1
|
Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000; 72:690-3. [PMID: 10966885 DOI: 10.1093/ajcn/72.3.690] [Citation(s) in RCA: 2136] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Obesity is associated with vitamin D insufficiency and secondary hyperparathyroidism. OBJECTIVE This study assessed whether obesity alters the cutaneous production of vitamin D(3) (cholecalciferol) or the intestinal absorption of vitamin D(2) (ergocalciferol). DESIGN Healthy, white, obese [body mass index (BMI; in kg/m(2)) > or = 30] and matched lean control subjects (BMI </= 25) received either whole-body ultraviolet radiation or a pharmacologic dose of vitamin D(2) orally. RESULTS Obese subjects had significantly lower basal 25-hydroxyvitamin D concentrations and higher parathyroid hormone concentrations than did age-matched control subjects. Evaluation of blood vitamin D(3) concentrations 24 h after whole-body irradiation showed that the incremental increase in vitamin D(3) was 57% lower in obese than in nonobese subjects. The content of the vitamin D(3) precursor 7-dehydrocholesterol in the skin of obese and nonobese subjects did not differ significantly between groups nor did its conversion to previtamin D(3) after irradiation in vitro. The obese and nonobese subjects received an oral dose of 50000 IU (1.25 mg) vitamin D(2). BMI was inversely correlated with serum vitamin D(3) concentrations after irradiation (r = -0.55, P: = 0.003) and with peak serum vitamin D(2) concentrations after vitamin D(2) intake (r = -0.56, P: = 0.007). CONCLUSIONS Obesity-associated vitamin D insufficiency is likely due to the decreased bioavailability of vitamin D(3) from cutaneous and dietary sources because of its deposition in body fat compartments.
Collapse
|
|
25 |
2136 |
2
|
Abstract
MicroRNAs (miRNAs) are approximately 22 nucleotide non-coding RNA molecules that regulate gene expression post-transcriptionally. Although aberrant expression of miRNAs in various human cancers suggests a role for miRNAs in tumorigenesis, it remains largely unclear as to whether knockdown of a specific miRNA affects tumor growth. In this study, we profiled miRNA expression in matched normal breast tissue and breast tumor tissues by TaqMan real-time polymerase chain reaction miRNA array methods. Consistent with previous findings, we found that miR-21 was highly overexpressed in breast tumors compared to the matched normal breast tissues among 157 human miRNAs analysed. To better evaluate the role of miR-21 in tumorigenesis, we transfected breast cancer MCF-7 cells with anti-miR-21 oligonucleotides and found that anti-miR-21 suppressed both cell growth in vitro and tumor growth in the xenograft mouse model. Furthermore, this anti-miR-21-mediated cell growth inhibition was associated with increased apoptosis and decreased cell proliferation, which could be in part owing to downregulation of the antiapoptotic Bcl-2 in anti-miR-21-treated tumor cells. Together, these results suggest that miR-21 functions as an oncogene and modulates tumorigenesis through regulation of genes such as bcl-2 and thus, it may serve as a novel therapeutic target.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
1203 |
3
|
Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E. Prototype systems for rechargeable magnesium batteries. Nature 2000; 407:724-7. [PMID: 11048714 DOI: 10.1038/35037553] [Citation(s) in RCA: 859] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The thermodynamic properties of magnesium make it a natural choice for use as an anode material in rechargeable batteries, because it may provide a considerably higher energy density than the commonly used lead-acid and nickel-cadmium systems. Moreover, in contrast to lead and cadmium, magnesium is inexpensive, environmentally friendly and safe to handle. But the development of Mg batteries has been hindered by two problems. First, owing to the chemical activity of Mg, only solutions that neither donate nor accept protons are suitable as electrolytes; but most of these solutions allow the growth of passivating surface films, which inhibit any electrochemical reaction. Second, the choice of cathode materials has been limited by the difficulty of intercalating Mg ions in many hosts. Following previous studies of the electrochemistry of Mg electrodes in various non-aqueous solutions, and of a variety of intercalation electrodes, we have now developed rechargeable Mg battery systems that show promise for applications. The systems comprise electrolyte solutions based on Mg organohaloaluminate salts, and Mg(x)Mo3S4 cathodes, into which Mg ions can be intercalated reversibly, and with relatively fast kinetics. We expect that further improvements in the energy density will make these batteries a viable alternative to existing systems.
Collapse
|
|
25 |
859 |
4
|
Abstract
Potassium channels share a highly conserved stretch of eight amino acids, a K+ channel signature sequence. The conserved sequence falls within the previously defined P-region of voltage-activated K+ channels. In this study we investigate the effect of mutations in the signature sequence of the Shaker channel on K+ selectivity determined under bi-ionic conditions. Nonconservative substitutions of two threonine residues and the tyrosine residue leave selectivity intact. In contrast, mutations at some positions render the channel nonselective among monovalent cations. These findings are consistent with a proposal that the signature sequence contributes to a selectivity filter. Furthermore, the results illustrate that the hydroxyl groups at the third and fourth positions, and the aromatic group at position seven, are not essential in determining K+ selectivity.
Collapse
|
research-article |
31 |
623 |
5
|
Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008; 27:4373-9. [PMID: 18372920 PMCID: PMC11968769 DOI: 10.1038/onc.2008.72] [Citation(s) in RCA: 560] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 02/07/2008] [Accepted: 02/20/2008] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively control expression of target genes in animals and plants. The microRNA-21 gene (mir-21) has been identified as the only miRNA commonly overexpressed in solid tumors of the lung, breast, stomach, prostate, colon, brain, head and neck, esophagus and pancreas. We initiated a screen to identify miR-21 target genes using a reporter assay and identified a potential miR-21 target in the 3'-UTR of the programmed cell death 4 (PDCD4) gene. We cloned the full-length 3'-UTR of human PDCD4 downstream of a reporter and found that mir-21 downregulated, whereas a modified antisense RNA to miR-21 upregulated reporter activity. Moreover, deletion of the putative miR-21-binding site (miRNA regulatory element, MRE) from the 3'-UTR of PDCD4, or mutations in the MRE abolished the ability of miR-21 to inhibit reporter activity, indicating that this MRE is a critical regulatory region. Western blotting showed that Pdcd4 protein levels were reduced by miR-21 in human and mouse cells, whereas quantitative real-time PCR revealed little difference at the mRNA level, suggesting translational regulation. Finally, overexpression of mir-21 in MCF-7 human breast cancer cells and mouse epidermal JB6 cells promoted soft agar colony formation by downregulating Pdcd4 protein levels. The demonstration that miR-21 promotes cell transformation supports the concept that mir-21 functions as an oncogene by a mechanism that involves translational repression of the tumor suppressor Pdcd4.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
560 |
6
|
Kopecek J, Kopecková P, Minko T, Lu Z. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm 2000; 50:61-81. [PMID: 10840193 DOI: 10.1016/s0939-6411(00)00075-8] [Citation(s) in RCA: 425] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The design, synthesis and properties of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers as carriers of anticancer drugs are reviewed. Macromolecular therapeutics based on HPMA copolymers are biocompatible, preferentially accumulate in tumors, and possess a higher anticancer efficacy than low molecular weight drugs. Novel designs of HPMA copolymer carriers resulted in long-circulating conjugates and gene and oligonucleotide delivery systems. HPMA copolymer based macromolecular therapeutics were active against numerous cancer models and are in clinical trials. The data obtained indicated that macromolecular therapeutics activated different signaling pathways and possessed a different mechanism of action than free drugs. This bodes well for the success of future research aimed at identification of new intracellular molecular targets as a basis for the design of the second generation of macromolecular therapeutics.
Collapse
|
Review |
25 |
425 |
7
|
Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF, Rock DL. Comparative genomics of foot-and-mouth disease virus. J Virol 2005; 79:6487-504. [PMID: 15858032 PMCID: PMC1091679 DOI: 10.1128/jvi.79.10.6487-6504.2005] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we present complete genome sequences, including a comparative analysis, of 103 isolates of foot-and-mouth disease virus (FMDV) representing all seven serotypes and including the first complete sequences of the SAT1 and SAT3 genomes. The data reveal novel highly conserved genomic regions, indicating functional constraints for variability as well as novel viral genomic motifs with likely biological relevance. Previously undescribed invariant motifs were identified in the 5' and 3' untranslated regions (UTR), as was tolerance for insertions/deletions in the 5' UTR. Fifty-eight percent of the amino acids encoded by FMDV isolates are invariant, suggesting that these residues are critical for virus biology. Novel, conserved sequence motifs with likely functional significance were identified within proteins L(pro), 1B, 1D, and 3C. An analysis of the complete FMDV genomes indicated phylogenetic incongruities between different genomic regions which were suggestive of interserotypic recombination. Additionally, a novel SAT virus lineage containing nonstructural protein-encoding regions distinct from other SAT and Euroasiatic lineages was identified. Insights into viral RNA sequence conservation and variability and genetic diversity in nature will likely impact our understanding of FMDV infections, host range, and transmission.
Collapse
|
Journal Article |
20 |
377 |
8
|
Dosher BA, Lu ZL. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc Natl Acad Sci U S A 1998; 95:13988-93. [PMID: 9811913 PMCID: PMC25004 DOI: 10.1073/pnas.95.23.13988] [Citation(s) in RCA: 377] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the nature of plasticity in the adult visual system, perceptual learning was measured in a peripheral orientation discrimination task with systematically varying amounts of external (environmental) noise. The signal contrasts required to achieve threshold were reduced by a factor or two or more after training at all levels of external noise. The strong quantitative regularities revealed by this novel paradigm ruled out changes in multiplicative internal noise, changes in transducer nonlinearites, and simple attentional tradeoffs. Instead, the regularities specify the mechanisms of perceptual learning at the behavioral level as a combination of external noise exclusion and stimulus enhancement via additive internal noise reduction. The findings also constrain the neural architecture of perceptual learning. Plasticity in the weights between basic visual channels and decision is sufficient to account for perceptual learning without requiring the retuning of visual mechanisms.
Collapse
|
research-article |
27 |
377 |
9
|
Abstract
We developed and tested a powerful method for identifying and characterizing the effect of attention on performance in visual tasks as due to signal enhancement, distractor exclusion, or internal noise suppression. Based on a noisy Perceptual Template Model (PTM) of a human observer, the method adds increasing amounts of external noise (white gaussian random noise) to the visual stimulus and observes the effect on performance of a perceptual task for attended and unattended stimuli. The three mechanisms of attention yield three "signature" patterns of performance. The general framework for characterizing the mechanisms of attention is used here to investigate the attentional mechanisms in a concurrent location-cued orientation discrimination task. Test stimuli--Gabor patches tilted slightly to the right or left--always appeared on both the left and the right of fixation, and varied independently. Observers were cued on each trial to attend to the left, the right, or evenly to both stimuli, and decide the direction of tilt of both test stimuli. For eight levels of added external noise and three attention conditions (attended, unattended, and equal), subjects' contrast threshold levels were determined. At low levels of external noise, attention affected threshold contrast: threshold contrasts for non-attended stimuli were systematically higher than for equal attention stimuli, which were, in turn, higher than for attended stimuli. Specifically, when the rms contrast of the external noise is below 10%, there is a consistent 17% elevation of contrast threshold from attended to unattended condition across all three subjects. For higher levels of external noise, attention conditions did not affect threshold contrast values at all. These strong results are characteristic of a signal enhancement, or equivalently, an internal additive noise reduction mechanism of attention.
Collapse
|
|
27 |
342 |
10
|
Lu Z, Kim DY, Pearlman WA. Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm. IEEE Trans Biomed Eng 2000; 47:849-56. [PMID: 10916255 DOI: 10.1109/10.846678] [Citation(s) in RCA: 341] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A wavelet electrocardiogram (ECG) data codec based on the set partitioning in hierarchical trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm [1] has achieved notable success in still image coding. We modified the algorithm for the one-dimensional case and applied it to compression of ECG data. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. The coder also attains exact bit rate control and generates a bit stream progressive in quality or rate.
Collapse
|
Comparative Study |
25 |
341 |
11
|
Sotomayor EM, Borrello I, Tubb E, Rattis FM, Bien H, Lu Z, Fein S, Schoenberger S, Levitsky HI. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 1999; 5:780-7. [PMID: 10395323 DOI: 10.1038/10503] [Citation(s) in RCA: 329] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tumor antigen-specific T-cell tolerance limits the efficacy of therapeutic cancer vaccines. Antigen-presenting cells mediate the induction of T-cell tolerance to self-antigens. We therefore assessed the fate of tumor-specific CD4+ T cells in tumor-bearing recipients after in vivo activation of antigen-presenting cells with antibodies against CD40. Such treatment not only preserved the responsiveness of this population, but resulted in their endogenous activation. Established tumors regressed in vaccinated mice treated with antibody against CD40 at a time when no response was achieved with vaccination alone. These results indicate that modulation of antigen-presenting cells may be a useful strategy for enhancing responsiveness to immunization.
Collapse
|
|
26 |
329 |
12
|
Huang J, Zhou N, Watabe K, Lu Z, Wu F, Xu M, Mo YY. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis 2014; 5:e1008. [PMID: 24457952 PMCID: PMC4040676 DOI: 10.1038/cddis.2013.541] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 01/09/2023]
Abstract
Functional genomics studies have led to the discovery of a large amount of non-coding RNAs from the human genome; among them are long non-coding RNAs (lncRNAs). Emerging evidence indicates that lncRNAs could have a critical role in the regulation of cellular processes such as cell growth and apoptosis as well as cancer progression and metastasis. As master gene regulators, lncRNAs are capable of forming lncRNA–protein (ribonucleoprotein) complexes to regulate a large number of genes. For example, lincRNA-RoR suppresses p53 in response to DNA damage through interaction with heterogeneous nuclear ribonucleoprotein I (hnRNP I). The present study demonstrates that hnRNP I can also form a functional ribonucleoprotein complex with lncRNA urothelial carcinoma-associated 1 (UCA1) and increase the UCA1 stability. Of interest, the phosphorylated form of hnRNP I, predominantly in the cytoplasm, is responsible for the interaction with UCA1. Moreover, although hnRNP I enhances the translation of p27 (Kip1) through interaction with the 5′-untranslated region (5′-UTR) of p27 mRNAs, the interaction of UCA1 with hnRNP I suppresses the p27 protein level by competitive inhibition. In support of this finding, UCA1 has an oncogenic role in breast cancer both in vitro and in vivo. Finally, we show a negative correlation between p27 and UCA in the breast tumor cancer tissue microarray. Together, our results suggest an important role of UCA1 in breast cancer.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
314 |
13
|
Bast RC, Badgwell D, Lu Z, Marquez R, Rosen D, Liu J, Baggerly KA, Atkinson EN, Skates S, Zhang Z, Lokshin A, Menon U, Jacobs I, Lu K. New tumor markers: CA125 and beyond. Int J Gynecol Cancer 2006; 15 Suppl 3:274-81. [PMID: 16343244 DOI: 10.1111/j.1525-1438.2005.00441.x] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A variety of biomarkers have been developed to monitor growth of ovarian cancer and to detect disease at an early interval. CA125 (MUC16) has provided a useful serum tumor marker for monitoring response to chemotherapy, detecting disease recurrence, distinguishing malignant from benign pelvic masses, and potentially improving clinical trial design. A rapid fall in CA125 during chemotherapy predicts a favorable prognosis and could be used to redistribute patients on multiarmed randomized clinical trials. Several studies now document that CA125 can serve as a surrogate marker for response in phase II trials. Serial measurement of CA125 might also provide a useful marker for monitoring stabilization of disease with cytostatic targeted therapeutic agents. The greatest potential for serum markers may be in detecting ovarian cancer at an early stage. A rising CA125 can be used to trigger transvaginal sonography (TVS) in a small fraction of patients. An algorithm has been developed that calculates risk of ovarian cancer based on serial CA125 values and refers patients at highest risk for TVS. Use of the algorithm is currently being evaluated in a trial with 200,000 women in the UK that will test critically the ability of a two-stage screening strategy to improve survival in ovarian cancer. Whatever the outcome, as 20% of ovarian cancers have little or no expression of CA125, additional serum markers will be required to detect all patients in an initial phase of screening. More than 30 serum markers have been evaluated alone and in combination with CA125 by different investigators. Some of the most promising include: HE4, mesothelin, M-CSF, osteopontin, kallikrein(s), and soluble EGF receptor. Two proteomic approaches have been used: one examines the pattern of peaks on mass spectroscopy and the other uses proteomic analysis to identify a limited number of critical markers that can be assayed by more conventional methods. Both approaches are promising and require further development. Several groups are placing markers on multiplex platforms to permit simultaneous assay of multiple markers with very small volumes of serum. Mathematical techniques are being developed to analyze combinations of marker levels to improve sensitivity and specificity. In the future, serum markers should improve the sensitivity of detecting recurrent disease as well as facilitate earlier detection of ovarian cancer.
Collapse
|
Review |
19 |
314 |
14
|
Abstract
UNLABELLED A powerful paradigm (the pedestal-plus-test display) is combined with several subsidiary paradigms (interocular presentation, stimulus superpositions with varying phases, and attentional manipulations) to determine the functional architecture of visual motion perception: i.e. the nature of the various mechanisms of motion perception and their relations to each other. Three systems are isolated: a first-order system that uses a primitive motion energy computation to extract motion from moving luminance modulations; a second-order system that uses motion energy to extract motion from moving texture-contrast modulations; and a third-order system that tracks features. Pedestal displays exclude feature-tracking and thereby yield pure measures of the first- and second-order systems which are found to be exclusively monocular. Interocular displays exclude the first- and second-order systems and thereby to yield pure measures of feature-tracking. RESULTS both first- and second-order systems are fast (with temporal frequency cutoff at 12 Hz) and sensitive. Feature tracking operates interocularly almost as well as monocularly. It is slower (cutoff frequency is 3 Hz) and it requires much more stimulus contrast than the first- and second-order systems. Feature tracking is both bottom-up (it computes motion from luminance modulation, texture-contrast modulation, depth modulation, motion modulation, flicker modulation, and from other types of stimuli) and top-down--e.g. attentional instructions can determine the direction of perceived motion.
Collapse
|
|
30 |
300 |
15
|
Allende R, Lewis TL, Lu Z, Rock DL, Kutish GF, Ali A, Doster AR, Osorio FA. North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J Gen Virol 1999; 80 ( Pt 2):307-315. [PMID: 10073689 DOI: 10.1099/0022-1317-80-2-307] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although North American and European serotypes of porcine reproductive and respiratory syndrome virus (PRRSV) are recognized, only the genome of the European Lelystad strain (LV) has been sequenced completely. Here, the genome of the pathogenic North American PRRSV isolate 16244B has been sequenced and compared with LV. The genomic organization of 16244B was the same as LV but with only 63.4% nucleotide identity. The 189 nucleotide 5' non-coding region (NCR) of 16244B was distinct from the LV NCR, with good conservation (83%) only over a 43 base region immediately upstream of open reading frame (ORF) 1a. Major differences were found in the region encoding the non-structural part of the ORF1a polyprotein, which shared only 47% amino acid identity over 2503 residues of the six non-structural proteins (Nsps) encoded. Nsp2, thought to have a species-specific function, showed the greatest divergence, sharing only 32% amino acid identity with LV and containing 120 additional amino acids in the central region. Nsps encoded by the 5'-proximal and central regions of ORF1b had from 66 to 75% amino acid identity; however, the carboxy-terminal protein CP4 was distinct (42% identity). The ORF 1a-1b frameshift region of 16244B had 98% nucleotide identity with LV. Consistent with previous reports for North American isolates, the six structural proteins encoded were 58 to 79% identical to LV proteins. The 3' NCR (150 nucleotides) was 76% identical between isolates. These genomic differences confirm the presence of distinct North American and European PRRSV genotypes.
Collapse
|
Comparative Study |
26 |
296 |
16
|
Lu Z, Liu D, Hornia A, Devonish W, Pagano M, Foster DA. Activation of protein kinase C triggers its ubiquitination and degradation. Mol Cell Biol 1998; 18:839-45. [PMID: 9447980 PMCID: PMC108795 DOI: 10.1128/mcb.18.2.839] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1997] [Accepted: 10/20/1997] [Indexed: 02/05/2023] Open
Abstract
Treatment of cells with tumor-promoting phorbol esters results in the activation but then depletion of phorbol ester-responsive protein kinase C (PKC) isoforms. The ubiquitin-proteasome pathway has been implicated in regulating the levels of many cellular proteins, including those involved in cell cycle control. We report here that in 3Y1 rat fibroblasts, proteasome inhibitors prevent the depletion of PKC isoforms alpha, delta, and epsilon in response to the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Proteasome inhibitors also blocked the tumor-promoting effects of TPA on 3Y1 cells overexpressing c-Src, which results from the depletion of PKC delta. Consistent with the involvement of the ubiquitin-proteasome pathway in the degradation of PKC isoforms, ubiquitinated PKC alpha, delta, and epsilon were detected within 30 min of TPA treatment. Diacylglycerol, the physiological activator of PKC, also stimulated ubiquitination and degradation of PKC, suggesting that ubiquitination is a physiological response to PKC activation. Compounds that inhibit activation of PKC prevented both TPA- and diacylglycerol-induced PKC depletion and ubiquitination. Moreover, a kinase-dead ATP-binding mutant of PKC alpha could not be depleted by TPA treatment. These data are consistent with a suicide model whereby activation of PKC triggers its own degradation via the ubiquitin-proteasome pathway.
Collapse
|
research-article |
27 |
272 |
17
|
Meacham GC, Lu Z, King S, Sorscher E, Tousson A, Cyr DM. The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J 1999; 18:1492-505. [PMID: 10075921 PMCID: PMC1171238 DOI: 10.1093/emboj/18.6.1492] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel constructed from two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBD) and a regulatory (R) domain. The NBDs and R-domain are cytosolic and how they are assembled with the MSDs to achieve the native CFTR structure is not clear. Human DnaJ 2 (Hdj-2) is a co-chaperone of heat shock cognate 70 (Hsc70) which is localized to the cytosolic face of the ER. Whether Hdj-2 directs Hsc70 to facilitate the assembly of cytosolic regions on CFTR was investigated. We report that immature ER forms of CFTR and DeltaF508 CFTR can be isolated in complexes with Hdj-2 and Hsc70. The DeltaF508 mutation is localized in NBD1 and causes the CFTR to misfold. Levels of complex formation between DeltaF508 CFTR and Hdj-2/Hsp70 were approximately 2-fold higher than those with CFTR. The earliest stage at which Hdj-2/Hsc70 could bind CFTR translation intermediates coincided with the expression of NBD1 in the cytosol. Interestingly, complex formation between Hdj-2 and nascent CFTR was greatly reduced after expression of the R-domain. In experiments with purified components, Hdj-2 and Hsc70 acted synergistically to suppress NBD1 aggregation. Collectively, these data suggest that Hdj-2 and Hsc70 facilitate early steps in CFTR assembly. A putative step in the CFTR folding pathway catalyzed by Hdj-2/Hsc70 is the formation of an intramolecular NBD1-R-domain complex. Whether this step is defective in the biogenesis of DeltaF508 CFTR will be discussed.
Collapse
|
research-article |
26 |
261 |
18
|
Lu Z, Jiang G, Blume-Jensen P, Hunter T. Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol Cell Biol 2001; 21:4016-31. [PMID: 11359909 PMCID: PMC87064 DOI: 10.1128/mcb.21.12.4016-4031.2001] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2000] [Accepted: 03/13/2001] [Indexed: 12/24/2022] Open
Abstract
Upregulated epidermal growth factor (EGF) receptor (EGFR) expression and EGFR-induced signaling have been correlated with progression to invasion and metastasis in a wide variety of carcinomas, but the mechanism behind this is not well understood. We show here that, in various human carcinoma cells that overexpress EGFR, EGF treatment induced rapid tyrosine dephosphorylation of focal adhesion kinase (FAK) associated with downregulation of its kinase activity. The downregulation of FAK activity was both required and sufficient for EGF-induced refractile morphological changes, detachment of cells from the extracellular matrix, and increased tumor cell motility, invasion, and metastasis. Tumor cells with downregulated FAK activity became less adherent to the extracellular matrix. However, once cells started reattaching, FAK activity was restored by activated integrin signaling. Moreover, this process of readhesion and spreading could not be abrogated by further EGF stimulation. Interruption of transforming growth factor alpha-EGFR autocrine regulation with an EGFR tyrosine kinase inhibitor led to a substantial increase in FAK tyrosine phosphorylation and inhibition of tumor cell invasion in vitro. Consistent with this, FAK tyrosine phosphorylation was reduced in cells from tumors growing in transplanted, athymic, nude mice, which have an intact autocrine regulation of the EGFR. We suggest that the dynamic regulation of FAK activity, initiated by EGF-induced downregulation of FAK leading to cell detachment and increased motility and invasion, followed by integrin-dependent reactivation during readhesion, plays a role in EGF-associated tumor invasion and metastasis.
Collapse
|
research-article |
24 |
258 |
19
|
Abstract
Potassium channels, a group of specialized membrane proteins, enable K+ ions to flow selectively across cell membranes. Transmembrane K+ currents underlie electrical signalling in neurons and other excitable cells. The atomic structure of a bacterial K+ channel pore has been solved by means of X-ray crystallography. To the extent that the prokaryotic pore is representative of other K+ channels, this landmark achievement has profound implications for our general understanding of K+ channels. But serious doubts have been raised concerning whether the prokaryotic K+ channel pore does actually represent those of eukaryotes. Here we have addressed this fundamental issue by substituting the prokaryotic pore into eukaryotic voltage-gated and inward-rectifier K+ channels. The resulting chimaeras retain the respective functional hallmarks of the eukaryotic channels, which indicates that the ion conduction pore is indeed conserved among K+ channels.
Collapse
|
|
24 |
256 |
20
|
Tulman ER, Afonso CL, Lu Z, Zsak L, Sur JH, Sandybaev NT, Kerembekova UZ, Zaitsev VL, Kutish GF, Rock DL. The genomes of sheeppox and goatpox viruses. J Virol 2002; 76:6054-61. [PMID: 12021338 PMCID: PMC136203 DOI: 10.1128/jvi.76.12.6054-6061.2002] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sheeppox virus (SPPV) and goatpox virus (GTPV), members of the Capripoxvirus genus of the Poxviridae, are etiologic agents of important diseases of sheep and goats in northern and central Africa, southwest and central Asia, and the Indian subcontinent. Here we report the genomic sequence and comparative analysis of five SPPV and GTPV isolates, including three pathogenic field isolates and two attenuated vaccine viruses. SPPV and GTPV genomes are approximately 150 kbp and are strikingly similar to each other, exhibiting 96% nucleotide identity over their entire length. Wild-type genomes share at least 147 putative genes, including conserved poxvirus replicative and structural genes and genes likely involved in virulence and host range. SPPV and GTPV genomes are very similar to that of lumpy skin disease virus (LSDV), sharing 97% nucleotide identity. All SPPV and GTPV genes are present in LSDV. Notably in both SPPV and GTPV genomes, nine LSDV genes with likely virulence and host range functions are disrupted, including a gene unique to LSDV (LSDV132) and genes similar to those coding for interleukin-1 receptor, myxoma virus M003.2 and M004.1 genes (two copies each), and vaccinia virus F11L, N2L, and K7L genes. The absence of these genes in SPPV and GTPV suggests a significant role for them in the bovine host range. SPPV and GTPV genomes contain specific nucleotide differences, suggesting they are phylogenetically distinct. Relatively few genomic changes in SPPV and GTPV vaccine viruses account for viral attenuation, because they contain 71 and 7 genomic changes compared to their respective field strains. Notable genetic changes include mutation or disruption of genes with predicted functions involving virulence and host range, including two ankyrin repeat proteins in SPPV and three kelch-like proteins in GTPV. These comparative genomic data indicate the close genetic relationship among capripoxviruses, and they suggest that SPPV and GTPV are distinct and likely derived from an LSDV-like ancestor.
Collapse
|
research-article |
23 |
256 |
21
|
Abstract
Lumpy skin disease virus (LSDV), a member of the capripoxvirus genus of the Poxviridae, is the etiologic agent of an important disease of cattle in Africa. Here we report the genomic sequence of LSDV. The 151-kbp LSDV genome consists of a central coding region bounded by identical 2.4 kbp-inverted terminal repeats and contains 156 putative genes. Comparison of LSDV with chordopoxviruses of other genera reveals 146 conserved genes which encode proteins involved in transcription and mRNA biogenesis, nucleotide metabolism, DNA replication, protein processing, virion structure and assembly, and viral virulence and host range. In the central genomic region, LSDV genes share a high degree of colinearity and amino acid identity (average of 65%) with genes of other known mammalian poxviruses, particularly suipoxvirus, yatapoxvirus, and leporipoxviruses. In the terminal regions, colinearity is disrupted and poxvirus homologues are either absent or share a lower percentage of amino acid identity (average of 43%). Most of these differences involve genes and gene families with likely functions involving viral virulence and host range. Although LSDV resembles leporipoxviruses in gene content and organization, it also contains homologues of interleukin-10 (IL-10), IL-1 binding proteins, G protein-coupled CC chemokine receptor, and epidermal growth factor-like protein which are found in other poxvirus genera. These data show that although LSDV is closely related to other members of the Chordopoxvirinae, it contains a unique complement of genes responsible for viral host range and virulence.
Collapse
|
research-article |
24 |
248 |
22
|
Abstract
Here we present the genomic sequence, with analysis, of a pathogenic fowlpox virus (FPV). The 288-kbp FPV genome consists of a central coding region bounded by identical 9.5-kbp inverted terminal repeats and contains 260 open reading frames, of which 101 exhibit similarity to genes of known function. Comparison of the FPV genome with those of other chordopoxviruses (ChPVs) revealed 65 conserved gene homologues, encoding proteins involved in transcription and mRNA biogenesis, nucleotide metabolism, DNA replication and repair, protein processing, and virion structure. Comparison of the FPV genome with those of other ChPVs revealed extensive genome colinearity which is interrupted in FPV by a translocation and a major inversion, the presence of multiple and in some cases large gene families, and novel cellular homologues. Large numbers of cellular homologues together with 10 multigene families largely account for the marked size difference between the FPV genome (260 to 309 kbp) and other known ChPV genomes (178 to 191 kbp). Predicted proteins with putative functions involving immune evasion included eight natural killer cell receptors, four CC chemokines, three G-protein-coupled receptors, two beta nerve growth factors, transforming growth factor beta, interleukin-18-binding protein, semaphorin, and five serine proteinase inhibitors (serpins). Other potential FPV host range proteins included homologues of those involved in apoptosis (e.g., Bcl-2 protein), cell growth (e.g., epidermal growth factor domain protein), tissue tropism (e.g., ankyrin repeat-containing gene family, N1R/p28 gene family, and a T10 homologue), and avian host range (e.g., a protein present in both fowl adenovirus and Marek's disease virus). The presence of homologues of genes encoding proteins involved in steroid biogenesis (e.g., hydroxysteroid dehydrogenase), antioxidant functions (e.g., glutathione peroxidase), vesicle trafficking (e.g., two alpha-type soluble NSF attachment proteins), and other, unknown conserved cellular processes (e.g., Hal3 domain protein and GSN1/SUR4) suggests that significant modification of host cell function occurs upon viral infection. The presence of a cyclobutane pyrimidine dimer photolyase homologue in FPV suggests the presence of a photoreactivation DNA repair pathway. This diverse complement of genes with likely host range functions in FPV suggests significant viral adaptation to the avian host.
Collapse
|
research-article |
25 |
243 |
23
|
Abstract
Inward-rectifier potassium channels conduct K+ across the cell membrane more efficiently in the inward than outward direction. This unusual conduction property is directly related to the biological action of these channels. One basis for inward rectification is voltage-dependent blockade by intracellular Mg2+ (refs 1, 7-9): strong inward-rectifier channels are so sensitive to intracellular Mg2+ that no outward K+ current is measurable under physiological conditions; weak inward rectifiers are less sensitive and allow some K+ to flow outwards. Background K1 channels and acetylcholine-regulated K+ channels from the heart are examples of strong inward rectifiers and ATP-sensitive K+ channels are weak rectifiers. Here we show that mutations at one position in the second transmembrane segment can alter the Mg2+ affinity and convert a weakly rectifying channel (ROMK1) into a strong rectifier. The amino acid at this position exposes its side chain to the aqueous pore and affects Mg2+ blockade as well as K+ conduction through an electrostatic mechanism.
Collapse
|
|
31 |
242 |
24
|
Abstract
Systematic measurements of perceptual learning were performed in the presence of external or stimulus noise. In the new external noise method (Dosher, B, & Lu, Z.-L. (1997). Investigative Ophthalmology and Visual Science, 38, S687; Lu, Z.-L., & Dosher, B. (1998). Vision Research, 38, 1183-1198), increasing amounts of external noise (white Gaussian random noise) is added to the visual stimulus in order to identify mechanisms of perceptual learning. Performance improved (threshold contrast was reduced) over days of practice on a peripheral orientation discrimination task--labelling Gabor patches as tilted slightly to the right or left. Practice improvements were largely specific to the trained quadrant of the display. Performance improved at all levels of external noise. The external noise method and perceptual template model (PTM) of the observer identifies the mechanism(s) of performance improvements as due to stimulus enhancement, external noise exclusion, or internal noise suppression. The external noise method was further extended by measuring thresholds at two threshold performance levels, allowing identification of mixtures in the PTM model. Perceptual learning over 8-10 days improved the filtering or exclusion of external noise by a factor of two or more, and improved suppression of additive internal noise--equivalent to stimulus enhancement--by 50% or more. Coupled improvements in external noise exclusion and stimulus enhancement in the PTM model may reflect channel weighting. Perceptual learning may not reflect neural plasticity at the level of basic visual channels, nor cognitive adjustments of strategy, but rather plasticity at an intermediate level of weighting inputs to decision.
Collapse
|
|
26 |
242 |
25
|
Xue G, Dong Q, Chen C, Lu Z, Mumford JA, Poldrack RA. Greater neural pattern similarity across repetitions is associated with better memory. Science 2010; 330:97-101. [PMID: 20829453 PMCID: PMC2952039 DOI: 10.1126/science.1193125] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Repeated study improves memory, but the underlying neural mechanisms of this improvement are not well understood. Using functional magnetic resonance imaging and representational similarity analysis of brain activity, we found that, compared with forgotten items, subsequently remembered faces and words showed greater similarity in neural activation across multiple study in many brain regions, including (but not limited to) the regions whose mean activities were correlated with subsequent memory. This result addresses a longstanding debate in the study of memory by showing that successful episodic memory encoding occurs when the same neural representations are more precisely reactivated across study episodes, rather than when patterns of activation are more variable across time.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
235 |