1
|
Ahmed W, Bertsch PM, Angel N, Bibby K, Bivins A, Dierens L, Edson J, Ehret J, Gyawali P, Hamilton KA, Hosegood I, Hugenholtz P, Jiang G, Kitajima M, Sichani HT, Shi J, Shimko KM, Simpson SL, Smith WJM, Symonds EM, Thomas KV, Verhagen R, Zaugg J, Mueller JF. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. J Travel Med 2020; 27:taaa116. [PMID: 32662867 PMCID: PMC7454825 DOI: 10.1093/jtm/taaa116] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be an important source of information for coronavirus disease 2019 (COVID-19) management during and after the pandemic. Currently, governments and transportation industries around the world are developing strategies to minimize SARS-CoV-2 transmission associated with resuming activity. This study investigated the possible use of SARS-CoV-2 RNA wastewater surveillance from airline and cruise ship sanitation systems and its potential use as a COVID-19 public health management tool. METHODS Aircraft and cruise ship wastewater samples (n = 21) were tested for SARS-CoV-2 using two virus concentration methods, adsorption-extraction by electronegative membrane (n = 13) and ultrafiltration by Amicon (n = 8), and five assays using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and RT-droplet digital PCR (RT-ddPCR). Representative qPCR amplicons from positive samples were sequenced to confirm assay specificity. RESULTS SARS-CoV-2 RNA was detected in samples from both aircraft and cruise ship wastewater; however concentrations were near the assay limit of detection. The analysis of multiple replicate samples and use of multiple RT-qPCR and/or RT-ddPCR assays increased detection sensitivity and minimized false-negative results. Representative qPCR amplicons were confirmed for the correct PCR product by sequencing. However, differences in sensitivity were observed among molecular assays and concentration methods. CONCLUSIONS The study indicates that surveillance of wastewater from large transport vessels with their own sanitation systems has potential as a complementary data source to prioritize clinical testing and contact tracing among disembarking passengers. Importantly, sampling methods and molecular assays must be further optimized to maximize detection sensitivity. The potential for false negatives by both wastewater testing and clinical swab testing suggests that the two strategies could be employed together to maximize the probability of detecting SARS-CoV-2 infections amongst passengers.
Collapse
|
research-article |
5 |
136 |
2
|
Phillips RD, Reiter N, Peakall R. Orchid conservation: from theory to practice. ANNALS OF BOTANY 2020; 126:345-362. [PMID: 32407498 PMCID: PMC7424752 DOI: 10.1093/aob/mcaa093] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Given the exceptional diversity of orchids (26 000+ species), improving strategies for the conservation of orchids will benefit a vast number of taxa. Furthermore, with rapidly increasing numbers of endangered orchids and low success rates in orchid conservation translocation programmes worldwide, it is evident that our progress in understanding the biology of orchids is not yet translating into widespread effective conservation. SCOPE We highlight unusual aspects of the reproductive biology of orchids that can have important consequences for conservation programmes, such as specialization of pollination systems, low fruit set but high seed production, and the potential for long-distance seed dispersal. Further, we discuss the importance of their reliance on mycorrhizal fungi for germination, including quantifying the incidence of specialized versus generalized mycorrhizal associations in orchids. In light of leading conservation theory and the biology of orchids, we provide recommendations for improving population management and translocation programmes. CONCLUSIONS Major gains in orchid conservation can be achieved by incorporating knowledge of ecological interactions, for both generalist and specialist species. For example, habitat management can be tailored to maintain pollinator populations and conservation translocation sites selected based on confirmed availability of pollinators. Similarly, use of efficacious mycorrhizal fungi in propagation will increase the value of ex situ collections and likely increase the success of conservation translocations. Given the low genetic differentiation between populations of many orchids, experimental genetic mixing is an option to increase fitness of small populations, although caution is needed where cytotypes or floral ecotypes are present. Combining demographic data and field experiments will provide knowledge to enhance management and translocation success. Finally, high per-fruit fecundity means that orchids offer powerful but overlooked opportunities to propagate plants for experiments aimed at improving conservation outcomes. Given the predictions of ongoing environmental change, experimental approaches also offer effective ways to build more resilient populations.
Collapse
|
review-article |
5 |
44 |
3
|
Dini S, Zaloumis S, Cao P, Price RN, Fowkes FJI, van der Pluijm RW, McCaw JM, Simpson JA. Investigating the Efficacy of Triple Artemisinin-Based Combination Therapies for Treating Plasmodium falciparum Malaria Patients Using Mathematical Modeling. Antimicrob Agents Chemother 2018; 62:e01068-18. [PMID: 30150462 PMCID: PMC6201091 DOI: 10.1128/aac.01068-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/07/2018] [Indexed: 01/13/2023] Open
Abstract
The first line treatment for uncomplicated falciparum malaria is artemisinin-based combination therapy (ACT), which consists of an artemisinin derivative coadministered with a longer-acting partner drug. However, the spread of Plasmodium falciparum resistant to both artemisinin and its partner drugs poses a major global threat to malaria control activities. Novel strategies are needed to retard and reverse the spread of these resistant parasites. One such strategy is triple artemisinin-based combination therapy (TACT). We developed a mechanistic within-host mathematical model to investigate the efficacy of a TACT (dihydroartemisinin-piperaquine-mefloquine [DHA-PPQ-MQ]) for use in South-East Asia, where DHA and PPQ resistance are now increasingly prevalent. Comprehensive model simulations were used to explore the degree to which the underlying resistance influences the parasitological outcomes. The effect of MQ dosing on the efficacy of TACT was quantified at various degrees of DHA and PPQ resistance. To incorporate interactions between drugs, a novel model is presented for the combined effect of DHA-PPQ-MQ, which illustrates how the interactions can influence treatment efficacy. When combined with a standard regimen of DHA and PPQ, the administration of three 6.7-mg/kg doses of MQ was sufficient to achieve parasitological efficacy greater than that currently recommended by World Health Organization (WHO) guidelines. As a result, three 8.3-mg/kg doses of MQ, the current WHO-recommended dosing regimen for MQ, combined with DHA-PPQ, has the potential to produce high cure rates in regions where resistance to DHA-PPQ has emerged.
Collapse
|
research-article |
7 |
39 |
4
|
Ramanan S, Roquet D, Goldberg ZL, Hodges JR, Piguet O, Irish M, Lambon Ralph MA. Establishing two principal dimensions of cognitive variation in logopenic progressive aphasia. Brain Commun 2020; 2:fcaa125. [PMID: 33376980 PMCID: PMC7750924 DOI: 10.1093/braincomms/fcaa125] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
Logopenic progressive aphasia is a neurodegenerative syndrome characterized by sentence repetition and naming difficulties arising from left-lateralized temporoparietal atrophy. Clinical descriptions of logopenic progressive aphasia largely concentrate on profiling language deficits, however, accumulating evidence points to the presence of cognitive deficits even on tasks with minimal language demands. Although non-linguistic cognitive deficits in logopenic progressive aphasia are thought to scale with disease severity, patients at discrete stages of language dysfunction display overlapping cognitive profiles, suggesting individual-level variation in cognitive performance, independent of primary language dysfunction. To address this issue, we used principal component analysis to decompose the individual-level variation in cognitive performance in 43 well-characterized logopenic progressive aphasia patients who underwent multi-domain neuropsychological assessments and structural neuroimaging. The principal component analysis solution revealed the presence of two, statistically independent factors, providing stable and clinically intuitive explanations for the majority of variance in cognitive performance in the syndrome. Factor 1 reflected 'speech production and verbal memory' deficits which typify logopenic progressive aphasia. Systematic variations were also confirmed on a second, orthogonal factor mainly comprising visuospatial and executive processes. Adopting a case-comparison approach, we further demonstrate that pairs of patients with comparable Factor 1 scores, regardless of their severity, diverge considerably on visuo-executive test performance, underscoring the inter-individual variability in cognitive profiles in comparably 'logopenic' patients. Whole-brain voxel-based morphometry analyses revealed that speech production and verbal memory factor scores correlated with left middle frontal gyrus, while visuospatial and executive factor scores were associated with grey matter intensity of right-lateralized temporoparietal, middle frontal regions and their underlying white matter connectivity. Importantly, logopenic progressive aphasia patients with poorer visuospatial and executive factor scores demonstrated greater right-lateralized temporoparietal and frontal atrophy. Our findings demonstrate the inherent variation in cognitive performance at an individual- and group-level in logopenic progressive aphasia, suggesting the presence of a genuine co-occurring cognitive impairment that is statistically independent of language function and disease severity.
Collapse
|
research-article |
5 |
22 |
5
|
Gunawan D, Zhang J, Li Q, Toe CY, Scott J, Antonietti M, Guo J, Amal R. Materials Advances in Photocatalytic Solar Hydrogen Production: Integrating Systems and Economics for a Sustainable Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404618. [PMID: 38853427 DOI: 10.1002/adma.202404618] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Photocatalytic solar hydrogen generation, encompassing both overall water splitting and organic reforming, presents a promising avenue for green hydrogen production. This technology holds the potential for reduced capital costs in comparison to competing methods like photovoltaic-electrocatalysis and photoelectrocatalysis, owing to its simplicity and fewer auxiliary components. However, the current solar-to-hydrogen efficiency of photocatalytic solar hydrogen production has predominantly remained low at ≈1-2% or lower, mainly due to curtailed access to the entire solar spectrum, thus impeding practical application of photocatalytic solar hydrogen production. This review offers an integrated, multidisciplinary perspective on photocatalytic solar hydrogen production. Specifically, the review presents the existing approaches in photocatalyst and system designs aimed at significantly boosting the solar-to-hydrogen efficiency, while also considering factors of cost and scalability of each approach. In-depth discussions extending beyond the efficacy of material and system design strategies are particularly vital to identify potential hurdles in translating photocatalysis research to large-scale applications. Ultimately, this review aims to provide understanding and perspective of feasible pathways for commercializing photocatalytic solar hydrogen production technology, considering both engineering and economic standpoints.
Collapse
|
Review |
1 |
17 |
6
|
Zhang M, Gong S, Hakobyan K, Gao Z, Shao Z, Peng S, Wu S, Hao X, Jiang Z, Wong EH, Liang K, Wang CH, Cheng W, Xu J. Biomimetic Electronic Skin through Hierarchical Polymer Structural Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309006. [PMID: 38072658 PMCID: PMC10870077 DOI: 10.1002/advs.202309006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 02/17/2024]
Abstract
Human skin comprises multiple hierarchical layers that perform various functions such as protection, sensing, and structural support. Developing electronic skin (E-skin) with similar properties has broad implications in health monitoring, prosthetics, and soft robotics. While previous efforts have predominantly concentrated on sensory capabilities, this study introduces a hierarchical polymer system that not only structurally resembles the epidermis-dermis bilayer structure of skin but also encompasses sensing functions. The system comprises a polymeric hydrogel, representing the "dermis", and a superimposed nanoporous polymer film, forming the "epidermis". Within the film, interconnected nanoparticles mimic the arrangement of interlocked corneocytes within the epidermis. The fabrication process employs a robust in situ interfacial precipitation polymerization of specific water-soluble monomers that become insoluble during polymerization. This process yields a hybrid layer establishing a durable interface between the film and hydrogel. Beyond the structural mimicry, this hierarchical structure offers functionalities resembling human skin, which includes (1) water loss protection of hydrogel by tailoring the hydrophobicity of the upper polymer film; (2) tactile sensing capability via self-powered triboelectric nanogenerators; (3) built-in gold nanowire-based resistive sensor toward temperature and pressure sensing. This hierarchical polymeric approach represents a potent strategy to replicate both the structure and functions of human skin in synthetic designs.
Collapse
|
research-article |
1 |
7 |
7
|
Losso A, Challis A, Gauthey A, Nolan RH, Hislop S, Roff A, Boer MM, Jiang M, Medlyn BE, Choat B. Canopy dieback and recovery in Australian native forests following extreme drought. Sci Rep 2022; 12:21608. [PMID: 36517498 PMCID: PMC9751299 DOI: 10.1038/s41598-022-24833-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
In 2019, south-eastern Australia experienced its driest and hottest year on record, resulting in massive canopy dieback events in eucalypt dominated forests. A subsequent period of high precipitation in 2020 provided a rare opportunity to quantify the impacts of extreme drought and consequent recovery. We quantified canopy health and hydraulic impairment (native percent loss of hydraulic conductivity, PLC) of 18 native tree species growing at 15 sites that were heavily impacted by the drought both during and 8-10 months after the drought. Most species exhibited high PLC during drought (PLC:65.1 ± 3.3%), with no clear patterns across sites or species. Heavily impaired trees (PLC > 70%) showed extensive canopy browning. In the post-drought period, most surviving trees exhibited hydraulic recovery (PLC:26.1 ± 5.1%), although PLC remained high in some trees (50-70%). Regained hydraulic function (PLC < 50%) corresponded to decreased canopy browning indicating improved tree health. Similar drought (37.1 ± 4.2%) and post-drought (35.1 ± 4.4%) percentages of basal area with dead canopy suggested that trees with severely compromised canopies immediately after drought were not able to recover. This dataset provides insights into the impacts of severe natural drought on the health of mature trees, where hydraulic failure is a major contributor in canopy dieback and tree mortality during extreme drought events.
Collapse
|
research-article |
3 |
7 |
8
|
Sheppard EJ, Hurd CL, Britton DD, Reed DC, Bach LT. Seaweed biogeochemistry: Global assessment of C:N and C:P ratios and implications for ocean afforestation. JOURNAL OF PHYCOLOGY 2023; 59:879-892. [PMID: 37596958 DOI: 10.1111/jpy.13381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/04/2023] [Accepted: 07/16/2023] [Indexed: 08/21/2023]
Abstract
Algal carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P) ratios are fundamental for understanding many oceanic biogeochemical processes, such as nutrient flux and climate regulation. We synthesized literature data (444 species, >400 locations) and collected original samples from Tasmania, Australia (51 species, 10 locations) to update the global ratios of seaweed carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P). The updated global mean molar ratio for seaweed C:N is 20 (ranging from 6 to 123) and for C:P is 801 (ranging from 76 to 4102). The C:N and C:P ratios were significantly influenced by seawater inorganic nutrient concentrations and seasonality. Additionally, C:N ratios varied by phyla. Brown seaweeds (Ochrophyta, Phaeophyceae) had the highest mean C:N of 27.5 (range: 7.6-122.5), followed by green seaweeds (Chlorophyta) of 17.8 (6.2-54.3) and red seaweeds (Rhodophyta) of 14.8 (5.6-77.6). We used the updated C:N and C:P values to compare seaweed tissue stoichiometry with the most recently reported values for plankton community stoichiometry. Our results show that seaweeds have on average 2.8 and 4.0 times higher C:N and C:P than phytoplankton, indicating seaweeds can assimilate more carbon in their biomass for a given amount of nutrient resource. The stoichiometric comparison presented herein is central to the discourse on ocean afforestation (the deliberate replacement of phytoplankton with seaweeds to enhance the ocean biological carbon sink) by contributing to the understanding of the impact of nutrient reallocation from phytoplankton to seaweeds under large-scale seaweed cultivation.
Collapse
|
|
2 |
6 |
9
|
Wu JF, Zou Z, Pu B, Ladenstein L, Lin S, Xie W, Li S, He B, Fan Y, Pang WK, Wilkening HMR, Guo X, Xu C, Zhang T, Shi S, Liu J. Liquid-Like Li-Ion Conduction in Oxides Enabling Anomalously Stable Charge Transport across the Li/Electrolyte Interface in All-Solid-State Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303730. [PMID: 37358065 DOI: 10.1002/adma.202303730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Indexed: 06/27/2023]
Abstract
The softness of sulfur sublattice and rotational PS4 tetrahedra in thiophosphates result in liquid-like ionic conduction, leading to enhanced ionic conductivities and stable electrode/thiophosphate interfacial ionic transport. However, the existence of liquid-like ionic conduction in rigid oxides remains unclear, and modifications are deemed necessary to achieve stable Li/oxide solid electrolyte interfacial charge transport. In this study, by combining the neutron diffraction survey, geometrical analysis, bond valence site energy analysis, and ab initio molecular dynamics simulation, 1D liquid-like Li-ion conduction is discovered in LiTa2 PO8 and its derivatives, wherein Li-ion migration channels are connected by four- or five-fold oxygen-coordinated interstitial sites. This conduction features a low activation energy (0.2 eV) and short mean residence time (<1 ps) of Li ions on the interstitial sites, originating from the Li-O polyhedral distortion and Li-ion correlation, which are controlled by doping strategies. The liquid-like conduction enables a high ionic conductivity (1.2 mS cm-1 at 30 °C), and a 700 h anomalously stable cycling under 0.2 mA cm-2 for Li/LiTa2 PO8 /Li cells without interfacial modifications. These findings provide principles for the future discovery and design of improved solid electrolytes that do not require modifications to the Li/solid electrolyte interface to achieve stable ionic transport.
Collapse
|
|
2 |
6 |
10
|
Ramanan S, El-Omar H, Roquet D, Ahmed RM, Hodges JR, Piguet O, Lambon Ralph MA, Irish M. Mapping behavioural, cognitive and affective transdiagnostic dimensions in frontotemporal dementia. Brain Commun 2023; 5:fcac344. [PMID: 36687395 PMCID: PMC9847565 DOI: 10.1093/braincomms/fcac344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Two common clinical variants of frontotemporal dementia are the behavioural variant frontotemporal dementia, presenting with behavioural and personality changes attributable to prefrontal atrophy, and semantic dementia, displaying early semantic dysfunction primarily due to anterior temporal degeneration. Despite representing independent diagnostic entities, mounting evidence indicates overlapping cognitive-behavioural profiles in these syndromes, particularly with disease progression. Why such overlap occurs remains unclear. Understanding the nature of this overlap, however, is essential to improve early diagnosis, characterization and management of those affected. Here, we explored common cognitive-behavioural and neural mechanisms contributing to heterogeneous frontotemporal dementia presentations, irrespective of clinical diagnosis. This transdiagnostic approach allowed us to ascertain whether symptoms not currently considered core to these two syndromes are present in a significant proportion of cases and to explore the neural basis of clinical heterogeneity. Sixty-two frontotemporal dementia patients (31 behavioural variant frontotemporal dementia and 31 semantic dementia) underwent comprehensive neuropsychological, behavioural and structural neuroimaging assessments. Orthogonally rotated principal component analysis of neuropsychological and behavioural data uncovered eight statistically independent factors explaining the majority of cognitive-behavioural performance variation in behavioural variant frontotemporal dementia and semantic dementia. These factors included Behavioural changes, Semantic dysfunction, General Cognition, Executive function, Initiation, Disinhibition, Visuospatial function and Affective changes. Marked individual-level overlap between behavioural variant frontotemporal dementia and semantic dementia was evident on the Behavioural changes, General Cognition, Initiation, Disinhibition and Affective changes factors. Compared to behavioural variant frontotemporal dementia, semantic dementia patients displayed disproportionate impairment on the Semantic dysfunction factor, whereas greater impairment on Executive and Visuospatial function factors was noted in behavioural variant frontotemporal dementia. Both patient groups showed comparable magnitude of atrophy to frontal regions, whereas severe temporal lobe atrophy was characteristic of semantic dementia. Whole-brain voxel-based morphometry correlations with emergent factors revealed associations between fronto-insular and striatal grey matter changes with Behavioural, Executive and Initiation factor performance, bilateral temporal atrophy with Semantic dysfunction factor scores, parietal-subcortical regions with General Cognitive performance and ventral temporal atrophy associated with Visuospatial factor scores. Together, these findings indicate that cognitive-behavioural overlap (i) occurs systematically in frontotemporal dementia; (ii) varies in a graded manner between individuals and (iii) is associated with degeneration of different neural systems. Our findings suggest that phenotypic heterogeneity in frontotemporal dementia syndromes can be captured along continuous, multidimensional spectra of cognitive-behavioural changes. This has implications for the diagnosis of both syndromes amidst overlapping features as well as the design of symptomatic treatments applicable to multiple syndromes.
Collapse
|
research-article |
2 |
3 |
11
|
Dai X, Zhang J, Bao X, Guo Y, Jin Y, Yang C, Zhang H, Liu L, Gao Y, Ye C, Wu W, Liu C, Zhao CX, Sheng J, Ren E, Li H, Fang W, Wu B, Ruan J, Gu Z, Chen D, Zhao P. Induction of Tumor Ferroptosis-Dependent Immunity via an Injectable Attractive Pickering Emulsion Gel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303542. [PMID: 37192546 DOI: 10.1002/adma.202303542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 05/18/2023]
Abstract
The combination of ferroptosis inducers and immune checkpoint blockade can enhance antitumor effects. However, the efficacy in tumors with low immunogenicity requires further investigation. In this work, a water-in-oil Pickering emulsion gel is developed to deliver (1S, 3R)-RSL-3 (RSL-3), a ferroptosis inducer dissolved in iodized oil, and programmed death-1 (PD-1) antibody, the most commonly used immune checkpoint inhibitor dissolved in water, with optimal characteristics (RSL-3 + PD-1@gel). Tumor lipase degrades the continuous oil phase, which results in the slow release of RSL-3 and PD-1 antibody and a notable antitumor effect against low-immunogenic hepatocellular carcinoma and pancreatic cancer. Intriguingly, the RSL-3 + PD-1@gel induces ferroptosis of tumor cells, resulting in antitumor immune response via accumulation of helper T lymphocyte cells and cytotoxic T cells. Additionally, the single-cell sequence profiling analysis during tumor treatment reveals the induction of ferroptosis in tumor cells together with strong antitumor immune response in ascites.
Collapse
|
|
2 |
3 |
12
|
Ranaldi S, Naaim A, Marchis CD, Robert T, Dumas R, Conforto S, Frossard L. Walking ability of individuals fitted with transfemoral bone-anchored prostheses: A comparative study of gait parameters. Clin Rehabil 2023; 37:1670-1683. [PMID: 37350084 PMCID: PMC10580681 DOI: 10.1177/02692155231183779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE This study presents the walking abilities of participants fitted with transfemoral bone-anchored prostheses using a total of 14 gait parameters. DESIGN Two-centre retrospective cross-sectional comparative study. SETTING Research facilities equipped with tridimensional motion capture systems. PARTICIPANTS Two control arms included eight able-bodied participants arm (54 ± 9 years, 1.75 ± 0.07 m, 76 ± 7 kg) and nine participants fitted with transfemoral socket-suspended prostheses arm (59 ± 9 years, 1.73 ± 0.07 m, 80 ± 16 kg). The intervention arm included nine participants fitted with transfemoral bone-anchored prostheses arm (51 ± 13 years, 1.78 ± 0.09 m, 87.3 ± 16.1 kg). INTERVENTION Fitting of transfemoral bone-anchored prostheses. MAIN MEASURES Comparisons were performed for two spatio-temporal, three spatial and nine temporal gait parameters. RESULTS The cadence and speed of walking were 107 ± 6 steps/min and 1.23 ± 0.19 m/s for the able-bodied participants arm, 88 ± 7 steps/min and 0.87 ± 0.17 m/s for the socket-suspended prosthesis arm, and 96 ± 6 steps/min and 1.03 ± 0.17 m/s for bone-anchored prosthesis arm, respectively. Able-bodied participants and bone-anchored prosthesis arms were comparable in age, height, and body mass index as well as cadence and speed of walking, but the able-bodied participant arm showed a swing phase 31% shorter. Bone-anchored and socket-suspended prostheses arms were comparable for age, height, mass, and body mass index as well as cadence and speed of walking, but the bone-anchored prosthesis arm showed a step width and duration of double support in seconds 65% and 41% shorter, respectively. CONCLUSIONS Bone-anchored and socket-suspended prostheses restored equally well the gait parameters at a self-selected speed. This benchmark data provides new insights into the walking ability of individuals using transfemoral bionics bone-anchored prostheses.
Collapse
|
research-article |
2 |
2 |
13
|
Ding L, Shan X, Wang D, Liu B, Du Z, Di X, Chen C, Maddahfar M, Zhang L, Shi Y, Reece P, Halkon B, Aharonovich I, Xu X, Wang F. Lanthanide Ion Resonance-Driven Rayleigh Scattering of Nanoparticles for Dual-Modality Interferometric Scattering Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203354. [PMID: 35975425 PMCID: PMC9661846 DOI: 10.1002/advs.202203354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Light scattering from nanoparticles is significant in nanoscale imaging, photon confinement. and biosensing. However, engineering the scattering spectrum, traditionally by modifying the geometric feature of particles, requires synthesis and fabrication with nanometre accuracy. Here it is reported that doping lanthanide ions can engineer the scattering properties of low-refractive-index nanoparticles. When the excitation wavelength matches the ion resonance frequency of lanthanide ions, the polarizability and the resulted scattering cross-section of nanoparticles are dramatically enhanced. It is demonstrated that these purposely engineered nanoparticles can be used for interferometric scattering (iSCAT) microscopy. Conceptually, a dual-modality iSCAT microscopy is further developed to identify different nanoparticle types in living HeLa cells. The work provides insight into engineering the scattering features by doping elements in nanomaterials, further inspiring exploration of the geometry-independent scattering modulation strategy.
Collapse
|
research-article |
3 |
|
14
|
Towler A, Dunn JD, Castro Martínez S, Moreton R, Eklöf F, Ruifrok A, Kemp RI, White D. Diverse types of expertise in facial recognition. Sci Rep 2023; 13:11396. [PMID: 37452069 PMCID: PMC10349110 DOI: 10.1038/s41598-023-28632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2023] [Indexed: 07/18/2023] Open
Abstract
Facial recognition errors can jeopardize national security, criminal justice, public safety and civil rights. Here, we compare the most accurate humans and facial recognition technology in a detailed lab-based evaluation and international proficiency test for forensic scientists involving 27 forensic departments from 14 countries. We find striking cognitive and perceptual diversity between naturally skilled super-recognizers, trained forensic examiners and deep neural networks, despite them achieving equivalent accuracy. Clear differences emerged in super-recognizers' and forensic examiners' perceptual processing, errors, and response patterns: super-recognizers were fast, biased to respond 'same person' and misidentified people with extreme confidence, whereas forensic examiners were slow, unbiased and strategically avoided misidentification errors. Further, these human experts and deep neural networks disagreed on the similarity of faces, pointing to differences in their representations of faces. Our findings therefore reveal multiple types of facial recognition expertise, with each type lending itself to particular facial recognition roles in operational settings. Finally, we show that harnessing the diversity between individual experts provides a robust method of maximizing facial recognition accuracy. This can be achieved either via collaboration between experts in forensic laboratories, or most promisingly, by statistical fusion of match scores provided by different types of expert.
Collapse
|
research-article |
2 |
|
15
|
Dawson HRS, England MH, Morrison AK, Tamsitt V, Fraser CI. Floating debris and organisms can raft to Antarctic coasts from all major Southern Hemisphere landmasses. GLOBAL CHANGE BIOLOGY 2024; 30:e17467. [PMID: 39168490 DOI: 10.1111/gcb.17467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024]
Abstract
Antarctica's unique marine ecosystems are threatened by the arrival of non-native marine species on rafting ocean objects. The harsh environmental conditions in Antarctica prevent the establishment of many such species, but warming around the continent and the opening up of ice-free regions may already be reducing these barriers. Although recent genomic work has revealed that rafts-potentially carrying diverse coastal passengers-reach Antarctica from sub-Antarctic islands, Antarctica's vulnerability to incursions from Southern Hemisphere continents remains unknown. Here we use 0.1° global ocean model simulations to explore whether drift connections exist between more northern, temperate landmasses and the Antarctic coastline. We show that passively floating objects can drift to Antarctica not only from sub-Antarctic islands, but also from continental locations north of the Subtropical Front including Australia, South Africa, South America and Zealandia. We find that the Antarctic Peninsula is the region at highest risk for non-native species introductions arriving by natural oceanic dispersal, highlighting the vulnerability of this region, which is also at risk from introductions via ship traffic and rapid warming. The widespread connections with sub-Antarctic and temperate landmasses, combined with an increasing abundance of marine anthropogenic rafting vectors, poses a growing risk to Antarctic marine ecosystems, especially as environmental conditions around Antarctica are projected to become more suitable for non-native species in the future.
Collapse
|
|
1 |
|
16
|
Cao Z, Chen L, Cheng Z, Qiu W. Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6383. [PMID: 34771910 PMCID: PMC8585248 DOI: 10.3390/ma14216383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Binary Iron selenide (FeSe) thin films have been widely studied for years to unveil the high temperature superconductivity in iron-based superconductors. However, the origin of superconducting transition in this unconventional system is still under debate and worth deep investigations. In the present work, the transition from insulator to superconductor was achieved in non-superconducting FeSe ultrathin films (~8 nm) grown on calcium fluoride substrates via a simple in-situ Mg-coating by a pulsed laser deposition technique. The Mg-coated FeSe film with an optimized amount of Mg exhibited a superconducting critical temperature as 9.7 K and an upper critical field as 30.9 T. Through systematic characterizations on phase identification, carrier transport behavior and high-resolution microstructural features, the revival of superconductivity in FeSe ultrathin films is mostly attributed to the highly crystallized FeSe and extra electron doping received from external Mg-coating process. Although the top few FeSe layers are incorporated with Mg, most FeSe layers are intact and protected by a stable magnesium oxide layer. This work provides a new strategy to induce superconductivity in FeSe films with non-superconducting behavior, which might contribute to a more comprehensive understanding of iron-based superconductivity and the benefit to downstream applications such as magnetic resonance imaging, high-field magnets and electrical cables.
Collapse
|
research-article |
4 |
|
17
|
Hrmova M, Zimmer J, Bulone V, Fincher GB. Enzymes in 3D: Synthesis, remodelling, and hydrolysis of cell wall (1,3;1,4)-β-glucans. PLANT PHYSIOLOGY 2023; 194:33-50. [PMID: 37594400 PMCID: PMC10762513 DOI: 10.1093/plphys/kiad415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 08/19/2023]
Abstract
Recent breakthroughs in structural biology have provided valuable new insights into enzymes involved in plant cell wall metabolism. More specifically, the molecular mechanism of synthesis of (1,3;1,4)-β-glucans, which are widespread in cell walls of commercially important cereals and grasses, has been the topic of debate and intense research activity for decades. However, an inability to purify these integral membrane enzymes or apply transgenic approaches without interpretative problems associated with pleiotropic effects has presented barriers to attempts to define their synthetic mechanisms. Following the demonstration that some members of the CslF sub-family of GT2 family enzymes mediate (1,3;1,4)-β-glucan synthesis, the expression of the corresponding genes in a heterologous system that is free of background complications has now been achieved. Biochemical analyses of the (1,3;1,4)-β-glucan synthesized in vitro, combined with 3-dimensional (3D) cryogenic-electron microscopy and AlphaFold protein structure predictions, have demonstrated how a single CslF6 enzyme, without exogenous primers, can incorporate both (1,3)- and (1,4)-β-linkages into the nascent polysaccharide chain. Similarly, 3D structures of xyloglucan endo-transglycosylases and (1,3;1,4)-β-glucan endo- and exohydrolases have allowed the mechanisms of (1,3;1,4)-β-glucan modification and degradation to be defined. X-ray crystallography and multi-scale modeling of a broad specificity GH3 β-glucan exohydrolase recently revealed a previously unknown and remarkable molecular mechanism with reactant trajectories through which a polysaccharide exohydrolase can act with a processive action pattern. The availability of high-quality protein 3D structural predictions should prove invaluable for defining structures, dynamics, and functions of other enzymes involved in plant cell wall metabolism in the immediate future.
Collapse
|
review-article |
2 |
|
18
|
DiSciullo RA, Forsman AM, Fitak RR, Hunt J, Nietlisbach P, Thompson CF, Sakaluk SK. Male song structure predicts offspring recruitment to the breeding population in a migratory bird. Evolution 2024; 78:1054-1066. [PMID: 38441178 PMCID: PMC11135616 DOI: 10.1093/evolut/qpae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 05/30/2024]
Abstract
Bird song is a classic example of a sexually selected trait, but much of the work relating individual song components to fitness has not accounted for song typically being composed of multiple, often-correlated components, necessitating a multivariate approach. We explored the role of sexual selection in shaping the complex male song of house wrens (Troglodytes aedon) by simultaneously relating its multiple components to fitness using multivariate selection analysis, which is widely used in insect and anuran studies but not in birds. The analysis revealed significant variation in the form and strength of selection acting on song across different selection episodes, from nest-site defense to recruitment of offspring to the breeding population. Males that sang more song typically employed in close communication sired more offspring that were subsequently recruited to the breeding population than those that sang more far-communication song. However, this relationship was not consistent across earlier selection episodes, as evidenced by non-linear selection acting on these song components in other contexts. Collectively, our results present a complex picture of multivariate selection on male song structure that would not be evident using univariate approaches and suggest possible trade-offs within and among song components at different points of the breeding season.
Collapse
|
research-article |
1 |
|
19
|
Hutchinson TF, Kessler AJ, Wong WW, Hall P, Leung PM, Jirapanjawat T, Greening C, Glud RN, Cook PLM. Microorganisms oxidize glucose through distinct pathways in permeable and cohesive sediments. THE ISME JOURNAL 2024; 18:wrae001. [PMID: 38365261 PMCID: PMC10939381 DOI: 10.1093/ismejo/wrae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
In marine sediments, microbial degradation of organic matter under anoxic conditions is generally thought to proceed through fermentation to volatile fatty acids, which are then oxidized to CO2 coupled to the reduction of terminal electron acceptors (e.g. nitrate, iron, manganese, and sulfate). It has been suggested that, in environments with a highly variable oxygen regime, fermentation mediated by facultative anaerobic bacteria (uncoupled to external terminal electron acceptors) becomes the dominant process. Here, we present the first direct evidence for this fermentation using a novel differentially labeled glucose isotopologue assay that distinguishes between CO2 produced from respiration and fermentation. Using this approach, we measured the relative contribution of respiration and fermentation of glucose in a range of permeable (sandy) and cohesive (muddy) sediments, as well as four bacterial isolates. Under anoxia, microbial communities adapted to high-energy sandy or bioturbated sites mediate fermentation via the Embden-Meyerhof-Parnas pathway, in a manner uncoupled from anaerobic respiration. Prolonged anoxic incubation suggests that this uncoupling lasts up to 160 h. In contrast, microbial communities in anoxic muddy sediments (smaller median grain size) generally completely oxidized 13C glucose to 13CO2, consistent with the classical redox cascade model. We also unexpectedly observed that fermentation occurred under oxic conditions in permeable sediments. These observations were further confirmed using pure cultures of four bacteria isolated from permeable sediments. Our results suggest that microbial communities adapted to variable oxygen regimes metabolize glucose (and likely other organic molecules) through fermentation uncoupled to respiration during transient anoxic conditions.
Collapse
|
research-article |
1 |
|
20
|
Huang Z, Wang S, Guo X, Marlton F, Fan Y, Pang WK, Huang T, Xiao J, Li D, Liu H, Gu Q, Yang CC, Dong CL, Sun B, Wang G. High-Entropy Layered Oxide Cathode Materials with Moderated Interlayer Spacing and Enhanced Kinetics for Sodium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410857. [PMID: 39439132 DOI: 10.1002/adma.202410857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Indexed: 10/25/2024]
Abstract
Sodium-ion batteries (SIBs) with low cost and environmentally friendly features have recently attracted significant attention for renewable energy storage. Sodium layer oxides stand out as a type of promising cathode material for SIBs owing to their high capacity, good rate performance, and high compatibility for manufacturing. However, the poor cycling stability of layer oxide cathodes due to structure distortion greatly impacts their practical applications. Herein, a high entropy doped Cu, Fe, and Mn-based layered oxide (HE-CFMO), Na0.95Li0.05Mg0.05Cu0.20Fe0.22Mn0.35Ti0.13O2 for high-performance SIBs, is designed. The HE-CFMO cathode possesses high-entropy transition metal (TM) layers with a homogeneous stress distribution, providing a moderated interlayer spacing to maintain the structure stability and enhance Na+ ion diffusion. In addition, Li doping in TM layers increases the Mn valence state, which effectively suppresses John-Teller effect, thus stabilizing the layered structure during cycling. Furthermore, the use of nontoxic and low-cost raw materials benefits future commercialization and reduces the risk of environmental pollution. As a result, the HE-CFMO cathode exhibits a super cycling performance with a 95% capacity retention after 300 cycles. This work provides a promising strategy to improve the structure stability and reaction kinetics of cathode materials for SIBs.
Collapse
|
|
1 |
|
21
|
Xiao M, Lyu M, Wang Z, Wang L. 'Accelerated' Deactivation of Carbon Nitride Photocatalyst for Solar Hydrogen Evolution. CHEMSUSCHEM 2024; 17:e202400937. [PMID: 38865679 PMCID: PMC11632563 DOI: 10.1002/cssc.202400937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Carbon nitride photocatalysts are among the most studied candidates for efficient solar hydrogen (H2) production due to their abundance of precursors, suitable bandgap, and visible light utilization. However, the polymeric nature of carbon nitride materials raises concerns regarding the self-decomposition during photocatalytic redox processes. Yet, the operational stability of carbon nitride photocatalysts for solar H2 production remains under-explored. Here we evaluate the photostability of carbon nitride photocatalysts with platinum (Pt) as the co-catalyst for solar H2 evolution and significant deactivation of this photocatalyst is observed under'accelerated' testing conditions. It is demonstrated that the detachment of the Pt co-catalyst on the surface of carbon nitride is the major reason for this deactivation, which can be attributed to a synergistic effect of photo-corrosion and mechanical stirring. The photo-corrosion weakens the interfacial bonding between carbon nitride and Pt co-catalyst, while continuous collisions from the mechanical stirring promote the detachment of co-catalysts from the surface of carbon nitride. These understandings provide insights into the rational design of photocatalysts and photocatalytic systems for improved operational stability.
Collapse
|
research-article |
1 |
|
22
|
Guan X, Lei Z, Xue R, Li Z, Li P, David M, Yi J, Jia B, Huang H, Li X, Ma T. Polarization: A Universal Driving Force for Energy, Environment, and Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413525. [PMID: 39551991 DOI: 10.1002/adma.202413525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Indexed: 11/19/2024]
Abstract
The sustainable future relies on the synergistic development of energy, environmental, and electronic systems, founded on the development of functional materials by exploring their quantum mechanisms. Effective control over the distribution and behavior of charges within these materials, a basic quantum attribute, is crucial in dictating their physical, chemical, and electronic properties. At the core of charge manipulation lies "polarization"-a ubiquitous phenomenon marked by separating positive and negative charges. This review thoroughly examines polarization techniques, spotlighting their transformative role in catalysis, energy storage, solar cells, and electronics. Starting with the foundational mechanisms underlying various forms of polarization, including piezoelectric, ferroelectric, and pyroelectric effects, the perspective is expanded to cover any asymmetric phenomena that generate internal fields, such as heterostructures and doping. Afterward, the critical role of polarization across various applications, including charge separation, surface chemistry modification, and energy band alignment, is highlighted. Special emphasis is placed on the synergy between polarization and material properties, demonstrating how this interplay is pivotal in overcoming existing technological limitations and unlocking new functionalities. Through a comprehensive analysis, a holistic roadmap is offered for harnessing polarization across the broad spectrum of applications, thus finding sustainable solutions for future energy, environment, and electronics.
Collapse
|
Review |
1 |
|
23
|
Li Z, Pandey G, Bandyopadhyay A, Awasthi K, Kennedy JV, Kumar P, Vinu A. Cryo-Exfoliation Synthesis of Borophene and its Application in Wearable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502257. [PMID: 40184617 DOI: 10.1002/advs.202502257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/17/2025] [Indexed: 04/06/2025]
Abstract
Borophene, an anisotropic Dirac Xene, exhibits diverse crystallographic phases, including metallic β₁₂, χ₃, and semiconducting α phases, alongside exceptional properties such as high electronic mobility, superior Young's modulus, thermal conductivity, superconductivity, and ferroelasticity. These attributes position borophene as a promising material for energy storage, electrocatalysis, and wearable electronics. However, its widespread application is hindered by existing synthesis methods that are expensive, complex, and yield-limited. This study presents a novel, cost-effective, environmentally friendly cryo-exfoliation method for borophene synthesis. Crystalline boron powder is rapidly quenched in liquid nitrogen and subjected to mild sonication, producing borophene with lateral dimensions of ≈50 to 10 µm and few-layer thicknesses. Advanced characterizations, including Atomic Force Microscopy (AFM), High-Resolution Transmission Electron Microscopy (HRTEM), Raman Spectroscopy, and X-ray Photoelectron Spectroscopy (XPS), confirm structural integrity, chemical purity, and minimal surface oxidation. Molecular dynamics simulations further elucidate the weakened inter-layer coupling induced by cryo-processing. The integration of borophene into Polyvinylidene Fluoride (PVDF) nanocomposites demonstrates its potential for wearable electronics, achieving motion-sensitive devices with outstanding performance, generating output voltages up to ≈40 V. This scalable cryo-exfoliation approach paves the way for borophene-based applications in energy harvesting, sensing, and next-generation electronics.
Collapse
|
|
1 |
|
24
|
Wu H, Yu H, Chow YL, Webley PA, Zhang J. Toward Durable CO 2 Electroreduction with Cu-Based Catalysts via Understanding Their Deactivation Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403217. [PMID: 38845132 DOI: 10.1002/adma.202403217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The technology of CO2 electrochemical reduction (CO2ER) provides a means to convert CO2, a waste greenhouse gas, into value-added chemicals. Copper is the most studied element that is capable of catalyzing CO2ER to obtain multicarbon products, such as ethylene, ethanol, acetate, etc., at an appreciable rate. Under the operating condition of CO2ER, the catalytic performance of Cu decays because of several factors that alters the surface properties of Cu. In this review, these factors that cause the degradation of Cu-based CO2ER catalysts are categorized into generalized deactivation modes, that are applicable to all electrocatalytic systems. The fundamental principles of each deactivation mode and the associated effects of each on Cu-based catalysts are discussed in detail. Structure- and composition-activity relationship developed from recent in situ/operando characterization studies are presented as evidence of related deactivation modes in operation. With the aim to address these deactivation modes, catalyst design and reaction environment engineering rationales are suggested. Finally, perspectives and remarks built upon the recent advances in CO2ER are provided in attempts to improve the durability of CO2ER catalysts.
Collapse
|
Review |
1 |
|