1
|
Chen Z, Yue H, Gu Y, Xie C, Ma J, Xie F, Wang G, Yao F. Effect of traditional Chinese exercise on pulmonary function in middle-aged and older patients with stable chronic obstructive pulmonary disease: A randomized controlled trial. Respir Med 2025; 239:107997. [PMID: 39956530 DOI: 10.1016/j.rmed.2025.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/21/2024] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Traditional Chinese exercise (TCE) has been shown effective for chronic obstructive pulmonary disease (COPD). However, there are no studies investigating the effect of traditional Chinese exercise (TCE) programme on COPD. The aim of this study was to evaluate the effectiveness of specific TCE programme on the pulmonary function in patients with COPD. METHODS 76 patients with COPD was randomly assigned to receive either TCE group or control group in a 1:1 ratio. The primary outcome was changes in forced vital capacity (FVC) from baseline to 12 weeks. Secondary outcomes included forced expiratory volume in the first second (FEV1), tidal volume (VT), inspiratory capacity (IC), expiratory reserve volume (ERV), FEV1/FVC, peak expiratory flow (PEF), the 6-min walking test (6MWT), the COPD Assessment Test (CAT), the Short Form 36-item Health Survey (SF-36), modified medical research council scale (mMRC). RESULTS After 12 weeks, the TCE group demonstrated a significantly greater improvement of FVC (-12.67; 95 % CI, -18.21 to -7.15; P < 0.001) and FEV1 (-9.70; 95 % CI, -13.73 to -5.68; P < 0.001). But there was no statistically significant difference between groups in FEV1/FVC, PEF, VT, IC or ERV. Besides, patients in the TCE group also reported a statistically significant within-group difference at week 12 in CAT, mMRC and 6MWT. As for eight dimensions of SF-36, patients in TCE group had higher scores in SF-36 (P < 0.05 for 8 dimensions). CONCLUSION Our results demonstrate that the traditional Chinese exercise can serve as an effective therapeutic tool for middle-aged and older patients with COPD. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry, ChiCTR2300069283, https://www.chictr.org.cn/showproj.html?proj=192116.
Collapse
|
2
|
Chen ZY, Zhao QX, Yang X, Deng M, Zhao SX, Liu CL, Hou MJ, Zhang ZH, Li Q, Sun Y. [Prevalence of common chronic diseases and related factors in HIV-infected persons in Henan Province, 2023]. ZHONGHUA LIU XING BING XUE ZA ZHI = ZHONGHUA LIUXINGBINGXUE ZAZHI 2025; 46:258-263. [PMID: 39965832 DOI: 10.3760/cma.j.cn112338-20240626-00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Objective: To understand the prevalence and related factors of three common chronic diseases, hyperlipidemia, hypertension and diabetes in HIV-infected persons. Methods: As of December 2023, HIV-infected persons >15 years old who are receiving antiviral therapy (ART) and follow-up in Henan Province were selected as the study objects. Questionnaires, physical examinations, and blood samples were collected to collect demographic information, ART, body weight, blood lipids, blood pressure, and blood sugar of HIV-infected persons. The logistic regression model was used to analyze the related factors of hyperlipidemia, hypertension and diabetes. Results: Among 4 023 HIV-infected patients, the prevalence rates of hyperlipidemia, hypertension, and diabetes were 64.47% (2 594/4 023), 16.80% (676/4 023), and 10.54% (424/4 023), respectively. Multivariate analysis showed that hyperlipidemia was positively associated with ≥40 years of age, overweight and obesity, two nucleoside reverse transcriptase inhibitors (NRTIs) + proteasome inhibitors (PIs) regimen and two NRTIs+ integrase inhibitor regimen, and negatively associated with low body weight. Hypertension was positively correlated with the age group ≥40 years old, family history of cardiovascular and cerebrovascular diseases, overweight and obesity, ART time ≥0.5 years, and negatively correlated with low body weight. Diabetes was positively associated with age group ≥40 years, family history of cardiovascular and cerebrovascular disease, overweight and obesity, and negatively associated with the use of two NRTIs+PIs treatment regimens. Conclusions: In 2023, the prevalence of hyperlipidemia, hypertension, and diabetes among HIV-infected people in Henan Province was relatively high, and the risk of common chronic diseases among those ≥40 years old, overweight and obese, and those with a family history of cardiovascular and cerebrovascular diseases was also relatively high. It is recommended to strengthen the prevention and management of common chronic diseases among HIV-infected people.
Collapse
|
3
|
Wang Q, Hu T, Zhang Q, Zhang Y, Dong X, Jin Y, Li J, Guo Y, Guo F, Chen Z, Zhong P, Yang Y, Ma Y. Fusobacterium nucleatum promotes colorectal cancer through neogenesis of tumor stem cells. J Clin Invest 2025; 135:e181595. [PMID: 39656543 PMCID: PMC11785920 DOI: 10.1172/jci181595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/05/2024] [Indexed: 02/04/2025] Open
Abstract
Intestinal stem cells are crucial for maintaining intestinal homeostasis, yet their transformation into tumor stem cells in the context of microbial infection remains poorly understood. Fusobacterium nucleatum is frequently associated with the onset and progression of colorectal cancer (CRC). In this study, we uncovered that F. nucleatum colonized the depths of gut crypts in both patients with CRC and mouse models. Through single-cell sequencing analysis, we demonstrated that F. nucleatum infection reprogrammed crypt cells and activated lymphocyte antigen 6 complex, locus A+ ( LY6A+, also known as stem cell antigen 1 [Sca-1]) revival stem cells (RSCs), promoting their hyperproliferation and subsequent transformation into tumor stem cells, which accelerated intestinal carcinogenesis. Mechanistically, we identified LY6A as a glycosylphosphatidylinositol-anchored (GPI-anchored) membrane receptor for F. nucleatum. Upon binding, F. nucleatum induced the upregulation of ribosomal protein S14 (RPS14) via the LY6A receptor, driving RSC hyperactivity and tumorigenic conversion. Functional studies showed that genetic ablation of Ly6a in intestinal epithelial cells or Rps14 in LY6A+ RSCs substantially reduced F. nucleatum colonization and tumorigenesis. Moreover, analysis of clinical CRC cohorts revealed a strong correlation between F. nucleatum infection, RSC expansion, and elevated RPS14 expression in tumor tissues. These findings highlight an alternative F. nucleatum/LY6A/RPS14 signaling axis as a critical driver of CRC progression and propose potential therapeutic targets for effective CRC intervention.
Collapse
|
4
|
Fang L, Dai J, Wang X, Tu Y, Li S, He K, Guo W, Hang L, Wang J, Diao Y, Li W, Guo W, Chen Z, Wang J, Li S, Ma P, Jiang G. Glutathione-Driven Disassembly of Planar Organic Phototherapeutic Agents to Enhance Photodynamic-Photothermal Therapy Performance for Nasopharyngeal Carcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409196. [PMID: 39743957 DOI: 10.1002/smll.202409196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Indexed: 01/04/2025]
Abstract
The self-assembly of hydrophobic organic phototherapeutic agents (OPTAs) with expansive planar structures into nanoparticles (NPs) represents a pivotal strategy to bolster their biocompatibility. However, the tight molecular packing within these NPs significantly influences the generation of reactive oxygen species (ROS) and the photothermal conversion efficiency (PCE), posing a substantial hurdle to elevating the efficacy of photodynamic therapy (PDT) and photothermal therapy (PTT) for such NPs. In this article, three OPTAs by donor engineering are synthesized. Notably, 4,8-Bis (5-phenylthiophen-2-yl)-6-(2-ethylhexyl)-[1,2,5] thiadiazole [3,4-F] benzotriazole (BTBT), which incorporates a benzene ring as the donor, exhibits the highest ROS generation and optimal photothermal conversion capability. To further augment the overall phototheranostic potential of BTBT NPs, a glutathione (GSH)-driven disassembly strategy is employed. This strategy not only alleviates the aggregation-caused quenching (ACQ) effect on ROS but also facilitates enhanced free molecular rotation. As a result, the ROS production sees a tenfold increase, and the photothermal conversion temperature rises by 8.3 °C, achieving a PCE of 77.03%. In summary, a versatile disassembly strategy is proposed that concurrently enhances the performance of both PDT and PTT in planar OPTAs, while also advancing the state-of-the-art in nasopharyngeal carcinoma (NPC) treatment.
Collapse
|
5
|
Chen Z, Lai X, Li J, Yuan X, Li Y, Zhang X, Kang Z, Ouyang Z, Zeng J, Hou N, Liu X. BRG1 Deficiency Promotes Cardiomyocyte Inflammation and Apoptosis by Activating the cGAS-STING Signaling in Diabetic Cardiomyopathy. Inflammation 2025; 48:299-315. [PMID: 38867118 PMCID: PMC11807080 DOI: 10.1007/s10753-024-02058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Brahma-related gene 1 (BRG1) has been implicated in the repair of DNA double-strand breaks (DSBs). Downregulation of BRG1 impairs DSBs repair leading to accumulation of double-stranded DNA (dsDNA). Currently, the role of BRG1 in diabetic cardiomyopathy (DCM) has not been clarified. In this study, we aimed to explore the function and molecular by which BRG1 regulates DCM using mice and cell models. We found that BRG1 was downregulated in the cardiac tissues of DCM mice and in cardiomyocytes cultured with high glucose and palmitic acid (HG/PA), which was accompanied by accumulation of dsDNA and activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. shRNA-mediated Brg1 knockdown aggravated DCM mice cardiac functions, enhanced dsDNA accumulation, cGAS-STING signaling activation, which induced inflammation and apoptosis. In addition, the results were further verified in HG/PA-treated primary neonatal rat cardiomyocytes (NRCMs). Overexpression of BRG1 in NRCMs yielded opposite results. Furthermore, a selective cGAS inhibitor RU.521 or STING inhibitor C-176 partially reversed the BRG1 knockdown-induced inflammation and apoptosis in vitro. In conclusion, our results demonstrate that BRG1 is downregulated during DCM in vivo and in vitro, resulting in cardiomyocyte inflammation and apoptosis due to dsDNA accumulation and cGAS-STING signaling activation. Therefore, targeting the BRG1-cGAS-STING pathway may represent a novel therapeutic strategy for improving cardiac function of patients with DCM.
Collapse
|
6
|
Fan X, Huang Z, Chen Z, Yun L, Zhang X. Effect of perioperative analgesia on immunity in lung cancer. Immunobiology 2025; 230:152867. [PMID: 39847998 DOI: 10.1016/j.imbio.2025.152867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/30/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025]
Abstract
COX inhibitors are frequently used for pain management during the perioperative period and may influence tumor progression and the tumor microenvironment by modulating inflammation and immune responses. This study investigates the effects of COX inhibitors on tumor growth and the immune microenvironment. In vivo experiments demonstrate that COX inhibitors can reduce tumor cell growth, elevate PD-L1 expression on tumor cells, and enhance the proportion of myeloid cells within the tumor immune microenvironment. Furthermore, COX inhibitors are found to improve the efficacy of the immune checkpoint inhibitor anti-PD-L1. These results underscore the influence of perioperative COX inhibitors on tumor immunity and suggest potential new strategies for optimizing tumor immunotherapy.
Collapse
|
7
|
Chen Z, Yang Y, Chen X, Bei C, Gao Q, Chao Y, Wang C. An RNase III-processed sRNA coordinates sialic acid metabolism of Salmonella enterica during gut colonization. Proc Natl Acad Sci U S A 2025; 122:e2414563122. [PMID: 39792291 PMCID: PMC11745405 DOI: 10.1073/pnas.2414563122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Sialic acids derived from colonic mucin glycans are crucial nutrients for enteric bacterial pathogens like Salmonella. The uptake and utilization of sialic acid in Salmonella depend on coordinated regulons, each activated by specific metabolites at the transcriptional level. However, the mechanisms enabling crosstalk among these regulatory circuits to synchronize gene expression remain poorly understood. Here, we identify ManS, a small noncoding RNA derived from the 3' UTR of STM1128 mRNA transcribed from a Salmonella enterica-specific genetic locus, as an important posttranscriptional regulator coordinating sialic acid metabolism regulons. ManS is primarily processed by RNase III and, along with its parental transcripts, is specifically activated by N-acetylmannosamine (ManNAc), the initial degradation product of sialic acid. We found that the imperfect stem-loop structure at the 5' end of ManS allows RNase III to cleave in a noncanonical manner, generating two functional types of ManS with the assistance of RNase E and other RNases: short isoforms with a single seed region that regulate the uptake of N-acetylglucosamine, an essential intermediate in sialic acid metabolism; and long isoforms with an additional seed region that regulate multiple genes involved in central and secondary metabolism. This sophisticated regulation by ManS significantly impacts ManNAc metabolism and S. enterica's competitive behavior during infection. Our findings highlight the role of sRNA in coordinating transcriptional circuits and advance our understanding of RNase III-mediated processing of 3' UTR-derived sRNAs, underscoring the important role of ManNAc in Salmonella adaptation within host environments.
Collapse
|
8
|
Chen ZY, Chen RF, Shan Y. [Research progress on prevention and treatment of wound infections caused by dog and cat bites]. ZHONGHUA YU FANG YI XUE ZA ZHI [CHINESE JOURNAL OF PREVENTIVE MEDICINE] 2025; 59:110-115. [PMID: 39828575 DOI: 10.3760/cma.j.cn112150-20240702-00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dog and cat bites are the most common types of animal injuries, which cause various types of tissue damage and have a high incidence of wound infections. These infections are often mixed with multiple microorganisms and have their characteristics and complexity. Selecting appropriate antimicrobial drugs for prevention and treatment can help prevent the occurrence of infections and improve the effectiveness of infection treatment. To better prevent and treat wound infections caused by dog and cat bites, this article reviews the research progress in the epidemiology of dog and cat bites, characteristics of wounds, incidence of wound infections, types of infections, common pathogens, infection assessment, and antimicrobial treatment, to provide a reference for the selection of antimicrobial drugs for wound infections caused by dog and cat bites.
Collapse
|
9
|
Xie Y, Xu C, Liu Y, Zhang E, Chen Z, Zhan X, Deng G, Gao Y, Zhang Y. Photothermal Synergistic Hydrogen Production via a Fly-Ash-made Interfacial Vaporific System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410201. [PMID: 39606801 PMCID: PMC11744568 DOI: 10.1002/advs.202410201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Employing UV-vis spectrum for hydrogen generation and vis-IR spectrum to elevate reaction temperatures and induce phase transitions effectively enhances yield and purifies water, demonstrating a judicious strategy for solar energy utilization. This study presents an interfacial photothermal water splitting system that utilizes all-inorganic, economical industrial by-products known as fly ash cenospheres (FAC) for solar-driven hydrogen generation. In this system, the yield reaches 254.8 µmol h-1 cm-1, representing an 89% augmentation compared to that of the three-phase system. In situ experiments, combined with theoretical calculation, reveal the system's robust light absorption capacity, facilitating rapid gas separation, thus improves the solar-to-hydrogen (STH) efficiency. Furthermore, the system demonstrates strong performance in turbid water and scalability for expansive applications, achieving a hydrogen yield exceeding 50 L h-1 m-2 from various water sources. Facilitating large-scale hydrogen production and water purification, it thereby establishing its potential as a viable solution for sustainable energy generation.
Collapse
|
10
|
Ablikim M, Achasov MN, Adlarson P, Afedulidis O, Ai XC, Aliberti R, Amoroso A, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Bao HR, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Che GR, Chelkov G, Chen C, Chen CH, Chen C, Chen G, Chen HS, Chen HY, Chen ML, Chen SJ, Chen SL, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Chen ZY, Choi SK, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng CQ, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan YY, Duan ZH, Egorov P, Fan YH, Fang J, Fang J, Fang SS, Fang WX, Fang Y, Fang YQ, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Feng YT, Fritsch M, Fu CD, Fu JL, Fu YW, Gao H, Gao XB, Gao YN, Gao Y, Garbolino S, Garzia I, Ge L, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Gutierrez J, Han KL, Han TT, Hanisch F, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu BY, Hu HM, Hu JF, Hu SL, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Huang YS, Hussain T, Hölzken F, Hüsken N, In der Wiesche N, Jackson J, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji W, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang D, Jiang HB, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao JK, Jiao Z, Jin S, Jin Y, Jing MQ, Jing XM, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kavatsyuk M, Ke BC, Khachatryan V, Khoukaz A, Kiuchi R, Kolcu OB, Kopf B, Kuessner M, Kui X, Kumar N, Kupsc A, Kühn W, Lane JJ, Larin P, Lavezzi L, Lei TT, Lei ZH, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li QM, Li QX, Li R, Li SX, Li T, Li WD, Li WG, Li X, Li XH, Li XL, Li XY, Li XZ, Li YG, Li ZJ, Li ZY, Liang C, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Liao YP, Libby J, Limphirat A, Lin CC, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu F, Liu FH, Liu F, Liu GM, Liu H, Liu HB, Liu HH, Liu HM, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu X, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZD, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo JR, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma H, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma T, Ma XT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Malde S, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Moses B, Muchnoi NY, Muskalla J, Nefedov Y, Nerling F, Nie LS, Nikolaev IB, Ning Z, Nisar S, Niu QL, Niu WD, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pei YP, Pelizaeus M, Peng HP, Peng YY, Peters K, Ping JL, Ping RG, Plura S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qiao XK, Qin JJ, Qin LQ, Qin LY, Qin XS, Qin ZH, Qiu JF, Qu ZH, Redmer CF, Ren KJ, Rivetti A, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shang ZJ, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi H, Shi HC, Shi JL, Shi JY, Shi QQ, Shi SY, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZQ, Sun ZT, Tang CJ, Tang GY, Tang J, Tang M, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Tian ZF, Uman I, Wan Y, Wang SJ, Wang B, Wang BL, Wang B, Wang DY, Wang F, Wang HJ, Wang JJ, Wang JP, Wang K, Wang LL, Wang M, Wang NY, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang XN, Wang Y, Wang YD, Wang YF, Wang YL, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, Wen YR, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YH, Wu YJ, Wu Z, Xia L, Xian XM, Xiang BH, Xiang T, Xiao D, Xiao GY, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu M, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YF, Yang YX, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yu XD, Yu YC, Yuan CZ, Yuan J, Yuan J, Yuan L, Yuan SC, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng SH, Zeng X, Zeng Y, Zeng YJ, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang H, Zhang HC, Zhang HH, Zhang HH, Zhang HQ, Zhang HR, Zhang HY, Zhang J, Zhang J, Zhang JJ, Zhang JL, Zhang JQ, Zhang JS, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang L, Zhang P, Zhang QY, Zhang RY, Zhang SH, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang Y, Zhang Y, Zhang YT, Zhang YH, Zhang YM, Zhang Y, Zhang ZD, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhang ZZ, Zhao G, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao N, Zhao RP, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng BM, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou JY, Zhou LP, Zhou S, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu KS, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WD, Zhu YC, Zhu ZA, Zou JH, Zu J. Precise Measurement of the e^{+}e^{-}→D_{s}^{+}D_{s}^{-} Cross Section at Center-of-Mass Energies from Threshold to 4.95 GeV. PHYSICAL REVIEW LETTERS 2024; 133:261902. [PMID: 39879000 DOI: 10.1103/physrevlett.133.261902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 01/31/2025]
Abstract
Using the e^{+}e^{-} collision data collected with the BESIII detector operating at the BEPCII collider, at center-of-mass energies from the threshold to 4.95 GeV, we present precise measurements of the cross section for the process e^{+}e^{-}→D_{s}^{+}D_{s}^{-} using a single-tag method. The resulting cross section line shape exhibits several new structures, thereby offering an input for a future coupled-channel analysis and model tests, which are critical to understand vector charmonium-like states with masses between 4 and 5 GeV.
Collapse
|
11
|
Zhang Y, Yu S, Chen Z, Liu H, Li H, Long X, Ye F, Luo W, Dai Y, Tu S, Chen W, Kong S, He Y, Xue L, Tan N, Liang H, Zhang Z, He P, Duan C, Liu Y. Gestational diabetes and future cardiovascular diseases: associations by sex-specific genetic data. Eur Heart J 2024; 45:5156-5167. [PMID: 39453753 DOI: 10.1093/eurheartj/ehae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/18/2024] [Accepted: 09/30/2024] [Indexed: 10/27/2024] Open
Abstract
BACKGROUND AND AIMS Observational studies have highlighted that gestational diabetes mellitus is associated with a higher risk of cardiovascular diseases, but the causality remains unclear. Herein, the causality between genetic predisposition to gestational diabetes mellitus and the risk of cardiovascular diseases was investigated using sex-specific Mendelian randomization analysis. METHODS Linkage disequilibrium score regression analysis and two-sample Mendelian randomization analysis were applied to infer the genetic correlation and causality, respectively. Mediation analysis was conducted using a two-step Mendelian randomization approach. Sensitivity analyses were performed to differentiate causality from pleiotropy. The genome-wide association study summary statistics for gestational diabetes mellitus were obtained from FinnGen consortium, while for cardiovascular diseases were generated based on individual-level genetic data from the UK Biobank. RESULTS Linkage disequilibrium score regression analyses revealed that gestational diabetes mellitus had a significant genetic correlation with coronary artery disease and myocardial infarction after Benjamini-Hochberg correction in ever-pregnant women. In Mendelian randomization analyses, odds ratios (95% confidence interval) for coronary artery disease and myocardial infarction were 1.09 (1.01-1.17) and 1.12 (.96-1.31) per unit increase in the log-odds of genetic predisposition to gestational diabetes mellitus in ever-pregnant women, respectively. Further, Type 2 diabetes and hypertension were identified as mediators for the causality of genetic predisposition to gestational diabetes mellitus on coronary artery disease. In sensitivity analyses, the direction of odds ratio for the association between instrumental variables with gestational diabetes mellitus-predominant effects and the risk of coronary artery disease was consistent with the primary results in ever-pregnant women, although not statistically significant. CONCLUSIONS This study demonstrated a suggestive causal relationship between genetic predisposition to gestational diabetes mellitus and the risk of coronary artery disease, which was mainly mediated by Type 2 diabetes and hypertension. These findings highlight targeting modifiable cardiometabolic risk factors may reduce the risk of coronary artery disease in women with a history of gestational diabetes mellitus.
Collapse
|
12
|
Wang H, Li H, Huang X, Yao Z, Zhang H, Yao YH, Yin X, Chen Z, Fang L. Design and fabrication of superhydrophobic microstructured grooved substrates to suppress the coffee-ring effect and enhance the stability of Sr element detection in liquids using LIBS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 17:64-76. [PMID: 39564755 DOI: 10.1039/d4ay01582g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A new technique has been developed to enhance the stability of laser-induced breakdown spectroscopy (LIBS) in the analysis of dry droplets by mitigating the coffee ring effect (CRE) on substrates with superhydrophobic microstructured grooves. The substrate was prepared from a laser-etched pure copper base, resembling the surface of a lotus leaf, creating a biomimetic superhydrophobic substrate. The superhydrophobic microstructured grooved substrate contained an array of dome-shaped cones with heights of approximately 140 μm and 100 μm, arranged in a periodic pattern of high-low-high. The superhydrophobic properties of the substrate not only evaporation-induced thermal capillary action but also initiated the Marangoni flow, which moves from the periphery to the center of the droplet as it evaporates. This flow mechanism effectively mitigated the CRE by transporting the analyte from the bottom edge of the droplet across its surface to the central peak. To assess how these superhydrophobic microstructured grooved substrates impede the formation of coffee rings, LIBS was deployed to analyze samples from both structured and unstructured grooved substrates. The results indicated that the relative standard deviation (RSD) of the spectral intensity for Sr I at 407.67 nm in substrates with a superhydrophobic microstructured groove edge length of 0.8 mm was 3.6%. In contrast, for the unstructured grooved substrate and a side length of 0.9 mm, the RSD was significantly higher at 25.4%. This research demonstrates that substrates with superhydrophobic microstructured grooves are capable of effectively mitigating the CRE. Additionally, the study examined how the dimensions of these grooves impact the plasma characteristics across two distinct configurations. Based on these observations, calibration curves for Sr were developed using substrates with groove side lengths of 0.6 mm and 0.8 mm. The performance of the superhydrophobic microstructured grooved substrate was satisfactory, exhibiting determination coefficients (R2) of 0.994 and 0.995 for the Sr element. The detection limits (LOD) were notably low at 0.16 μg mL-1 and 0.11 μg mL-1. The average relative standard deviations (ARSD) were 7.2% and 4.9%, respectively. These results demonstrate that the superhydrophobic microstructured grooved substrate effectively mitigates the CRE, thereby enhancing the detection sensitivity and prediction accuracy for heavy metals. This provides a robust reference for selecting platforms using LIBS technology in the pre-treatment process.
Collapse
|
13
|
Yu Y, Xing YM, Zhang YH, Wang M, Zhou XH, Li JG, Li HH, Yuan Q, Niu YF, Huang YN, Geng J, Guo JY, Chen JW, Pei JC, Xu FR, Litvinov YA, Blaum K, de Angelis G, Tanihata I, Yamaguchi T, Zhou X, Xu HS, Chen ZY, Chen RJ, Deng HY, Fu CY, Ge WW, Huang WJ, Jiao HY, Luo YF, Li HF, Liao T, Shi JY, Si M, Sun MZ, Shuai P, Tu XL, Wang Q, Xu X, Yan XL, Yuan YJ, Zhang M. Nuclear Structure of Dripline Nuclei Elucidated through Precision Mass Measurements of ^{23}Si, ^{26}P, ^{27,28}S, and ^{31}Ar. PHYSICAL REVIEW LETTERS 2024; 133:222501. [PMID: 39672138 DOI: 10.1103/physrevlett.133.222501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 10/22/2024] [Indexed: 12/15/2024]
Abstract
Using the Bρ-defined isochronous mass spectrometry technique, we report the first determination of the ^{23}Si, ^{26}P, ^{27}S, and ^{31}Ar masses and improve the precision of the ^{28}S mass by a factor of 11. Our measurements confirm that these isotopes are bound and fix the location of the proton dripline in P, S, and Ar. We find that the mirror energy differences of the mirror-nuclei pairs ^{26}P-^{26}Na, ^{27}P-^{27}Mg, ^{27}S-^{27}Na, ^{28}S-^{28}Mg, and ^{31}Ar-^{31}Al deviate significantly from the values predicted assuming mirror symmetry. In addition, we observe similar anomalies in the excited states, but not in the ground states, of the mirror-nuclei pairs ^{22}Al-^{22}F and ^{23}Al-^{23}Ne. Using ab initio VS-IMSRG and mean field calculations, we show that such a mirror-symmetry breaking phenomenon can be explained by the extended charge distributions of weakly bound, proton-rich nuclei. When observed, this phenomenon serves as a unique signature that can be valuable for identifying proton-halo candidates.
Collapse
|
14
|
Li C, He H, Wang Y, Huang L, Chen Z, Zhang Q, Cai Y, Zhai T, Wu X, Zhan Q. Outcomes and inflammation changes in different types of immunocompromised patients with critically ill COVID-19 admitted to ICU: a national multicenter study. BMC Pulm Med 2024; 24:548. [PMID: 39482633 PMCID: PMC11529014 DOI: 10.1186/s12890-024-03362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Immunocompromised patients face higher risks of Severe Acute Respiratory Syndrome Coronavirus 2 infection and co-infections, leading to a possibility of high disease severity and poor outcomes. Conversely, immunosuppression can mitigate the excessive inflammatory response induced by the virus, potentially reducing disease severity. This study aims to investigate the prognostic differences and early inflammatory response characteristics in various types of immunocompromised patients with severe coronavirus disease 2019 (COVID-19) admitted to intensive care unit (ICU), summarize their clinical features, and explore potential mechanisms. METHODS A retrospective analysis was conducted on critically ill COVID-19 patients admitted to the ICU of 59 medical centers in mainland China during the Omicron outbreak from November 2022 to February 2023. Patients were categorized into two groups based on their immunosuppression status: immunocompromised and immunocompetent. Immunocompromised patients were further subdivided by etiology into cancer patients, solid organ transplant (SOT) patients, and other immunocompromised groups, with immunocompetent patients serving as controls. The mortality rates, respiratory support, complications, and early inflammatory cytokine dynamics upon ICU admission among different populations were analyzed. RESULTS A total of 2030 critically ill COVID-19 patients admitted to ICU were included, with 242 in the immunocompromised group and 1788 in the immunocompetent group. Cancer patients had a higher median age of 69 years (IQR 59, 77), while SOT patients were generally younger and had less severe illness upon ICU admission, with a median APACHE II score of 12.0 (IQR 8.0, 20.0). Cancer patients had a twofold increased risk of death (OR = 2.02, 95% CI 1.18-3.46, P = 0.010) compared to immunocompetent patients. SOT and cancer patients exhibited higher C-reactive protein and serum ferritin levels than the immunocompetent group in their early days of ICU admission. The CD8+ T cells dynamics were inversely correlated in cancer and SOT patients, with Interleukin-6 levels consistently lower in the SOT group compared to both immunocompetent and cancer patients. CONCLUSION Critically ill COVID-19 patients admitted to the ICU exhibit distinct clinical outcomes based on their immunosuppression status, with cancer patients facing the highest mortality rate due to variations in inflammatory responses linked to their immunosuppression mechanisms. Monitoring dynamic changes in inflammatory markers and immune cells, particularly CD8+ T lymphocytes and IL-6, may offer valuable prognostic insights for these patients.
Collapse
|
15
|
Ablikim M, Achasov MN, Adlarson P, Afedulidis O, Ai XC, Aliberti R, Amoroso A, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Bao HR, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai XY, Chang JF, Che GR, Che YZ, Chelkov G, Chen C, Chen CH, Chen C, Chen G, Chen HS, Chen HY, Chen ML, Chen SJ, Chen SL, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Chen ZY, Choi SK, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng CQ, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan YY, Duan ZH, Egorov P, Fan YH, Fang J, Fang J, Fang SS, Fang WX, Fang Y, Fang YQ, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Feng YT, Fritsch M, Fu CD, Fu JL, Fu YW, Gao H, Gao XB, Gao YN, Gao Y, Garbolino S, Garzia I, Ge L, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Gutierrez J, Han KL, Han TT, Hanisch F, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu BY, Hu HM, Hu JF, Hu SL, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Huang YS, Hussain T, Hölzken F, Hüsken N, In der Wiesche N, Jackson J, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji W, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang D, Jiang HB, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao JK, Jiao Z, Jin S, Jin Y, Jing MQ, Jing XM, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kavatsyuk M, Ke BC, Khachatryan V, Khoukaz A, Kiuchi R, Kolcu OB, Kopf B, Kuessner M, Kui X, Kumar N, Kupsc A, Kühn W, Lane JJ, Lavezzi L, Lei TT, Lei ZH, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li K, Li KL, Li LJ, Li LK, Li L, Li MH, Li PR, Li QM, Li QX, Li R, Li SX, Li T, Li WD, Li WG, Li X, Li XH, Li XL, Li XY, Li XZ, Li YG, Li ZJ, Li ZY, Liang C, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao YP, Libby J, Limphirat A, Lin CC, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu F, Liu FH, Liu F, Liu GM, Liu H, Liu HB, Liu HH, Liu HM, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu X, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZD, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo JR, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma H, Ma HL, Ma JL, Ma LL, Ma LR, Ma MM, Ma QM, Ma RQ, Ma T, Ma XT, Ma XY, Ma YM, Maas FE, MacKay I, Maggiora M, Malde S, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Moses B, Muchnoi NY, Muskalla J, Nefedov Y, Nerling F, Nie LS, Nikolaev IB, Ning Z, Nisar S, Niu QL, Niu WD, Niu Y, Olsen SL, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peng YY, Peters K, Ping JL, Ping RG, Plura S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qiao XK, Qin JJ, Qin LQ, Qin LY, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu ZH, Redmer CF, Ren KJ, Rivetti A, Rolo M, Rong G, Rosner C, Ruan MQ, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shang ZJ, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi H, Shi HC, Shi JL, Shi JY, Shi QQ, Shi SY, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su SS, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZQ, Sun ZT, Tang CJ, Tang GY, Tang J, Tang M, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Tian ZF, Uman I, Wan Y, Wang SJ, Wang B, Wang BL, Wang B, Wang DY, Wang F, Wang HJ, Wang HP, Wang JJ, Wang JP, Wang K, Wang LL, Wang M, Wang NY, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang XN, Wang Y, Wang YD, Wang YF, Wang YL, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, Wen YR, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YH, Wu YJ, Wu Z, Xia L, Xian XM, Xiang BH, Xiang T, Xiao D, Xiao GY, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu M, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu Y, Xu YC, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YF, Yang YX, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, Yin J, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu MC, Yu T, Yu XD, Yu YC, Yuan CZ, Yuan J, Yuan J, Yuan L, Yuan SC, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng SH, Zeng X, Zeng Y, Zeng YJ, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang H, Zhang HC, Zhang HH, Zhang HH, Zhang HQ, Zhang HR, Zhang HY, Zhang J, Zhang J, Zhang JJ, Zhang JL, Zhang JQ, Zhang JS, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang L, Zhang P, Zhang QY, Zhang RY, Zhang SH, Zhang S, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang Y, Zhang YT, Zhang YH, Zhang YM, Zhang Y, Zhang ZD, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhang ZZ, Zhao G, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao N, Zhao RP, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng BM, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou JY, Zhou LP, Zhou S, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhou ZC, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu KS, Zhu L, Zhu LX, Zhu SH, Zhu TJ, Zhu WD, Zhu YC, Zhu ZA, Zou JH, Zu J. Study of the Decay and Production Properties of D_{s1}(2536) and D_{s2}^{*}(2573). PHYSICAL REVIEW LETTERS 2024; 133:171903. [PMID: 39530816 DOI: 10.1103/physrevlett.133.171903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
The e^{+}e^{-}→D_{s}^{+}D_{s1}(2536)^{-} and e^{+}e^{-}→D_{s}^{+}D_{s2}^{*}(2573)^{-} processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946 GeV. The absolute branching fractions of D_{s1}(2536)^{-}→D[over ¯]^{*0}K^{-} and D_{s2}^{*}(2573)^{-}→D[over ¯]^{0}K^{-} are measured for the first time to be (35.9±4.8±3.5)% and (37.4±3.1±4.6)%, respectively. The e^{+}e^{-}→D_{s}^{+}D_{s1}(2536)^{-} and e^{+}e^{-}→D_{s}^{+}D_{s2}^{*}(2573)^{-} cross sections are measured, and a resonant structure at around 4.6 GeV with a width of 50 MeV is observed in both processes with a statistical significance of 7.2σ and 15σ, respectively. The state is observed for the first time in e^{+}e^{-}→D_{s}^{+}D_{s2}^{*}(2573)^{-} and could be the Y(4626) found by the Belle oration in the D_{s}^{+}D_{s1}(2536)^{-} final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75 GeV in both processes.
Collapse
|
16
|
Chen Z, Liu X, Guan J, Shi Y, Liu W, Peng Z, Hu J. Impact of COVID-19 Interventions on Respiratory and Intestinal Infectious Disease Notifications - Jiangsu Province, China, 2020-2023. China CDC Wkly 2024; 6:1059-1064. [PMID: 39502400 PMCID: PMC11532534 DOI: 10.46234/ccdcw2024.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Many measures implemented to control the coronavirus disease 2019 (COVID-19) pandemic have reshaped the epidemic patterns of other infectious diseases. This study estimated the impact of the COVID-19 pandemic on respiratory and intestinal infectious diseases and potential changes following reopening. Methods The optimal intervention and counterfactual models were selected from the seasonal autoregressive integrated moving average (SARIMA), neural network autoregression (NNAR), and hybrid models based on the minimum mean absolute percentage error (MAPE) in the test set. The relative change rate between the actual notification rate and that predicted by the optimal model was calculated for the entire COVID-19 epidemic prevention period and the "reopening" period. Results Compared with the predicted notification rate based on the counterfactual model, the total relative change rates for the 9 infectious diseases were -44.24%, respiratory infections (-55.41%), and intestinal infections (-26.59%) during 2020-2022. Compared with the predicted notification rate based on the intervention model, the total relative change rates were +247.98%, respiratory infections (+389.59%), and intestinal infections (+50.46%) in 2023. Among them, the relative increases in influenza (+499.98%) and hand-foot-mouth disease (HFMD) (+70.97%) were significant. Conclusions Measures taken in Jiangsu Province in response to COVID-19 effectively constrained the spread of respiratory and intestinal infectious diseases. Influenza and HFMD rebounded significantly after the lifting of COVID-19 intervention restrictions.
Collapse
|
17
|
Li L, Wang R, He L, Guo H, Fu L, Wang G, Wang J, Chen Z, Peng X, Lu X, Sui H, Jiang Y, Zang J, Gao L, Zhu Z. Evaluation of Angiotensin-Converting Enzyme 2 Expression In Vivo with Novel 68Ga-Labeled Peptides Originated from the Coronavirus Receptor-Binding Domain. ACS Pharmacol Transl Sci 2024; 7:3119-3130. [PMID: 39416971 PMCID: PMC11475584 DOI: 10.1021/acsptsci.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is not only a key to the renin-angiotensin-aldosterone system and related diseases, but also the main entry point on cell surfaces for certain coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. By analyzing the different key binding sites from the receptor-binding domain (RBD) of SARS-CoV and SARS-CoV-2, nine new ACE2-targeting peptides (A1 to A9) were designed, synthesized and connected with a chelator, 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA). NOTA-A1, NOTA-A2, NOTA-A4, NOTA-A5, and NOTA-A8 were successfully labeled with [68Ga]Ga3+ and were used for biological evaluation. [68Ga]Ga-NOTA-A2, [68Ga]Ga-NOTA-A5, and [68Ga]Ga-NOTA-A8 showed specific binding to ACE2 via cell assays, and their binding sites and binding capacity were calculated by molecular docking and molecular dynamics simulations. In tumor-bearing mice, A549 tumors were visualized 60 min postinjection of [68Ga]Ga-NOTA-A2, [68Ga]Ga-NOTA-A5, or [68Ga]Ga-NOTA-A8. These peptides also accumulated in the organs with high-level ACE2 expression, confirmed by immunohistochemical stain. Among them, [68Ga]Ga-NOTA-A5 exhibited the highest tumor uptake and tumor/background ratio, and it successfully tracked the increased ACE2 levels in mice tissues after excessive Losartan treatment. In a first-in-human study, the distribution of [68Ga]Ga-NOTA-A5 was evaluated with positron emission tomography/computed tomography (PET/CT) in three participants without adverse events. 68Ga-labeled peptides originated from the coronavirus RBD, with [68Ga]Ga-NOTA-A5 as a typical representative, seem to be safe and effective for the evaluation of ACE2 expression in vivo with PET/CT, facilitating further mechanism investigation and clinical evaluation of ACE2-related diseases.
Collapse
|
18
|
An FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Chen ZY, Cheng J, Cheng J, Cheng YC, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding XY, Ding YY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Dugas KV, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Marshall C, McDonald KT, McKeown RD, Meng Y, Napolitano J, Naumov D, Naumova E, Nguyen TMT, Ochoa-Ricoux JP, Olshevskiy A, Park J, Patton S, Peng JC, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Russell B, Steiner H, Sun JL, Tmej T, Treskov K, Tse WH, Tull CE, Tung YC, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wei W, Wen LJ, Whisnant K, White CG, Wong HLH, Worcester E, Wu DR, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JL, Zhang JW, Zhang QM, Zhang SQ, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Measurement of Electron Antineutrino Oscillation Amplitude and Frequency via Neutron Capture on Hydrogen at Daya Bay. PHYSICAL REVIEW LETTERS 2024; 133:151801. [PMID: 39454173 DOI: 10.1103/physrevlett.133.151801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/23/2024] [Indexed: 10/27/2024]
Abstract
This Letter reports the first measurement of the oscillation amplitude and frequency of reactor antineutrinos at Daya Bay via neutron capture on hydrogen using 1958 days of data. With over 3.6 million signal candidates, an optimized candidate selection, improved treatment of backgrounds and efficiencies, refined energy calibration, and an energy response model for the capture-on-hydrogen sensitive region, the relative ν[over ¯]_{e} rates and energy spectra variation among the near and far detectors gives sin^{2}2θ_{13}=0.0759_{-0.0049}^{+0.0050} and Δm_{32}^{2}=(2.72_{-0.15}^{+0.14})×10^{-3} eV^{2} assuming the normal neutrino mass ordering, and Δm_{32}^{2}=(-2.83_{-0.14}^{+0.15})×10^{-3} eV^{2} for the inverted neutrino mass ordering. This estimate of sin^{2}2θ_{13} is consistent with and essentially independent from the one obtained using the capture-on-gadolinium sample at Daya Bay. The combination of these two results yields sin^{2}2θ_{13}=0.0833±0.0022, which represents an 8% relative improvement in precision regarding the Daya Bay full 3158-day capture-on-gadolinium result.
Collapse
|
19
|
Li ZL, Pei S, Chen Z, Huang TY, Wang XD, Shen L, Chen X, Wang QQ, Wang DX, Ao YF. Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity. Nat Commun 2024; 15:8778. [PMID: 39389964 PMCID: PMC11467325 DOI: 10.1038/s41467-024-53048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Biocatalysis is an attractive approach for the synthesis of chiral pharmaceuticals and fine chemicals, but assessing and/or improving the enantioselectivity of biocatalyst towards target substrates is often time and resource intensive. Although machine learning has been used to reveal the underlying relationship between protein sequences and biocatalytic enantioselectivity, the establishment of substrate fitness space is usually disregarded by chemists and is still a challenge. Using 240 datasets collected in our previous works, we adopt chemistry and geometry descriptors and build random forest classification models for predicting the enantioselectivity of amidase towards new substrates. We further propose a heuristic strategy based on these models, by which the rational protein engineering can be efficiently performed to synthesize chiral compounds with higher ee values, and the optimized variant results in a 53-fold higher E-value comparing to the wild-type amidase. This data-driven methodology is expected to broaden the application of machine learning in biocatalysis research.
Collapse
|
20
|
Hu M, Yang C, Liu HH, Lu HX, Yao C, Xie QF, Chen YJ, Fu KY, Fang B, Zhu SS, Zhou Q, Chen ZY, Zhu YM, Zhang QB, Yan Y, Long X, Li ZY, Gan YH, Yu SB, Bai YX, Zhang Y, Wang YY, Lei J, Cheng Y, Liu CK, Cao Y, He DM, Wen N, Zhang SY, Chen MJ, Jiao GL, Liu XH, Jiang H, He Y, Shen P, Huang HT, Li YF, Zheng JS, Guo J, Zhao LS, Xu LQ. [Experts consensus on standard items of the cohort construction and quality control of temporomandibular joint diseases (2024)]. ZHONGHUA KOU QIANG YI XUE ZA ZHI = ZHONGHUA KOUQIANG YIXUE ZAZHI = CHINESE JOURNAL OF STOMATOLOGY 2024; 59:977-987. [PMID: 39344448 DOI: 10.3760/cma.j.cn112144-20240725-00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Temporomandibular joint (TMJ) diseases are common clinical conditions. The number of patients with TMJ diseases is large, and the etiology, epidemiology, disease spectrum, and treatment of the disease remain controversial and unknown. To understand and master the current situation of the occurrence, development and prevention of TMJ diseases, as well as to identify the patterns in etiology, incidence, drug sensitivity, and prognosis is crucial for alleviating patients'suffering.This will facilitate in-depth medical research, effective disease prevention measures, and the formulation of corresponding health policies. Cohort construction and research has an irreplaceable role in precise disease prevention and significant improvement in diagnosis and treatment levels. Large-scale cohort studies are needed to explore the relationship between potential risk factors and outcomes of TMJ diseases, and to observe disease prognoses through long-term follw-ups. The consensus aims to establish a standard conceptual frame work for a cohort study on patients with TMJ disease while providing ideas for cohort data standards to this condition. TMJ disease cohort data consists of both common data standards applicable to all specific disease cohorts as well as disease-specific data standards. Common data were available for each specific disease cohort. By integrating different cohort research resources, standard problems or study variables can be unified. Long-term follow-up can be performed using consistent definitions and criteria across different projects for better core data collection. It is hoped that this consensus will be facilitate the development cohort studies of TMJ diseases.
Collapse
|
21
|
Chen K, Lin H, Zhang F, Chen Z, Ying H, Cao L, Fang J, Zhu D, Liang K. Duodenal papilla radiomics-based prediction model for post-ERCP pancreatitis using machine learning: a retrospective multicohort study. Gastrointest Endosc 2024; 100:691-702.e9. [PMID: 38583542 DOI: 10.1016/j.gie.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND AND AIMS The duodenal papillae are the primary and essential pathway for ERCP, greatly determining its complexity and outcome. We investigated the association between papilla morphology and post-ERCP pancreatitis (PEP) and constructed a robust model for PEP prediction. METHODS We retrospectively enrolled patients who underwent ERCP in 2 centers from January 2019 to June 2022. Radiomic features of the papilla were extracted from endoscopic images with deep learning. Potential predictors and their importance were evaluated with 3 machine learning algorithms. A predictive model was developed using best subset selection by logistic regression, and its performance was evaluated in terms of discrimination, calibration, and clinical utility based on the area under curve (AUC) of the receiver-operating characteristic curve, calibration curve, and clinical decision curve, respectively. RESULTS From 2 centers, 2038 and 334 ERCP patients were enrolled in this study with PEP rates of 7.9% and 9.6%, respectively. The radiomic score was significantly associated with PEP and showed great diagnostic value (AUC, .755-.821). Six hub predictors were selected to conduct a predictive model. The radiomics-based model demonstrated excellent discrimination (AUC, .825-.857) and therapeutic benefits in the training, testing, and validation cohorts. The addition of the radiomic score significantly improved the diagnostic accuracy of the predictive model (net reclassification improvement, .151-.583 [P < .05]; integrated discrimination improvement, .097-.235 [P < .001]). CONCLUSIONS The radiomic signature of the papilla is a crucial independent predictor of PEP. The papilla radiomics-based model performs well for the clinical prediction of PEP.
Collapse
|
22
|
Wang S, Chen Z, Zhang X, Wu X, Wang Y, Zhang Q, Huang L, Cui X, Cai Y, Huang X, Xia J, Gu S, Li M, Zhan Q. Impact of corticosteroid doses on prognosis of severe and critical COVID-19 patients with Omicron variant infection: a propensity score matching study. Inflammopharmacology 2024; 32:3347-3356. [PMID: 39120772 PMCID: PMC11416397 DOI: 10.1007/s10787-024-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND There is lack of research on corticosteroid use for severe and critical COVID-19 patients with Omicron variant infection. METHODS This multi-center retrospective cohort study involved 1167 patients from 59 ICUs across the mainland of China diagnosed with severe or critical SARS-CoV-2 Omicron variant infection between November 1, 2022, and February 11, 2023. Patients were segregated into two groups based on their corticosteroid treatment-usual dose (equivalent prednisone dose 30-50 mg/day) and higher dose (equivalent prednisone dose > 50 mg/day). The primary outcome was 28-day ICU mortality. Propensity score matching was used to compare outcomes between cohorts. RESULTS After propensity score matching, 520 patients in the usual dose corticosteroid group and 260 patients in the higher dose corticosteroid group were included in the analysis, respectively. The mortality was significantly higher in the higher dose corticosteroid group (67.3%, 175/260) compared to the usual dose group (56.0%, 291/520). Logistic regression showed that higher doses of corticosteroids were significantly associated with increased mortality at 28-day (OR = 1.62,95% CI 1.19-2.21, p = 0.002) and mortality in ICU stay (OR = 1.66,95% CI 1.21-2.28, p = 0.002). Different types of corticosteroids did not affect the effect. CONCLUSIONS The study suggests that higher-dose corticosteroids may lead to a poorer prognosis for severe and critical COVID-19 patients with Omicron variant infection in the ICU. Further research is needed to determine the appropriate corticosteroid dosage for these patients.
Collapse
|
23
|
Ablikim M, Achasov MN, Adlarson P, Afedulidis O, Ai XC, Aliberti R, Amoroso A, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Bao HR, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Che GR, Chelkov G, Chen C, Chen CH, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SL, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Chen ZY, Choi SK, Chu X, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng CQ, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan ZH, Egorov P, Fan YH, Fang J, Fang J, Fang SS, Fang WX, Fang Y, Fang YQ, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Feng YT, Fischer K, Fritsch M, Fu CD, Fu JL, Fu YW, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Gutierrez J, Han KL, Han TT, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu BY, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Huang ZY, Hussain T, Hölzken F, Hüsken N, In der Wiesche N, Irshad M, Jackson J, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji W, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang D, Jiang HB, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao JK, Jiao Z, Jin S, Jin Y, Jing MQ, Jing XM, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kavatsyuk M, Ke BC, Khachatryan V, Khoukaz A, Kiuchi R, Kolcu OB, Kopf B, Kuessner M, Kui X, Kupsc A, Kühn W, Lane JJ, Larin P, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li QM, Li QX, Li R, Li SX, Li T, Li WD, Li WG, Li X, Li XH, Li XL, Li X, Li YG, Li ZJ, Li ZX, Liang C, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Liao YP, Libby J, Limphirat A, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu X, Liu XY, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZD, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma H, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma XT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Malde S, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Moses B, Muchnoi NY, Muskalla J, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu QL, Niu WD, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pei YP, Pelizaeus M, Peng HP, Peng YY, Peters K, Ping JL, Ping RG, Plura S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin JJ, Qin LQ, Qin XS, Qin ZH, Qiu JF, Qu SQ, Qu ZH, Redmer CF, Ren KJ, Rivetti A, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JL, Shi JY, Shi QQ, Shi RS, Shi SY, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZQ, Sun ZT, Tang CJ, Tang GY, Tang J, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Tian ZF, Uman I, Wan Y, Wang SJ, Wang B, Wang BL, Wang B, Wang DY, Wang F, Wang HJ, Wang JP, Wang K, Wang LL, Wang M, Wang M, Wang NY, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang XN, Wang Y, Wang YD, Wang YF, Wang YL, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei D, Wei DH, Weidner F, Wen SP, Wen YR, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YH, Wu YJ, Wu Z, Xia L, Xian XM, Xiang BH, Xiang T, Xiao D, Xiao GY, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yu XD, Yuan CZ, Yuan J, Yuan L, Yuan SC, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng SH, Zeng X, Zeng Y, Zeng YJ, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HC, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang J, Zhang J, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang YM, Zhang Y, Zhang Y, Zhang ZD, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao RP, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou JY, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. Search for Rare Decays of D_{s}^{+} to Final States π^{+}e^{+}e^{-}, ρ^{+}e^{+}e^{-}, π^{+}π^{0}e^{+}e^{-}, K^{+}π^{0}e^{+}e^{-}, and K_{S}^{0}π^{+}e^{+}e^{-}. PHYSICAL REVIEW LETTERS 2024; 133:121801. [PMID: 39373421 DOI: 10.1103/physrevlett.133.121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/21/2024] [Indexed: 10/08/2024]
Abstract
Using 7.33 fb^{-1} of e^{+}e^{-} collision data collected by the BESIII detector at center-of-mass energies in the range of sqrt[s]=4.128-4.226 GeV, we search for the rare decays D_{s}^{+}→h^{+}(h^{0})e^{+}e^{-}, where h represents a kaon or pion. By requiring the e^{+}e^{-} invariant mass to be consistent with a ϕ(1020), 0.98
Collapse
|
24
|
Cao S, Zan Q, Wang B, Fan X, Chen Z, Yan F. Efficacy of non-pharmacological treatments for knee osteoarthritis: A systematic review and network meta-analysis. Heliyon 2024; 10:e36682. [PMID: 39281434 PMCID: PMC11396061 DOI: 10.1016/j.heliyon.2024.e36682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose This study aims to conduct a network meta-analysis to compare the clinical efficacy of seven distinct non-pharmacological therapies for knee osteoarthritis. We hope that our research findings can provide reference for clinical practitioners in formulating treatment plans. Methods Through a computer-based search, we systematically retrieved randomized controlled trials (RCTs) on non-pharmacological therapies for knee osteoarthritis from eight databases, including CNKI, Wanfang, VIP, PubMed, Web of Science, Embase, Scopus, and The Cochrane Library. Following screening, data extraction, and methodological quality assessment, relevant data were included and analyzed using R 4.2.3 software. Results A comprehensive analysis of 24 RCTs involving 2582 patients encompassed seven diverse non-pharmacological therapies. The efficacy rankings, based on Visual Analog Scale (VAS) scores, were as follows: shock wave therapy > needle-knife > laser therapy > acupuncture > ultrasound > exercise > transcutaneous electrical nerve stimulation. Similarly, based on Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) total scores, the efficacy rankings were as follows: shock wave therapy > needle-knife > laser therapy > acupuncture > ultrasound > transcutaneous electrical nerve stimulation > exercise. Among the three WOMAC subscales, the efficacy rankings for non-pharmacological therapies were as follows: For stiffness: laser therapy > exercise > shock wave therapy > acupuncture > needle-knife > ultrasound > transcutaneous electrical nerve stimulation; For daily activities: shock wave therapy > laser therapy > needle-knife > acupuncture > ultrasound > transcutaneous electrical nerve stimulation > exercise; For pain: shock wave therapy > needle-knife > laser therapy > acupuncture > exercise > transcutaneous electrical nerve stimulation > ultrasound. Conclusion Based on the currently limited research, we can prioritize the use of shockwave therapy to treat patients with knee osteoarthritis. However, it is essential to emphasize that further rigorous and well-designed randomized controlled trials are necessary to validate the conclusions drawn from this study.
Collapse
|
25
|
Ablikim M, Achasov MN, Adlarson P, Afedulidis O, Ai XC, Aliberti R, Amoroso A, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Bao HR, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Che GR, Chelkov G, Chen C, Chen CH, Chen C, Chen G, Chen HS, Chen HY, Chen ML, Chen SJ, Chen SL, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Chen ZY, Choi SK, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng CQ, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan YY, Duan ZH, Egorov P, Fan YH, Fang J, Fang J, Fang SS, Fang WX, Fang Y, Fang YQ, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Feng YT, Fritsch M, Fu CD, Fu JL, Fu YW, Gao H, Gao XB, Gao YN, Gao Y, Garbolino S, Garzia I, Ge L, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Gutierrez J, Han KL, Han TT, Hanisch F, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu BY, Hu HM, Hu JF, Hu SL, Hu T, Hu Y, Hu ZM, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Huang YS, Hussain T, Hölzken F, Hüsken N, In der Wiesche N, Jackson J, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji W, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang D, Jiang HB, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao JK, Jiao Z, Jin S, Jin Y, Jing MQ, Jing XM, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kavatsyuk M, Ke BC, Khachatryan V, Khoukaz A, Kiuchi R, Kolcu OB, Kopf B, Kuessner M, Kui X, Kumar N, Kupsc A, Kühn W, Lane JJ, Lavezzi L, Lei TT, Lei ZH, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li K, Li KL, Li LJ, Li LK, Li L, Li MH, Li PR, Li QM, Li QX, Li R, Li SX, Li T, Li WD, Li WG, Li X, Li XH, Li XL, Li XY, Li XZ, Li YG, Li ZJ, Li ZY, Liang C, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao YP, Libby J, Limphirat A, Lin CC, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu F, Liu FH, Liu F, Liu GM, Liu H, Liu HB, Liu HH, Liu HM, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu X, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZD, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo JR, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma H, Ma HL, Ma JL, Ma LL, Ma LR, Ma MM, Ma QM, Ma RQ, Ma T, Ma XT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Malde S, Malik QA, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Moses B, Muchnoi NY, Muskalla J, Nefedov Y, Nerling F, Nie LS, Nikolaev IB, Ning Z, Nisar S, Niu QL, Niu WD, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peng YY, Peters K, Ping JL, Ping RG, Plura S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qiao XK, Qin JJ, Qin LQ, Qin LY, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu ZH, Redmer CF, Ren KJ, Rivetti A, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shang ZJ, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi H, Shi HC, Shi JL, Shi JY, Shi QQ, Shi SY, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su SS, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZQ, Sun ZT, Tang CJ, Tang GY, Tang J, Tang M, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Tian ZF, Uman I, Wan Y, Wang SJ, Wang B, Wang BL, Wang B, Wang DY, Wang F, Wang HJ, Wang JJ, Wang JP, Wang K, Wang LL, Wang M, Wang NY, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang XN, Wang Y, Wang YD, Wang YF, Wang YL, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, Wen YR, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YH, Wu YJ, Wu Z, Xia L, Xian XM, Xiang BH, Xiang T, Xiao D, Xiao GY, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu M, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu Y, Xu YC, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YF, Yang YX, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, Yin J, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu MC, Yu T, Yu XD, Yu YC, Yuan CZ, Yuan J, Yuan J, Yuan L, Yuan SC, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng SH, Zeng X, Zeng Y, Zeng YJ, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang H, Zhang HC, Zhang HH, Zhang HH, Zhang HQ, Zhang HR, Zhang HY, Zhang J, Zhang J, Zhang JJ, Zhang JL, Zhang JQ, Zhang JS, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang L, Zhang P, Zhang QY, Zhang RY, Zhang SH, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang Y, Zhang YT, Zhang YH, Zhang YM, Zhang Y, Zhang ZD, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhang ZZ, Zhao G, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao N, Zhao RP, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng BM, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou JY, Zhou LP, Zhou S, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhou ZC, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu KS, Zhu L, Zhu LX, Zhu SH, Zhu TJ, Zhu WD, Zhu YC, Zhu ZA, Zou JH, Zu J. Strong and Weak CP Tests in Sequential Decays of Polarized Σ^{0} Hyperons. PHYSICAL REVIEW LETTERS 2024; 133:101902. [PMID: 39303247 DOI: 10.1103/physrevlett.133.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
The J/ψ, ψ(3686)→Σ^{0}Σ[over ¯]^{0} processes and subsequent decays are studied using the world's largest J/ψ and ψ(3686) data samples collected with the BESIII detector. The parity-violating decay parameters of the decays Σ^{0}→Λγ and Σ[over ¯]^{0}→Λ[over ¯]γ, α_{Σ^{0}}=-0.0017±0.0021±0.0018 and α[over ¯]_{Σ^{0}}=0.0021±0.0020±0.0022, are measured for the first time. The strong CP symmetry is tested in the decays of the Σ^{0} hyperons for the first time by measuring the asymmetry A_{CP}^{Σ}=α_{Σ^{0}}+α[over ¯]_{Σ^{0}}=(0.4±2.9±1.3)×10^{-3}. The weak CP test is performed in the subsequent decays of their daughter particles Λ and Λ[over ¯]. Also for the first time, the transverse polarizations of the Σ^{0} hyperons in J/ψ and ψ(3686) decays are observed with opposite directions, and the ratios between the S-wave and D-wave contributions of the J/ψ, ψ(3686)→Σ^{0}Σ[over ¯]^{0} decays are obtained. These results are crucial to understand the decay dynamics of the charmonium states and the production mechanism of the Σ^{0}-Σ[over ¯]^{0} pairs.
Collapse
|