Anindita J, Tanaka H, Oyama R, Hagiwara S, Shirane D, Taneichi S, Nakai Y, Tange K, Hatakeyama H, Sakurai Y, Akita H. Development of a Ready-to-Use-Type RNA Vaccine Carrier Based on an Intracellular Environment-Responsive Lipid-like Material with Immune-Activating Vitamin E Scaffolds.
Pharmaceutics 2023;
15:2702. [PMID:
38140043 PMCID:
PMC10747879 DOI:
10.3390/pharmaceutics15122702]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Because of its efficient and robust gene transfer capability, messenger RNA (mRNA) has become a promising tool in various research fields. The lipid nanoparticle (LNP) is considered to be a fundamental technology for an mRNA delivery system and has been used extensively for the development of RNA vaccines against SARS-CoV-2. We recently developed ssPalm, an environmentally responsive lipid-like material, as a component of LNP for mRNA delivery. In this study, a self-degradable unit (phenyl ester) that confers high transfection activity and an immune stimulating unit (vitamin E scaffold) for high immune activation were combined to design a material, namely, ssPalmE-Phe-P4C2, for vaccine use. To design a simple and user-friendly form of an RNA vaccine based on this material, a freeze-drying-based preparation method for producing a ready-to-use-type LNP (LNP(RtoU)) was used to prepare the LNPssPalmE-Phe. The optimization of the preparation method and the lipid composition of the LNPssPalmE-Phe(RtoU) revealed that dioleoyl-sn-glycero phosphatidylethanolamine (DOPE) was a suitable helper lipid for achieving a high vaccination activity of the LNPssPalmE-Phe(RtoU). Other findings indicated that to maintain particle properties and vaccination activity, a 40% cholesterol content was necessary. A single administration of the LNPssPalmE-Phe(RtoU) that contained mRNA-encoding Ovalbumin (mOVA-LNPssPalmE-Phe(RtoU)) demonstrated a significant suppression of tumor progression in a tumor-bearing mouse OVA-expressing cell line (E.G7-OVA). In summary, the LNPssPalmE-Phe(RtoU) is an easy-to-handle drug delivery system (DDS) for delivering mRNA antigens in immunotherapy.
Collapse