1
|
Guo F, Chen K, Dong H, Hu D, Gao Y, Liu C, Laphookhieo S, Lei X. Biomimetic Total Synthesis and the Biological Evaluation of Natural Product (-)-Fargesone A as a Novel FXR Agonist. JACS AU 2022; 2:2830-2838. [PMID: 36590256 PMCID: PMC9795464 DOI: 10.1021/jacsau.2c00600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily, plays an important role in maintaining or reversing metabolic homeostasis during the development of liver diseases. However, developing FXR modulators to intervene in FXR-related diseases is still an unmet clinical need. Therefore, it is significant to develop novel small-molecule agonists for drug discovery targeting FXR. Through a high-throughput chemical screen and follow-up biological validations, we first identified the natural product Fargesone A (FA) as a potent and selective FXR agonist. The limited, variable supply of FA from natural product isolation, however, has impeded its biological exploration and potential drug development. Accordingly, we have developed a biomimetic and scalable total synthesis of FA in nine steps that provides a solution to the supply of FA. Enabled by chemical synthesis, the in vivo efficacy of FA has been further investigated. The results showed that FA alleviates hepatocyte lipid accumulation and cell death in an FXR-dependent manner. Moreover, treatment of bile duct ligation (BDL)-induced liver disorder with FA ameliorates pathological features in mice. Therefore, our work lays the foundation to develop new small-molecule FXR agonists as a potential therapy for liver diseases.
Collapse
|
research-article |
3 |
9 |
2
|
Wang H, Zhou A, Hu Z, Hu X, Zhang F, Song Z, Huang Y, Cui Y, Cui Y, Li L, Wu F, Chen R. Toward Simultaneous Dense Zinc Deposition and Broken Side-Reaction Loops in the Zn//V 2 O 5 System. Angew Chem Int Ed Engl 2024; 63:e202318928. [PMID: 38189767 DOI: 10.1002/anie.202318928] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
The Zn//V2 O5 system not only faces the incontrollable growth of zinc (Zn) dendrites, but also withstands the cross-talk effect of by-products produced from the cathode side to the Zn anode, inducing interelectrode talk and aggravating battery failure. To tackle these issues, we construct a rapid Zn2+ -conducting hydrogel electrolyte (R-ZSO) to achieve Zn deposition modulation and side reaction inhibition in Zn//V2 O5 full cells. The polymer matrix and BN exhibit a robust anchoring effect on SO4 2- , accelerating Zn2+ migration and enabling dense Zn deposition behavior. Therefore, the Zn//Zn symmetric cells based on the R-ZSO electrolyte can operate stably for more than 1500 h, which is six times higher than that of cells employing the blank electrolyte. More importantly, the R-ZSO hydrogel electrolyte effectively decouples the cross-talk effects, thus breaking the infinite loop of side reactions. As a result, the Zn//V2 O5 cells using this modified hydrogel electrolyte demonstrate stable operation over 1,000 cycles, with a capacity loss rate of only 0.028 % per cycle. Our study provides a promising gel chemistry, which offers a valuable guide for the construction of high-performance and multifunctional aqueous Zn-ion batteries.
Collapse
|
|
1 |
8 |
3
|
Gao M, Bian Y, Huang L, Zhang J, Li C, Liu N, Liu X, Zuo S, Guo X, Wang W, Zhao X, Long D, Sang C, Tang R, Li S, Dong J, Ma C. Catheter ablation for atrial fibrillation in patients with persistent left superior vena cava: Case series and systematic review. Front Cardiovasc Med 2022; 9:1015540. [PMID: 36337869 PMCID: PMC9632661 DOI: 10.3389/fcvm.2022.1015540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Persistent left superior vena cava (PLSVC) is the most common form of thoracic venous abnormality. Catheter ablation (CA) for atrial fibrillation (AF) can be complicated by the existence of PLSVC, which could act as an important arrhythmogenic mechanism in AF. Methods and results We reported a case series of patients with PLSVC who underwent CA for AF at our center between 2018 and 2021. A systematic search was also performed on PubMed, EMBASE, and Web of Science for research reporting CA for AF in patients with PLSVC. Sixteen patients with PLSVC were identified at our center. Ablation targeting PLSVC was performed in 5 patients in the index procedures and in four patients receiving redo procedures. One patient experienced acute procedure failure. After a median follow-up period of 15 months, only 6 (37.5%) patients remained free from AF/atrial tachycardia (AT) after a single procedure. In the systematic review, 11 studies with 167 patients were identified. Based on the included studies, the estimated prevalence of PLSVC in patients undergoing CA for AF was 0.7%. Ablation targeting PLSVC was performed in 121 (74.7%) patients. Major complications in patients with PLSVC receiving AF ablation procedure included four cases of cardiac tamponades (2%), three cases of cardiac effusion (1.5%), one case of ischemic stroke, and three cases of phrenic nerve injury (1.5%) (one left phrenic nerve and two right phrenic nerve). Pooled analysis revealed that after a median follow-up period of 15.6 months (IQR 12.0–74.0 months), the long-term AF/AT-free rate was 70.6% (95% CI 62.8–78.4%, I2 = 0.0%) (Central illustration). Different ablation strategies for PLSVC were summarized and discussed in the systematic review. Conclusion In patients with PLSVC, recurrence of atrial arrhythmia after CA for AF is relatively common. Ablation aiming for PLSVC isolation is necessitated in most patients. The overall risk of procedural complications was within an acceptable range.
Collapse
|
|
3 |
8 |
4
|
Bao Z, Li S, Wang L, Zhang B, Zhang P, Shi H, Qiu X, Jiang T. PTPRZ1-METFUsion GENe (ZM-FUGEN) trial: study protocol for a multicentric, randomized, open-label phase II/III trial. Chin Neurosurg J 2023; 9:21. [PMID: 37443050 DOI: 10.1186/s41016-023-00329-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND PTPRZ1-MET fusion was reported to associate with glioma progression from low-grade to high-grade glioma, which was a target by a MET inhibitor vebreltinib. However, little is known about the further efficacy of vebreltinib among more glioma patients. This trial aims to evaluate the safety and efficacy of vebreltinib enteric-coated capsules in the treatment of sGBM/IDH mutant glioblastoma patients with the ZM fusion gene. METHODS This multicentric, randomized, open-label, controlled trial plans to include 19 neurosurgical centers and recruit 84 sGBM or IDH mutant glioblastoma patients with the ZM fusion gene. This trial enrolls sGBM or IDH mutant glioblastoma patients with the inclusion criteria and without the exclusion criteria. It was registered with chinadrugtrials.org.cn (CTR20181664). The primary efficacy endpoint is overall survival (OS). The secondary endpoints are progression-free survival (PFS) and objective response rate (ORR). DISCUSSION If proven effective, this targeted multifaceted intervention protocol will be extended for more glioma patients as a protocol to evaluate the safety and efficacy of MET inhibitors. TRIAL REGISTRATION It was registered with chinadrugtrials.org.cn (CTR20181664).
Collapse
|
|
2 |
3 |
5
|
Ma Y, Wu F, Chen N, Ma Y, Yang C, Shang Y, Liu H, Li L, Chen R. Reversing the Dendrite Growth Direction and Eliminating the Concentration Polarization via Internal Electric Field for Stable Lithium Metal Anodes. Chem Sci 2022; 13:9277-9284. [PMID: 36093012 PMCID: PMC9384804 DOI: 10.1039/d2sc03313e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/10/2022] [Indexed: 11/29/2022] Open
Abstract
Lithium (Li) dendrite growth is a long-standing challenge leading to short cycle life and safety issues in Li metal batteries. Li dendrite growth is kinetically controlled by ion transport, the concentration gradient, and the local electric field. In this study, an internal electric field is generated between the anode and Au-modified separator to eliminate the concentration gradient of Li+. The Li–Au alloy is formed during the first cycle of Li plating/stripping, which causes Li+ deposition on the Au-modified side and lithium anode electrode, reversing the lithium dendrite growth direction. The electrically coupled Li metal electrode and Au-modified film create a uniform electric potential and Li+ concentration distribution, resulting in reduced concentration polarization and stable Li deposition. As a result, the Au-modified separator improves the lifespan of Li‖Li batteries; the Li‖LiFePO4 cells show excellent capacity retention (>97.8% after 350 cycles), and Li‖LiNi0.8Co0.1Mn0.1O2 cells deliver 75.1% capacity retention for more than 300 cycles at 1C rate. This strategy offers an efficient approach for commercial application in advanced metallic Li batteries. An internal electric field is built between the anode and the Au-modified separator to eliminate the concentration gradient of Li+ and reverse the dendrite growth direction.![]()
Collapse
|
|
3 |
1 |
6
|
Shi J, Liu Z, Li Y, Song L, Li Y, Yang J, Pang R, Zhang H, Xiao L, Bai P. Efficacy of Combined Conjoint Fascial Sheath and Levator Muscle Composite Flap Suspension for Congenital Severe Ptosis. Plast Reconstr Surg 2024; 154:865e-873e. [PMID: 37498527 PMCID: PMC11512606 DOI: 10.1097/prs.0000000000010947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Conjoint fascial sheath (CFS) suspension has been gradually recognized and accepted for the treatment of congenital severe blepharoptosis in recent years. To address the problem of postoperative upper eyelid position regression of only CFS suspension, the authors designed and implemented a CFS combined levator muscle (LM) complex flap, and analyzed the surgical efficacy of CFS with LM (CFS+LM) compared with frontalis myofascial flap (FMF) suspension surgery. METHODS Patients diagnosed with congenital severe ptosis and LM function of 4 mm or less were enrolled. The patients were assigned to either the CFS+LM group or the FMF group, to compare and statistically analyze the postoperative effects of CFS+LM versus FMF suspension. RESULTS Data from 182 patients (220 eyes) were collected in this study, including 89 patients (103 eyes) in the CFS+LM group and 93 patients (117 eyes) in the FMF group. The full correction rate, patient satisfaction, postoperative upper eyelid excursion, and lagophthalmos in the CFS+LM group were significantly better than those in the FMF group. The eyelid retraction rate was significantly higher in the FMF group than in the CFS+LM group. The complication rate in the CFS+LM group was significantly lower than that in the FMF group. CONCLUSIONS CFS+LM suspension had better outcomes than FMF suspension. Considering that the CFS tissue could be weak in patients younger than 5 years and have poor muscle elasticity in patients with LM function less than or equal to 1 mm, FMF suspension is recommended first. For patients older than 5 years with severe ptosis, CFS+LM suspension is recommended. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, III.
Collapse
|
Comparative Study |
1 |
1 |
7
|
Wang JN, Tang LR, Li WH, Zhang XY, Shao X, Wu PP, Yang ZM, Wu GW, Chen Q, Wang Z, Zhang P, Li ZJ, Wang Z. Regional Neural Activity Abnormalities and Whole-Brain Functional Connectivity Reorganization in Bulimia Nervosa: Evidence From Resting-State fMRI. Front Neurosci 2022; 16:858717. [PMID: 35573287 PMCID: PMC9100949 DOI: 10.3389/fnins.2022.858717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The management of eating behavior in bulimia nervosa (BN) patients is a complex process, and BN involves activity in multiple brain regions that integrate internal and external functional information. This functional information integration occurs in brain regions involved in reward, cognition, attention, memory, emotion, smell, taste, vision and so on. Although it has been reported that resting-state brain activity in BN patients is different from that of healthy controls, the neural mechanisms remain unclear and need to be further explored. The fractional amplitude of low-frequency fluctuation (fALFF) analyses are an important data-driven method that can measure the relative contribution of low-frequency fluctuations within a specific frequency band to the whole detectable frequency range. The fALFF is well suited to reveal the strength of interregional cooperation at the single-voxel level to investigate local neuronal activity power. FC is a brain network analysis method based on the level of correlated dynamics between time series, which establishes the connection between two spatial regions of interest (ROIs) with the assistance of linear temporal correlation. Based on the psychological characteristics of patients with BN and the abnormal brain functional activities revealed by previous neuroimaging studies, in this study, we investigated alterations in regional neural activity by applying fALFF analysis and whole-brain functional connectivity (FC) in patients with BN in the resting state and to explore correlations between brain activities and eating behavior. We found that the left insula and bilateral inferior parietal lobule (IPL), as key nodes in the reorganized resting-state neural network, had altered FC with other brain regions associated with reward, emotion, cognition, memory, smell/taste, and vision-related functional processing, which may have influenced restrained eating behavior. These results could provide a further theoretical basis and potential effective targets for neuropsychological treatment in patients with BN.
Collapse
|
|
3 |
|
8
|
Li Y, Nie JJ, Yang Y, Li J, Li J, Wu X, Liu X, Chen DF, Yang Z, Xu FJ, Yang Y. Redox-Unlockable Nanoparticle-Based MST1 Delivery System to Attenuate Hepatic Steatosis via the AMPK/SREBP-1c Signaling Axis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34328-34341. [PMID: 35858286 PMCID: PMC9353777 DOI: 10.1021/acsami.2c05889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
To date, few effective treatments have been licensed for nonalcoholic fatty liver disease (NAFLD), which a kind of chronic liver disease. Mammalian sterile 20-like kinase 1 (MST1) is reported to be involved in the development of NAFLD. Thus, we evaluated the suitability of a redox-unlockable polymeric nanoparticle Hep@PGEA vector to deliver MST1 or siMST1 (HCP/MST1 or HCP/siMST1) for NAFLD therapy. The Hep@PGEA vector can efficiently deliver the condensed functional nucleic acids MST1 or siMST1 into NAFLD-affected mouse liver to upregulate or downregulate MST1 expression. The HCP/MST1 complexes significantly improved liver insulin resistance sensitivity and reduced liver damage and lipid accumulation by the AMPK/SREBP-1c pathway without significant adverse events. Instead, HCP/siMST1 delivery exacerbates the NAFLD. The analysis of NAFLD patient samples further clarified the role of MST1 in the development of hepatic steatosis in patients with NAFLD. The MST1-based gene intervention is of considerable potential for clinical NAFLD therapy, and the Hep@PGEA vector provides a promising option for NAFLD gene therapy.
Collapse
|
research-article |
3 |
|
9
|
Li J, Sheng B, Chen Y, Yang J, Wang P, Li Y, Yu T, Pan H, Song J, Zhu L, Wang X, Ma T, Zhou B. An Active and Robust Catalytic Architecture of NiCo/GaN Nanowires for Light-Driven Hydrogen Production from Methanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309906. [PMID: 38221704 DOI: 10.1002/smll.202309906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/26/2023] [Indexed: 01/16/2024]
Abstract
On-site hydrogen production from liquid organic hydrogen carriers e.g., methanol provides an emerging strategy for the safe storage and transportation of hydrogen. Herein, a catalytic architecture consisting of nickel-cobalt nanoclusters dispersed on gallium nitride nanowires supported by silicon for light-driven hydrogen production from methanol is reported. By correlative microscopic, spectroscopic characterizations, and density functional theory calculations, it is revealed that NiCo nanoclusters work in synergy with GaN nanowires to enable the achievement of a significantly reduced activation energy of methanol dehydrogenation by switching the potential-limiting step from *CHO → *CO to *CH3O → *CH2O. In combination with the marked photothermal effect, a high hydrogen rate of 5.62 mol·gcat-1·h-1 with a prominent turnover frequency of 43,460 h-1 is achieved at 5 Wcm-2 without additional energy input. Remarkably, the synergy between Co and Ni, in combination with the unique surface of GaN, renders the architecture with outstanding resistance to sintering and coking. The architecture thereby exhibits a high turnover number of >16,310,000 over 600 h. Outdoor testing validates the viability of the architecture for active and robust hydrogen evolution under natural concentrated sunlight. Overall, this work presents a promising architecture for on-site hydrogen production from CH3OH by virtually unlimited solar energy.
Collapse
|
|
1 |
|
10
|
Feng R, Fu S, Liu H, Wang Y, Liu S, Wang K, Chen B, Zhang X, Hu L, Chen Q, Cai T, Han X, Wang C. Single-Atom Site SERS Chip for Rapid, Ultrasensitive, and Reproducible Direct-Monitoring of RNA Binding. Adv Healthc Mater 2024; 13:e2301146. [PMID: 38176000 DOI: 10.1002/adhm.202301146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Ribonucleic acids (RNA) play active roles within cells or viruses by catalyzing biological reactions, controlling gene expression, and communicating responses to cellular signals. Rapid monitoring RNA variation has become extremely important for appropriate clinical decisions and frontier biological research. However, the most widely used method for RNA detection, nucleic acid amplification, is restricted by a mandatory temperature cycling period of ≈1 h required to reach target detection criteria. Herein, a direct detection approach via single-atom site integrated surface-enhanced Raman scattering (SERS) monitoring nucleic acid pairing reaction, can be completed within 3 min and reaches high sensitivity and extreme reproducibility for COVID-19 and two other influenza viruses' detection. The mechanism is that a single-atom site on SERS chip, enabled by positioning a single-atom oxide coordinated with a specific complementary RNA probe on chip nanostructure hotspots, can effectively bind target RNA analytes to enrich them at designed sites so that the binding reaction can be detected through Raman signal variation. This ultrafast, sensitive, and reproducible single-atom site SERS chip approach paves the route for an alternative technique of immediate RNA detection. Moreover, single-atom site SERS is a novel surface enrichment strategy for SERS active sites for other analytes at ultralow concentrations.
Collapse
|
|
1 |
|
11
|
Bi S, Yang Y, Pei G, Yang T, Hu S, Jia Q. Unidirectional moisture-conducting green fabrics prepared by a one-step electrospray technique. RSC Adv 2025; 15:1125-1133. [PMID: 39811019 PMCID: PMC11729219 DOI: 10.1039/d4ra08289c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
Unidirectional moisture-conducting fabrics were prepared by electrospraying polyvinylidene fluoride (PVDF) and polyvinyl chloride (PVC) onto three green fabric substrates, namely cotton, hemp, and modal. Experiments were conducted to examine the effects of coating thickness, coating material, and substrate material on the moisture conductivity of the fabrics. The electrospraying technique was effective in forming uniform and strongly adhered PVDF and PVC coatings on the fabric substrates, and the coating thickness and material type had a significant effect on the fabric's moisture conductivity. The PVDF and PVC coatings significantly improved the unidirectional moisture conductivity of the fabric substrates, and although the unidirectional moisture conductivity effects differed among the substrates, all fabrics exhibited high directional water transport capacities (R values greater than 300%), high air permeabilities, and high water vapor transmission rates. Cotton and hemp substrates coated with hydrophobic layers showed more efficient unidirectional moisture transfer than modal fabrics. This study demonstrated that appropriate coating design and substrate selection can significantly improve the moisture conductivity of fabrics, providing a valuable reference for the development of high-performance functional textiles.
Collapse
|
research-article |
1 |
|
12
|
Li W, Yin Y, Zhou H, Fan Y, Yang Y, Gao Q, Li P, Gao G, Li J. Recent Advances in Electrospinning Techniques for Precise Medicine. CYBORG AND BIONIC SYSTEMS 2024; 5:0101. [PMID: 38778878 PMCID: PMC11109596 DOI: 10.34133/cbsystems.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/03/2024] [Indexed: 05/25/2024] Open
Abstract
In the realm of precise medicine, the advancement of manufacturing technologies is vital for enhancing the capabilities of medical devices such as nano/microrobots, wearable/implantable biosensors, and organ-on-chip systems, which serve to accurately acquire and analyze patients' physiopathological information and to perform patient-specific therapy. Electrospinning holds great promise in engineering materials and components for advanced medical devices, due to the demonstrated ability to advance the development of nanomaterial science. Nevertheless, challenges such as limited composition variety, uncontrollable fiber orientation, difficulties in incorporating fragile molecules and cells, and low production effectiveness hindered its further application. To overcome these challenges, advanced electrospinning techniques have been explored to manufacture functional composites, orchestrated structures, living constructs, and scale-up fabrication. This review delves into the recent advances of electrospinning techniques and underscores their potential in revolutionizing the field of precise medicine, upon introducing the fundamental information of conventional electrospinning techniques, as well as discussing the current challenges and future perspectives.
Collapse
|
Review |
1 |
|
13
|
Li Q, Liu H, Wu F, Li L, Ye Y, Chen R. Recent Advances and Opportunities in Reactivating Inactive Lithium in Batteries. Angew Chem Int Ed Engl 2024; 63:e202404554. [PMID: 38563638 DOI: 10.1002/anie.202404554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
The loss of active materials is one of the main culprits of the battery failures. As a typical example, the presence of inactive lithium, also known as "dead lithium", contributes to the rapid capacity deterioration and reduces energy output in lithium batteries. This phenomenon has long been recognized as irreversible. In this Minireview, the first of this kind, we aim to summarize the formation of inactive lithium and reassess its impact on battery performance metrics. Additionally, we explore various strategies that have been devised to rejuvenate inactive lithium. This comprehensive overview of the latest advancements in reactivating inactive lithium not only offers insights into restoring capacity and enhancing battery performance metrics but also provides a foundation for future research in reviving other inactive materials found in next-generation batteries, such as lithium metal batteries, lithium-sulfur batteries, other alkali metal batteries, and liquid flow batteries.
Collapse
|
Review |
1 |
|
14
|
Jiao J, Guo D, Cao J, Zhang X, Yao Z. Scoliosis risk factors and outcomes in children with dysplastic spondylolisthesis undergoing surgical reduction and fixation. J Child Orthop 2023; 17:360-366. [PMID: 37565003 PMCID: PMC10411372 DOI: 10.1177/18632521231182430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/14/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose To explore scoliosis risk factors and outcomes in children with dysplastic spondylolisthesis undergoing surgical reduction and internal fixation. Methods We retrospectively analyzed 56 children with dysplastic spondylolisthesis who underwent surgical reduction and internal fixation. Patients were grouped according to presence of scoliosis before surgery. Radiographic parameters measured before surgery included pelvic incidence, pelvic tilt, sacral slope, coronal Cobb angle, slip percentage, Dubousset's lumbosacral angle, lumbar lordosis, sagittal vertical axis, and Spinal Deformity Study Group index. Groups were compared using logistic regression. Receiver operating characteristic analysis was performed to determine the optimal Spinal Deformity Study Group index cut-off value. All patients were followed up for at least 2 years. Results The scoliosis group comprises 36 patients (mean age: 9.6 ± 2.7 years), while the no scoliosis group comprises 20 (mean age: 9.1 ± 2.4 years). Slip percentage and Spinal Deformity Study Group index were significantly higher in the scoliosis group (p < 0.01). Sacral slope and pelvic incidence were lower in the scoliosis group (p < 0.05). Univariate logistic regression analysis showed that slip percentage, Spinal Deformity Study Group index, pelvic incidence, and sacral slope were significantly associated with scoliosis. In the multivariate logistic regression analysis, only Spinal Deformity Study Group index was an independent risk factor for scoliosis. The optimal cut-off value for Spinal Deformity Study Group index was 0.288. Mean Cobb angle decreased from 20.3° ± 8.8° before surgery to 8.5° ± 8.9° at last follow-up; the mean scoliosis correction rate was 59.3%. Conclusion Severe S1 dysplasia and high slip percentage may be risk factors for developing scoliosis in patients with dysplastic spondylolisthesis. Scoliosis resolved spontaneously after spondylolisthesis reduction and fixation in most patients. Level of evidence 3.
Collapse
|
research-article |
2 |
|
15
|
Salles P, Guzman R, Tan H, Ramis M, Fina I, Machado P, Sánchez F, De Luca G, Zhou W, Coll M. Unfolding the Challenges To Prepare Single Crystalline Complex Oxide Membranes by Solution Processing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36796-36803. [PMID: 38967374 PMCID: PMC11261560 DOI: 10.1021/acsami.4c05013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The ability to prepare single crystalline complex oxide freestanding membranes has opened a new playground to access new phases and functionalities not available when they are epitaxially bound to the substrates. The water-soluble Sr3Al2O6 (SAO) sacrificial layer approach has proven to be one of the most promising pathways to prepare a wide variety of single crystalline complex oxide membranes, typically by high vacuum deposition techniques. Here, we present solution processing, also named chemical solution deposition (CSD), as a cost-effective alternative deposition technique to prepare freestanding membranes identifying the main processing challenges and how to overcome them. In particular, we compare three different strategies based on interface and cation engineering to prepare CSD (00l)-oriented BiFeO3 (BFO) membranes. First, BFO is deposited directly on SAO but forms a nanocomposite of Sr-Al-O rich nanoparticles embedded in an epitaxial BFO matrix because the Sr-O bonds react with the solvents of the BFO precursor solution. Second, the incorporation of a pulsed laser deposited La0.7Sr0.3MnO3 (LSMO) buffer layer on SAO prior to the BFO deposition prevents the massive interface reaction and subsequent formation of a nanocomposite but migration of cations from the upper layers to SAO occurs, making the sacrificial layer insoluble in water and withholding the membrane release. Finally, in the third scenario, a combination of LSMO with a more robust sacrificial layer composition, SrCa2Al2O6 (SC2AO), offers an ideal building block to obtain (001)-oriented BFO/LSMO bilayer membranes with a high-quality interface that can be successfully transferred to both flexible and rigid host substrates. Ferroelectric fingerprints are identified in the BFO film prior and after membrane release. These results show the feasibility to use CSD as alternative deposition technique to prepare single crystalline complex oxide membranes widening the range of available phases and functionalities for next-generation electronic devices.
Collapse
|
research-article |
1 |
|
16
|
Liang C, Zhang W, Fan Y, Mei Z, Zhang L, Sun Z, You R, You Z, Zhao X. On Demand Copper Electrochemical Deposition on Laser Induced Graphene for Flexible Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2408943. [PMID: 39806858 DOI: 10.1002/smll.202408943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Indexed: 01/16/2025]
Abstract
The rapid development of flexible electronics necessitates simplified processes that integrate heterogeneous materials and structures. In this study, laser engraving is combined with electrochemical deposition (ECD) to directly fabricate various micro/nano-structured components and flexible electronic circuits. A theoretical framework and simulation model are developed to design the on-demand ECD on laser induced graphene (LIG), enabling the generation of multi-scale copper (Cu) materials with controllable oxidation states. The Cu-LIG composites exhibit high surface quality and reliability, meeting the requirements of flexible circuits. The study fabricates and characterizes multilayer circuits and complex functional devices, including electrochemical sensors, thin-film heaters, and wireless humidity sensors, to showcase the versatility of the LIG-ECD process. This approach can be extended to various polymer and metal deposition processes, paving the way for the development of high-performance flexible electronic devices.
Collapse
|
|
1 |
|
17
|
Tian H, You S, Xiong T, Ji M, Zhang K, Jiang L, Du T, Li Y, Liu W, Lin S, Chen X, Xu H. Discovery of a Novel Photocaged PI3K Inhibitor Capable of Real-Time Reporting of Drug Release. ACS Med Chem Lett 2023; 14:1100-1107. [PMID: 37583818 PMCID: PMC10424311 DOI: 10.1021/acsmedchemlett.3c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023] Open
Abstract
A novel photocaged PI3K inhibitor 2 was designed and synthesized by introducing a cascade photocaging group to block its key interaction with the kinase. Upon UV light irradiation, the photocaged compound released a highly potent PI3K inhibitor to recover its anticancer properties and a fluorescent dye for real-time reporting of drug release, providing a new approach for studying the PI3K signaling transduction pathway as well as developing precisely controlled cancer therapeutics.
Collapse
|
rapid-communication |
2 |
|
18
|
Xu J, Ling Z, Yin L, Xu D, Wu S, Chen R. CircDNA2-Educated YTHDF2 Phase Separation Promotes PM 2.5-Induced Malignant Transformation Through the Blunting of GADD45A Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410532. [PMID: 39823477 DOI: 10.1002/advs.202410532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Substantial epidemiological evidence suggests a significant correlation between particulate matter 2.5 (PM2.5) and lung cancer. However, the mechanism underlying this association needs to be further elucidated. Circular RNAs (circRNAs) have emerged as an important topic in the field of epigenetics and are involved in various cancers. This study aimed to explore the molecular basis of PM2.5-induced lung cancer from an epigenetic perspective and identify potential biomarkers. Initially, the construction of a chronic PM2.5 exposure model confirmed that PM2.5 exposure promoted the malignant transformation of human bronchial epithelial (HBE) cells. Mechanistically, abnormally upregulated circDNA2 inhibited the tumor suppressor gene growth arrest and DNA damage 45 alpha (GADD45A) mRNA in an N6-methyladenosine (m6A)-dependent manner, mediated by YTH N6-Methyladenosine RNA Binding Protein F2 (YTHDF2) after PM2.5 exposure. Further analyses revealed that circDNA2 can specifically bind to the YTHDF2 LC domain to promote YTHDF2 protein liquid-liquid phase separation (LLPS), providing sufficient evidence linking LLPS and particulate pollutant-induced tumorigenesis. In conclusion, this study provides new insights into the role of circDNA2 in PM2.5-induced lung cancer and confirms its clinical value as a potential prognostic biomarker for lung cancer.
Collapse
|
|
1 |
|
19
|
Guo Z, Zhao Y, Jin Z, Chang Y, Wang X, Guo G, Zhao Y. Monolithic 3D nanoelectrospray emitters based on a continuous fluid-assisted etching strategy for glass droplet microfluidic chip-mass spectrometry. Chem Sci 2024; 15:7781-7788. [PMID: 38784731 PMCID: PMC11110156 DOI: 10.1039/d4sc01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Glass microfluidic chips are suitable for coupling with mass spectrometry (MS) due to their flexible design, optical transparency and resistance to organic reagents. However, due to the high hardness and brittleness of glass, there is a lack of simple and feasible technology to manufacture a monolithic nanospray ionization (nESI) emitter on a glass microchip, which hinders its coupling with mass spectrometry. Here, a continuous fluid-assisted etching strategy is proposed to fabricate monolithic three-dimensional (3D) nESI emitters integrated into glass microchips. A continuous fluid of methanol is adopted to protect the inner wall of the channels and the bonding interface of the glass microfluidic chip from being wet-etched, forming sharp 3D nESI emitters. The fabricated 3D nESI emitter can form a stable electrospray plume, resulting in consistent nESI detection of acetylcholine with an RSD of 4.5% within 10 min. The fabricated 3D emitter is integrated on a glass microfluidic chip designed with a T-junction droplet generator, which can realize efficient analysis of acetylcholine in picoliter-volume droplets by nESI-MS. Stability testing of over 20 000 droplets detected by the established system resulted in an RSD of 9.1% over approximately 180 min. The detection of ten neurochemicals in rat cerebrospinal fluid droplets is achieved. The established glass droplet microfluidic chip-MS system exhibits potential for broad applications such as in vivo neurochemical monitoring and single-cell analysis in the future.
Collapse
|
research-article |
1 |
|
20
|
Xu Q, Li T, Chen H, Kong J, Zhang L, Yin H. Design and optimisation of a small-molecule TLR2/4 antagonist for anti-tumour therapy. RSC Med Chem 2021; 12:1771-1779. [PMID: 34778778 PMCID: PMC8528216 DOI: 10.1039/d1md00175b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
In anti-tumour therapy, the toll-like receptor 2/4 (TLR2/4) signalling pathway has been a double-edged sword. TLR2/4 agonists are commonly considered adjuvants for immune stimulation, whereas TLR2/4 antagonists demonstrate more feasibility for anti-tumour therapy under specific chronic inflammatory situations. In individuals with cancer retaliatory proliferation and metastasis after surgery, blocking the TLR2/4 signalling pathway may produce favourable prognosis for patients. Therefore, here, we developed a small-molecule co-inhibitor that targets the TLR2/4 signalling pathway. After high-throughput screening of a compound library containing 14 400 small molecules, followed by hit-to-lead structural optimisation, we finally obtained the compound TX-33, which has effective inhibitory properties against the TLR2/4 signalling pathways. This compound was found to significantly inhibit multiple pro-inflammatory cytokines released by RAW264.7 cells. This was followed by TX-33 demonstrating promising efficacy in subsequent anti-tumour experiments. The current results provide a novel understanding of the role of TLR2/4 in cancer and a novel strategy for anti-tumour therapy.
Collapse
|
research-article |
4 |
|
21
|
Cheng R, Li L, Zhen S, Liu H, Wu Z, Wang Y, Wang Z. Rapid Detection of Staphylococcus aureus in Milk and Pork via Immunomagnetic Separation and Recombinase Polymerase Amplification. Microbiol Spectr 2023; 11:e0224922. [PMID: 36847574 PMCID: PMC10101137 DOI: 10.1128/spectrum.02249-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023] Open
Abstract
Separation processes using immunomagnetic beads (IMBs) are advantageous for the rapid detection of Staphylococcus aureus (S. aureus). Herein, a novel method, based on immunomagnetic separation using IMBs and recombinase polymerase amplification (RPA), was employed to detect S. aureus strains in milk and pork. IMBs were formed by the carbon diimide method using rabbit anti-S. aureus polyclonal antibodies and superparamagnetic carboxyl-Fe3O4 MBs. The average capture efficiency for 2.5 to 2.5 × 105 (CFU)/mL gradient dilution of S. aureus with 6 mg of IMBs within 60 min were a range of 62.74 to 92.75%. The detection sensitivity of the IMBs-RPA method in artificially contaminated samples was 2.5 × 101 CFU/mL. The entire detection process was completed within 2.5 h, including bacteria capture, DNA extraction, amplification, and electrophoresis. Among 20 actual samples, one case of raw milk sample and two cases of pork samples were tested positive using the established IMBs-RPA method, which were verified by the standard S. aureus inspection procedure. Therefore, the novel method shows potential for food safety supervision owing to its short detection time, higher sensitivity, and high specificity. IMPORTANCE Our study established IMBs-RPA method, which simplified the steps of bacteria separation, shortened the detection time, and realized the convenient detection of S. aureus in milk and pork samples. IMBs-RPA method was also suitable for the detection of other pathogens, providing a new method for food safety monitoring and a favorable basis for rapid and early diagnosis of diseases.
Collapse
|
research-article |
2 |
|