during the 60 minutes of occlusion (0 of 7 and 0 of 8 dogs, respectively), whereas 3.0 micrograms/min bimakalim had a profibrillatory effect (6 of 6) compared with the control group (1 of 8). There were no significant differences between groups in systemic hemodynamics, myocardial oxygen demand, ischemic bed size, or collateral blood flow to the ischemic region. CONCLUSIONS The results of the present study clearly reveal that a small dose (0.1 or 0.3 microgram/min) of the KATP channel opener bimakalim administered only during the initial 10-minute period of ischemia markedly reduced myocardial infarct size to an extent equal to that of a higher profibrillatory dose in barbital-anesthetized dogs. These data also suggest that bimakalim and other potassium channel openers may partially exert their cardioprotective effects by accelerating KATP channel activation during early ischemia as evidenced by an enhanced rate of ischemic myocyte action potential shortening. However, the results also suggest that other cellular mechanisms may be involved in mediating the cardioprotection produced by a low dose of bimakalim (0.1 microgram/min) because it did not significantly accelerate the shortening of the action potential duration, yet it had an efficacy to redu BACKGROUND The major purpose of the present study was to de
Collapse
|
|
31 |
145 |
16
|
Manthey CL, Wang SW, Kinney SD, Yao Z. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase, is a powerful regulator of LPS-induced mRNAs in monocytes. J Leukoc Biol 1998; 64:409-17. [PMID: 9738669 DOI: 10.1002/jlb.64.3.409] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Inhibitors of p38 mitogen-activated protein kinase (p38) have been reported to block tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta) production in monocytes at the level of mRNA translation. Yet, several studies document that p38 can phosphorylate and activate specific transcription factors. Thus, to understand better the role of p38 during monocyte activation, we sought to determine the extent to which p38 is required for lipopolysaccharide (LPS)-induced gene expression. For this, differential mRNA display was used to identify LPS-induced genes whose expression was blocked by SB202190, a specific inhibitor of p38. A partial screen identified 10 genes in monoyctes induced 4- to 74-fold by LPS. Of these, genes encoding interferon-induced gene 15, neuroleukin, radiation-inducible immediate-early gene-1, A20, IL-1beta, and superoxide dismutase were suppressed >50% by SB202190. LPS-induced gene activation was not blocked by cycloheximide, indicating that synthesis of intermediate proteins was not required. SB202190 blocked gene induction by 50% when present between 41 and 123 nM, consistent with the potency of this compound as a p38 inhibitor. Furthermore, the ability of SB202190 to block gene activation was stimulus-dependent. LPS and interferon-alpha (IFN-alpha) both up-regulated neuroleukin mRNA, but only LPS-induced neuroleukin mRNA was suppressed by SB202190. In contrast, TNF-alpha and LPS both induced IL-8 mRNA, and induction by either TNF-alpha or LPS was blocked by SB202190. These data were consistent with the ability of LPS and TNF-alpha, but not IFN-alpha, to activate p38 in monocytes. The results provide pharmacological evidence that p38 may be a key mediator of inducible gene expression in monocytes, but its role is stimulus and gene specific.
Collapse
|
|
27 |
145 |
17
|
Yao Z, McLeod RS. Synthesis and secretion of hepatic apolipoprotein B-containing lipoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1212:152-66. [PMID: 8180241 DOI: 10.1016/0005-2760(94)90249-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human apolipoprotein (apo) B-100 is required for the synthesis and secretion of hepatic triacyglycerol-rich lipoproteins. This review summarizes recent developments in understanding the interaction of cis-acting DNA sequences and trans-acting protein factors in regulation of apo B gene expression and apo B mRNA editing, and the role of structural determinants of apo B-100 in the assembly and secretion of hepatic lipoproteins. In particular, experimental results obtained from cell culture studies using techniques of molecular and cellular biology are described and discussed. The relationship between apo B length and its ability to recruit lipids is presented, and the involvement of factors other than apo B in hepatic triacylglycerol-rich lipoprotein production is discussed.
Collapse
|
Review |
31 |
140 |
18
|
Wang J, Xu X, Cheng T, Gu L, Qiao R, Liang Z, Ding D, Hong H, Zheng P, Zhang Z, Zhang Z, Zhang S, Cui G, Chang C, Huang C, Qi J, Liang J, Liu C, Zuo Y, Xue G, Fang X, Tian J, Wu M, Guo Y, Yao Z, Jiao Q, Liu L, Gao P, Li Q, Yang R, Zhang G, Tang Z, Yu D, Wang E, Lu J, Zhao Y, Wu S, Ding F, Liu K. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS 2 monolayer on vicinal a-plane sapphire. NATURE NANOTECHNOLOGY 2022; 17:33-38. [PMID: 34782776 DOI: 10.1038/s41565-021-01004-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The growth of wafer-scale single-crystal two-dimensional transition metal dichalcogenides (TMDs) on insulating substrates is critically important for a variety of high-end applications1-4. Although the epitaxial growth of wafer-scale graphene and hexagonal boron nitride on metal surfaces has been reported5-8, these techniques are not applicable for growing TMDs on insulating substrates because of substantial differences in growth kinetics. Thus, despite great efforts9-20, the direct growth of wafer-scale single-crystal TMDs on insulating substrates is yet to be realized. Here we report the successful epitaxial growth of two-inch single-crystal WS2 monolayer films on vicinal a-plane sapphire surfaces. In-depth characterizations and theoretical calculations reveal that the epitaxy is driven by a dual-coupling-guided mechanism, where the sapphire plane-WS2 interaction leads to two preferred antiparallel orientations of the WS2 crystal, and sapphire step edge-WS2 interaction breaks the symmetry of the antiparallel orientations. These two interactions result in the unidirectional alignment of nearly all the WS2 islands. The unidirectional alignment and seamless stitching of WS2 islands are illustrated via multiscale characterization techniques; the high quality of WS2 monolayers is further evidenced by a photoluminescent circular helicity of ~55%, comparable to that of exfoliated WS2 flakes. Our findings offer the opportunity to boost the production of wafer-scale single crystals of a broad range of two-dimensional materials on insulators, paving the way to applications in integrated devices.
Collapse
|
|
3 |
136 |
19
|
|
|
28 |
131 |
20
|
Diener K, Wang XS, Chen C, Meyer CF, Keesler G, Zukowski M, Tan TH, Yao Z. Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Proc Natl Acad Sci U S A 1997; 94:9687-92. [PMID: 9275185 PMCID: PMC23251 DOI: 10.1073/pnas.94.18.9687] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The c-Jun N-terminal kinase (JNK), or stress-activated protein kinase plays a crucial role in cellular responses stimulated by environmental stress and proinflammatory cytokines. However, the mechanisms that lead to the activation of the JNK pathway have not been elucidated. We have isolated a cDNA encoding a novel protein kinase that has significant sequence similarities to human germinal center kinase (GCK) and human hematopoietic progenitor kinase 1. The novel GCK-like kinase (GLK) has a nucleotide sequence that encodes an ORF of 885 amino acids with 11 kinase subdomains. Endogenous GLK could be activated by UV radiation and proinflammatory cytokine tumor necrosis factor alpha. When transiently expressed in 293 cells, GLK specifically activated the JNK, but not the p42/44(MAPK)/extracellular signal-regulated kinase or p38 kinase signaling pathways. Interestingly, deletion of amino acids 353-835 in the putative C-terminal regulatory region, or mutation of Lys-35 in the putative ATP-binding domain, markedly reduced the ability of GLK to activate JNK. This result indicates that both kinase activity and the C-terminal region of GLK are required for maximal activation of JNK. Furthermore, GLK-induced JNK activation could be inhibited by a dominant-negative mutant of mitogen-activated protein kinase kinase kinase 1 (MEKK1) or mitogen-activated protein kinase kinase 4/SAPK/ERK kinase 1 (SEK1), suggesting that GLK may function upstream of MEKK1 in the JNK signaling pathway.
Collapse
|
research-article |
28 |
129 |
21
|
Wang XS, Diener K, Jannuzzi D, Trollinger D, Tan TH, Lichenstein H, Zukowski M, Yao Z. Molecular cloning and characterization of a novel protein kinase with a catalytic domain homologous to mitogen-activated protein kinase kinase kinase. J Biol Chem 1996; 271:31607-11. [PMID: 8940179 DOI: 10.1074/jbc.271.49.31607] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascades include MAPK or extracellular signal-regulated kinase (ERK), MAPK kinase (MKK or MEK), and MAPK kinase kinase (MAPKKK or MEKK). MAPKK kinase/MEKK phosphorylates and activates its downstream protein kinase, MAPK kinase/MEK, which in turn activates MAPK. We report herein the isolation of a cDNA encoding a novel protein kinase designated MAPKKK5 from a human macrophage library. The nucleotide sequence predicts that MAPKKK5 encodes an open reading frame of 1374 amino acids with all 11 kinase subdomains. The putative catalytic domain of MAPKKK5 shows significant sequence homology to the kinase domains of the MAPKKK/MEKK level protein kinases from mouse MEKK2 and -3, Drosophila melanogaster PK92B, Saccharomyces cerevisiae STE11, and Schizosaccharomyces pombe BYR2. Northern blot analysis showed that MAPKKK5 transcript is abundantly expressed in human heart and pancreas. When transiently expressed in COS and 293 cells, MAPKKK5 markedly activated c-Jun N-terminal kinase or stress-activated protein kinase, but not MAPK/ERK. Furthermore, MAPKKK5 that was immunoprecipitated from transfected 293 cells was able to phosphorylate and activate MKK4 in vitro, suggesting that MAPKKK5 may be an upstream activator of MKK4 in the c-Jun N-terminal kinase pathway.
Collapse
|
|
29 |
123 |
22
|
Camacho F, Cilio M, Guo Y, Virshup DM, Patel K, Khorkova O, Styren S, Morse B, Yao Z, Keesler GA. Human casein kinase Idelta phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett 2001; 489:159-65. [PMID: 11165242 DOI: 10.1016/s0014-5793(00)02434-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Casein kinase Iepsilon (CKIepsilon), a central component of the circadian clock, interacts with and phosphorylates human period protein 1 (hPER1) [Keesler, G.A. et al. (2000) NeuroReport 5, 951-955]. A mutation in CKIepsilon causes a shortened circadian period in Syrian Golden hamster. We have now extended our previous studies to show that human casein kinase Idelta (hCKIdelta), the closest homologue to hCKIepsilon, associates with and phosphorylates hPER1 and causes protein instability. Furthermore, we observed that both hCKIdelta and hCKIepsilon phosphorylated and caused protein instability of human period 2 protein (hPER2). Immunohistochemical staining of rat brains demonstrates that CKIdelta protein is localized in the suprachiasmatic nuclei, the central location of the master clock. These results indicate that CKIdelta may play a role similar to CKIepsilon, suggesting that it may also be involved in regulating circadian rhythmicity by post-translation modification of mammalian clock proteins hPER1 and 2.
Collapse
|
|
24 |
117 |
23
|
Yung Y, Dolginov Y, Yao Z, Rubinfeld H, Michael D, Hanoch T, Roubini E, Lando Z, Zharhary D, Seger R. Detection of ERK activation by a novel monoclonal antibody. FEBS Lett 1997; 408:292-6. [PMID: 9188779 DOI: 10.1016/s0014-5793(97)00442-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mitogen-activated protein kinase, ERK is activated by a dual phosphorylation on threonine and tyrosine residues. Using a synthetic diphospho peptide, we have generated a monoclonal antibody directed to the active ERK. The antibody specifically identified the active doubly phosphorylated, but not the inactive mono- or non- phosphorylated forms of ERKs. A direct correlation was observed between ERK activity and the intensity in Western blot of mitogen-activated protein kinases from several species. The antibody was proven suitable for immunofluorescence staining, revealing a transient reactivity with ERKs that were translocated to the nucleus upon stimulation. In conclusion, the antibody can serve as a useful tool in the study of ERK signaling in a wide variety of organisms.
Collapse
|
|
28 |
113 |
24
|
Yao Z, Gross GJ. A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs. Efficacy, time course, and role of KATP channels. Circulation 1994; 89:1229-36. [PMID: 8124811 DOI: 10.1161/01.cir.89.3.1229] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Adenosine has been proposed to be an important mediator of ischemic preconditioning. Intracoronary administration of adenosine has recently been shown to mimic the effects of preconditioning in isolated rabbit hearts. However, it is not known whether this agent can duplicate the effects of preconditioning in vivo or in other species. Thus, the first objective of the present study was to determine whether adenosine can limit myocardial necrosis to the same extent as preconditioning in anesthetized dogs. A second objective was to determine whether the duration of the adenosine-induced cardioprotection persisted as long as that of ischemic preconditioning. Finally, a third aim was to determine whether adenosine mediates its cardioprotection via the KATP channel, which has been shown to be an important mediator of preconditioning in several animal species, including dogs. METHODS AND RESULTS Barbital-anesthetized open-chest dogs were subjected to 60 minutes of left anterior descending coronary artery (LAD) occlusion followed by 4 hours of reperfusion. Preconditioning was elicited by 10 minutes of LAD occlusion followed by 10 or 60 minutes of reperfusion before the 60-minute occlusion period. Adenosine (400 micrograms/min) or an equivalent volume of saline was infused into the LAD for 10 minutes, followed by a 10- or 60-minute drug-free period before the 60-minute ischemic insult. Glibenclamide (0.3 mg/kg i.v.), a selective KATP channel blocker, was given 15 minutes before adenosine administration, and another selective KATP channel blocker, 5-hydroxydecanoate (5-HD, 3 mg/min IC) was infused concomitantly with adenosine into the LAD for 10 minutes. Transmural myocardial blood flow was measured at 5 minutes of occlusion, and infarct size was determined by triphenyltetrazolium staining and expressed as a percent of the area at risk (AAR). There were no significant differences in hemodynamics, collateral blood flow, or AAR between groups. Preconditioning with either 10 or 60 minutes of reperfusion produced a marked reduction (P < .05) in infarct size (6.7 +/- 2.5% and 8.7 +/- 2.6%, respectively, versus 26.9 +/- 4.3% in controls). Administration of adenosine with a 10-minute drug-free period before 60 minutes of occlusion resulted in a marked decrease in infarct size similar to that seen with preconditioning (9.6 +/- 1.7% versus 26.9 +/- 4.3% in controls); however, the protection disappeared when a 60-minute drug-free period was allowed after adenosine administration (23.0 +/- 2.4% versus 26.9 +/- 4.3% in controls). In addition, treatment with either glibenclamide or 5-HD completely abolished the protective effects of adenosine (26.4 +/- 6.8 and 25.0 +/- 4.4%, respectively, versus 26.9 +/- 4.3% in controls). CONCLUSIONS These results clearly reveal that (1) a 10-minute intracoronary infusion of adenosine exhibits the same efficacy as ischemic preconditioning in reducing myocardial necrosis in dogs; (2) similar to preconditioning, adenosine mediates its cardioprotection via a cardiac KATP channel-linked mechanism; and (3) adenosine-induced cardioprotection is transient (disappearing within 60 minutes), whereas ischemic preconditioning persists for at least 60 minutes. These data support the hypothesis that endogenous adenosine released during ischemia is an important mediator of ischemic preconditioning; however, important differences exist between the time course of effects of exogenously administered adenosine and preconditioning, which suggests that other factors may also be involved.
Collapse
|
Comparative Study |
31 |
113 |
25
|
Yao Z, Drieu K, Papadopoulos V. The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from beta-amyloid-induced cell death by inhibiting the formation of beta-amyloid-derived diffusible neurotoxic ligands. Brain Res 2001; 889:181-90. [PMID: 11166702 DOI: 10.1016/s0006-8993(00)03131-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
beta Amyloid (Abeta) treatment induced free radical production and increased glucose uptake, apoptosis and cell death in PC12 nerve cells. Addition of the standardized extract of Ginkgo biloba leaves, EGb 761 together with the Abeta protein prevented, in a dose-dependent manner, the Abeta-induced free radical production, increased glucose uptake, apoptosis and cell death. However, pretreatment of the cells with EGb 761 did not rescue the cells from the Abeta-induced toxicity although it prevented the Abeta-induced reactive oxygen species generation. Moreover, the terpene and flavonoid-free EGb 761 extract, HE 208, although inhibited the Abeta-induced increased glucose uptake, it failed to protect the cells from apoptosis and cytotoxicity induced by Abeta. In conclusion, these results indicate that the terpenoid and flavonoid constituents of EGb 761, acting probably in combination with components present in HE 208, are responsible for rescuing the neuronal cells from Abeta-induced apoptosis and cell death; their mechanism of action being distinct of their antioxidant properties. Because pre- and post-treatment with EGb 761 did not protect the cells from Abeta-induced neurotoxicity, we examined whether EGb 761 interacts directly with Abeta. Indeed, in vitro reconstitution studies demonstrated that EGb 761 inhibits, in a dose-dependent manner, the formation of beta-amyloid-derived diffusible neurotoxic soluble ligands (ADDLs), suggested to be involved in the pathogenesis of Alzheimer's disease.
Collapse
|
|
24 |
110 |