1
|
Nakajima A, Nakatani A, Hasegawa S, Irie J, Ozawa K, Tsujimoto G, Suganami T, Itoh H, Kimura I. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages. PLoS One 2017; 12:e0179696. [PMID: 28692672 PMCID: PMC5503175 DOI: 10.1371/journal.pone.0179696] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/03/2017] [Indexed: 12/13/2022] Open
Abstract
The regulation of inflammatory responses within adipose tissue by various types of immune cells is closely related to tissue homeostasis and progression of metabolic disorders such as obesity and type 2 diabetes. G-protein-coupled receptor 43 (GPR43), which is activated by short-chain fatty acids (SCFAs), is known to be most abundantly expressed in white adipose tissue and to modulate metabolic processes. Although GPR43 is also expressed in a wide variety of immune cells, whether and how GPR43 in adipose tissue immune cells regulates the inflammatory responses and metabolic homeostasis remains unknown. In this study, we investigated the role of GPR43 in adipose tissue macrophages by using Gpr43-deficient mice and transgenic mice with adipose-tissue-specific overexpression of GPR43. We found that GPR43 activation by SCFA resulted in induction of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) in anti-inflammatory M2-type macrophages within adipose tissue. By contrast, this effect was not noted in inflammatory M1-type macrophages, suggesting that GPR43 plays distinct functions depending on macrophage types. Local TNF-α signaling derived from steady-state adipose tissue is associated with proper tissue remodeling as well as suppression of fat accumulation. Thus, GPR43-involving mechanism that we have identified supports maintenance of adipose tissue homeostasis and increase in metabolic activity. This newly identified facet of GPR43 in macrophages may have clinical implications for immune-metabolism related episodes.
Collapse
|
Journal Article |
8 |
100 |
2
|
Sato H, Jeggo PA, Shibata A. Regulation of programmed death-ligand 1 expression in response to DNA damage in cancer cells: Implications for precision medicine. Cancer Sci 2019; 110:3415-3423. [PMID: 31513320 PMCID: PMC6824998 DOI: 10.1111/cas.14197] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/20/2019] [Accepted: 09/08/2019] [Indexed: 12/18/2022] Open
Abstract
Anti-programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) therapy, which is one of the most promising cancer therapies, is licensed for treating various tumors. Programmed death-ligand 1, which is expressed on the surface of cancer cells, leads to the inhibition of T lymphocyte activation and immune evasion if it binds to the receptor PD-1 on CTLs. Anti-PD-1/PD-L1 Abs inhibit interactions between PD-1 and PD-L1 to restore antitumor immunity. Although certain patients achieve effective responses to anti-PD-1/PD-L1 therapy, the efficacy of treatment is highly variable. Clinical trials of anti-PD-1/PD-L1 therapy combined with radiotherapy/chemotherapy are underway with suggestive evidence of favorable outcome; however, the molecular mechanism is largely unknown. Among several molecular targets that can influence the efficacy of anti-PD-1/PD-L1 therapy, PD-L1 expression in tumors is considered to be a critical biomarker because there is a positive correlation between the efficacy of combined treatment protocols and PD-L1 expression levels. Therefore, understanding the mechanisms underlying the regulation of PD-L1 expression in cancer cells, particularly the mechanism of PD-L1 expression following DNA damage, is important. In this review, we consider recent findings on the regulation of PD-L1 expression in response to DNA damage signaling in cancer cells.
Collapse
|
Review |
6 |
40 |
3
|
Yamada S, Ko T, Hatsuse S, Nomura S, Zhang B, Dai Z, Inoue S, Kubota M, Sawami K, Yamada T, Sassa T, Katagiri M, Fujita K, Katoh M, Ito M, Harada M, Toko H, Takeda N, Morita H, Aburatani H, Komuro I. Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at the border zone in remodeling after myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1072-1083. [PMID: 39195917 PMCID: PMC11358009 DOI: 10.1038/s44161-022-00140-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2022] [Indexed: 08/29/2024]
Abstract
The underlying mechanisms of ventricular remodeling after myocardial infarction (MI) remain largely unknown. In this study, we performed an integrative analysis of spatial transcriptomics and single-nucleus RNA sequencing (snRNA-seq) in a murine MI model and found that mechanical stress-response genes are expressed at the border zone and play a critical role in left ventricular remodeling after MI. An integrative analysis of snRNA-seq and spatial transcriptome of the heart tissue after MI identified the unique cluster that appeared at the border zone in an early stage, highly expressing mechano-sensing genes, such as Csrp3. AAV9-mediated gene silencing and overexpression of Csrp3 demonstrated that upregulation of Csrp3 plays critical roles in preventing cardiac remodeling after MI by regulation of genes associated with mechano-sensing. Overall, our study not only provides an insight into spatiotemporal molecular changes after MI but also highlights that the mechano-sensing genes at the border zone act as adaptive regulators of left ventricular remodeling.
Collapse
|
research-article |
3 |
18 |
4
|
Hiraike Y, Waki H, Miyake K, Wada T, Oguchi M, Saito K, Tsutsumi S, Aburatani H, Yamauchi T, Kadowaki T. NFIA differentially controls adipogenic and myogenic gene program through distinct pathways to ensure brown and beige adipocyte differentiation. PLoS Genet 2020; 16:e1009044. [PMID: 32991581 PMCID: PMC7546476 DOI: 10.1371/journal.pgen.1009044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/09/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
The transcription factor nuclear factor I-A (NFIA) is a regulator of brown adipocyte differentiation. Here we show that the C-terminal 17 amino acid residues of NFIA (which we call pro#3 domain) are required for the transcriptional activity of NFIA. Full-length NFIA—but not deletion mutant lacking pro#3 domain—rescued impaired expression of PPARγ, the master transcriptional regulator of adipogenesis and impaired adipocyte differentiation in NFIA-knockout cells. Mechanistically, the ability of NFIA to penetrate chromatin and bind to the crucial Pparg enhancer is mediated through pro#3 domain. However, the deletion mutant still binds to Myod1 enhancer to repress expression of MyoD, the master transcriptional regulator of myogenesis as well as proximally transcribed non-coding RNA called DRReRNA, via competition with KLF5 in terms of enhancer binding, leading to suppression of myogenic gene program. Therefore, the negative effect of NFIA on the myogenic gene program is, at least partly, independent of the positive effect on PPARγ expression and its downstream adipogenic gene program. These results uncover multiple ways of action of NFIA to ensure optimal regulation of brown and beige adipocyte differentiation. Obesity and its complications including type 2 diabetes are growing concerns worldwide. While white adipocytes generally store energy in the form of lipid, classical brown and cold- or β-adrenergic stimulation-induced beige adipocytes dissipate chemical energy in the form of heat through uncoupling protein-1 (Ucp1). Since the re-discovery of human brown and beige adipocytes, it has been considered a promising target for the treatment of obesity. During mesenchymal development, not only activation of brown/beige adipocyte gene program but also repression of muscle gene program is required to achieve thermogenic adipocyte differentiation. Previously, we identified the transcription factor nuclear factor I-A (NFIA) as a regulator of brown adipocyte differentiation. Here we show that the C-terminal 17 amino acid residues of NFIA, which we call pro#3 domain, is required for activation of adipocyte differentiation. However, the deletion mutant which lacks this domain is still able to suppress muscle gene program by repressing the expression of Myod1, which encode the master transcriptional regulator of myogenesis, MyoD. We demonstrate that NFIA activates adipogenesis and also “actively” suppresses myogenesis through distinct molecular pathways to ensure brown and beige adipocyte differentiation.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
16 |
5
|
Omachi K, Miner JH. Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation. PLoS One 2022; 17:e0270008. [PMID: 35763517 PMCID: PMC9239446 DOI: 10.1371/journal.pone.0270008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
CRISPR/Cas9-mediated transcriptional activation (CRISPRa) is a powerful tool for investigating complex biological phenomena. Although CRISPRa approaches based on the VP64 transcriptional activator have been widely studied in both cultured cells and in animal models and exhibit great versatility for various cell types and developmental stages in vivo, different dCas9-VP64 versions have not been rigorously compared. Here, we compared different dCas9-VP64 constructs in identical contexts, including the cell lines used and the transfection conditions, for their ability to activate endogenous and exogenous genes. Moreover, we investigated the optimal approach for VP64 addition to VP64- and p300-based constructs. We found that MS2-MCP-scaffolded VP64 enhanced basal dCas9-VP64 and dCas9-p300 activity better than did direct VP64 fusion to the N-terminus of dCas9. dCas9-VP64+MCP-VP64 and dCas9-p300+MCP-VP64 were superior to VP64-dCas9-VP64 for all target genes tested. Furthermore, multiplexing gRNA expression with dCas9-VP64+MCP-VP64 or dCas9-p300+MCP-VP64 significantly enhanced endogenous gene activation to a level comparable to CRISPRa-SAM with a single gRNA. Our findings demonstrate improvement of the dCas9-VP64 CRISPRa system and contribute to development of a versatile, efficient CRISPRa platform.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
14 |
6
|
Yamada S, Ko T, Ito M, Sassa T, Nomura S, Okuma H, Sato M, Imasaki T, Kikkawa S, Zhang B, Yamada T, Seki Y, Fujita K, Katoh M, Kubota M, Hatsuse S, Katagiri M, Hayashi H, Hamano M, Takeda N, Morita H, Takada S, Toyoda M, Uchiyama M, Ikeuchi M, Toyooka K, Umezawa A, Yamanishi Y, Nitta R, Aburatani H, Komuro I. TEAD1 trapping by the Q353R-Lamin A/C causes dilated cardiomyopathy. SCIENCE ADVANCES 2023; 9:eade7047. [PMID: 37058558 PMCID: PMC10104473 DOI: 10.1126/sciadv.ade7047] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Mutations in the LMNA gene encoding Lamin A and C (Lamin A/C), major components of the nuclear lamina, cause laminopathies including dilated cardiomyopathy (DCM), but the underlying molecular mechanisms have not been fully elucidated. Here, by leveraging single-cell RNA sequencing (RNA-seq), assay for transposase-accessible chromatin using sequencing (ATAC-seq), protein array, and electron microscopy analysis, we show that insufficient structural maturation of cardiomyocytes owing to trapping of transcription factor TEA domain transcription factor 1 (TEAD1) by mutant Lamin A/C at the nuclear membrane underlies the pathogenesis of Q353R-LMNA-related DCM. Inhibition of the Hippo pathway rescued the dysregulation of cardiac developmental genes by TEAD1 in LMNA mutant cardiomyocytes. Single-cell RNA-seq of cardiac tissues from patients with DCM with the LMNA mutation confirmed the dysregulated expression of TEAD1 target genes. Our results propose an intervention for transcriptional dysregulation as a potential treatment of LMNA-related DCM.
Collapse
|
research-article |
2 |
14 |
7
|
Vandenbon A, Kumagai Y, Lin M, Suzuki Y, Nakai K. Waves of chromatin modifications in mouse dendritic cells in response to LPS stimulation. Genome Biol 2018; 19:138. [PMID: 30231913 PMCID: PMC6146659 DOI: 10.1186/s13059-018-1524-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/04/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The importance of transcription factors (TFs) and epigenetic modifications in the control of gene expression is widely accepted. However, causal relationships between changes in TF binding, histone modifications, and gene expression during the response to extracellular stimuli are not well understood. Here, we analyze the ordering of these events on a genome-wide scale in dendritic cells in response to lipopolysaccharide (LPS) stimulation. RESULTS Using a ChIP-seq time series dataset, we find that the LPS-induced accumulation of different histone modifications follows clearly distinct patterns. Increases in H3K4me3 appear to coincide with transcriptional activation. In contrast, H3K9K14ac accumulates early after stimulation, and H3K36me3 at later time points. Integrative analysis with TF binding data reveals potential links between TF activation and dynamics in histone modifications. Especially, LPS-induced increases in H3K9K14ac and H3K4me3 are associated with binding by STAT1/2 and were severely impaired in Stat1-/- cells. CONCLUSIONS While the timing of short-term changes of some histone modifications coincides with changes in transcriptional activity, this is not the case for others. In the latter case, dynamics in modifications more likely reflect strict regulation by stimulus-induced TFs and their interactions with chromatin modifiers.
Collapse
|
research-article |
7 |
13 |
8
|
Iga T, Kobayashi H, Kusumoto D, Sanosaka T, Fujita N, Tai-Nagara I, Ando T, Takahashi T, Matsuo K, Hozumi K, Ito K, Ema M, Miyamoto T, Matsumoto M, Nakamura M, Okano H, Shibata S, Kohyama J, Kim KK, Takubo K, Kubota Y. Spatial heterogeneity of bone marrow endothelial cells unveils a distinct subtype in the epiphysis. Nat Cell Biol 2023; 25:1415-1425. [PMID: 37798545 PMCID: PMC10567563 DOI: 10.1038/s41556-023-01240-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/28/2023] [Indexed: 10/07/2023]
Abstract
Bone marrow endothelial cells (BMECs) play a key role in bone formation and haematopoiesis. Although recent studies uncovered the cellular taxonomy of stromal compartments in the bone marrow (BM), the complexity of BMECs is not fully characterized. In the present study, using single-cell RNA sequencing, we defined a spatial heterogeneity of BMECs and identified a capillary subtype, termed type S (secondary ossification) endothelial cells (ECs), exclusively existing in the epiphysis. Type S ECs possessed unique phenotypic characteristics in terms of structure, plasticity and gene expression profiles. Genetic experiments showed that type S ECs atypically contributed to the acquisition of bone strength by secreting type I collagen, the most abundant bone matrix component. Moreover, these cells formed a distinct reservoir for haematopoietic stem cells. These findings provide the landscape for the cellular architecture in the BM vasculature and underscore the importance of epiphyseal ECs during bone and haematopoietic development.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
12 |
9
|
Nakajima T, Kanno T, Yokoyama S, Sasamoto S, Asou HK, Tumes DJ, Ohara O, Nakayama T, Endo Y. ACC1-expressing pathogenic T helper 2 cell populations facilitate lung and skin inflammation in mice. J Exp Med 2021; 218:e20210639. [PMID: 34813654 PMCID: PMC8614157 DOI: 10.1084/jem.20210639] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/12/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
T cells possess distinguishing effector functions and drive inflammatory disorders. We have previously identified IL-5-producing Th2 cells as the pathogenic population predominantly involved in the pathology of allergic inflammation. However, the cell-intrinsic signaling pathways that control the pathogenic Th2 cell function are still unclear. We herein report the high expression of acetyl-CoA carboxylase 1 (ACC1) in the pathogenic CD4+ T cell population in the lung and skin. The genetic deletion of CD4+ T cell-intrinsic ACC1 dampened eosinophilic and basophilic inflammation in the lung and skin by constraining IL-5 or IL-3 production. Mechanistically, ACC1-dependent fatty acid biosynthesis induces the pathogenic cytokine production of CD4+ T cells via metabolic reprogramming and the availability of acetyl-CoA for epigenetic regulation. We thus identified a distinct phenotype of the pathogenic T cell population in the lung and skin, and ACC1 was shown to be an essential regulator controlling the pathogenic function of these populations to promote type 2 inflammation.
Collapse
|
research-article |
4 |
12 |
10
|
Ichijo R, Kabata M, Kidoya H, Muramatsu F, Ishibashi R, Abe K, Tsutsui K, Kubo H, Iizuka Y, Kitano S, Miyachi H, Kubota Y, Fujiwara H, Sada A, Yamamoto T, Toyoshima F. Vasculature-driven stem cell population coordinates tissue scaling in dynamic organs. SCIENCE ADVANCES 2021; 7:eabd2575. [PMID: 33568475 PMCID: PMC7875541 DOI: 10.1126/sciadv.abd2575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Stem cell (SC) proliferation and differentiation organize tissue homeostasis. However, how SCs regulate coordinate tissue scaling in dynamic organs remain unknown. Here, we delineate SC regulations in dynamic skin. We found that interfollicular epidermal SCs (IFESCs) shape basal epidermal proliferating clusters (EPCs) in expanding abdominal epidermis of pregnant mice and proliferating plantar epidermis. EPCs consist of IFESC-derived Tbx3+-basal cells (Tbx3+-BCs) and their neighboring cells where Adam8-extracellular signal-regulated kinase signaling is activated. Clonal lineage tracing revealed that Tbx3+-BC clones emerge in the abdominal epidermis during pregnancy, followed by differentiation after parturition. In the plantar epidermis, Tbx3+-BCs are sustained as long-lived SCs to maintain EPCs invariably. We showed that Tbx3+-BCs are vasculature-dependent IFESCs and identified mechanical stretch as an external cue for the vasculature-driven EPC formation. Our results uncover vasculature-mediated IFESC regulations, which explain how the epidermis adjusts its size in orchestration with dermal constituents in dynamic skin.
Collapse
|
research-article |
4 |
11 |
11
|
Matsui H, Ito S, Matsui H, Ito J, Gabdulkhaev R, Hirose M, Yamanaka T, Koyama A, Kato T, Tanaka M, Uemura N, Matsui N, Hirokawa S, Yoshihama M, Shimozawa A, Kubo SI, Iwasaki K, Hasegawa M, Takahashi R, Hirai K, Kakita A, Onodera O. Phosphorylation of α-synuclein at T64 results in distinct oligomers and exerts toxicity in models of Parkinson's disease. Proc Natl Acad Sci U S A 2023; 120:e2214652120. [PMID: 37252975 PMCID: PMC10266017 DOI: 10.1073/pnas.2214652120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/16/2023] [Indexed: 06/01/2023] Open
Abstract
α-Synuclein accumulates in Lewy bodies, and this accumulation is a pathological hallmark of Parkinson's disease (PD). Previous studies have indicated a causal role of α-synuclein in the pathogenesis of PD. However, the molecular and cellular mechanisms of α-synuclein toxicity remain elusive. Here, we describe a novel phosphorylation site of α-synuclein at T64 and the detailed characteristics of this post-translational modification. T64 phosphorylation was enhanced in both PD models and human PD brains. T64D phosphomimetic mutation led to distinct oligomer formation, and the structure of the oligomer was similar to that of α-synuclein oligomer with A53T mutation. Such phosphomimetic mutation induced mitochondrial dysfunction, lysosomal disorder, and cell death in cells and neurodegeneration in vivo, indicating a pathogenic role of α-synuclein phosphorylation at T64 in PD.
Collapse
|
research-article |
2 |
11 |
12
|
Hiraike Y, Saito K, Oguchi M, Wada T, Toda G, Tsutsumi S, Bando K, Sagawa J, Nagano G, Ohno H, Kubota N, Kubota T, Aburatani H, Kadowaki T, Waki H, Yanagimoto S, Yamauchi T. NFIA in adipocytes reciprocally regulates mitochondrial and inflammatory gene program to improve glucose homeostasis. Proc Natl Acad Sci U S A 2023; 120:e2308750120. [PMID: 37487068 PMCID: PMC10401007 DOI: 10.1073/pnas.2308750120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
Adipose tissue is central to regulation of energy homeostasis. Adaptive thermogenesis, which relies on mitochondrial oxidative phosphorylation (Ox-Phos), dissipates energy to counteract obesity. On the other hand, chronic inflammation in adipose tissue is linked to type 2 diabetes and obesity. Here, we show that nuclear factor I-A (NFIA), a transcriptional regulator of brown and beige adipocytes, improves glucose homeostasis by upregulation of Ox-Phos and reciprocal downregulation of inflammation. Mice with transgenic expression of NFIA in adipocytes exhibited improved glucose tolerance and limited weight gain. NFIA up-regulates Ox-Phos and brown-fat-specific genes by enhancer activation that involves facilitated genomic binding of PPARγ. In contrast, NFIA in adipocytes, but not in macrophages, down-regulates proinflammatory cytokine genes to ameliorate adipose tissue inflammation. NFIA binds to regulatory region of the Ccl2 gene, which encodes proinflammatory cytokine MCP-1 (monocyte chemoattractant protein-1), to down-regulate its transcription. CCL2 expression was negatively correlated with NFIA expression in human adipose tissue. These results reveal the beneficial effect of NFIA on glucose and body weight homeostasis and also highlight previously unappreciated role of NFIA in suppressing adipose tissue inflammation.
Collapse
|
research-article |
2 |
10 |
13
|
Nakamura K, Hayashi H, Kawano R, Ishikawa M, Aimono E, Mizuno T, Kuroda H, Kojima Y, Niikura N, Kawanishi A, Takeshita K, Suzuki S, Ueno S, Okuwaki K, Sasaki J, Yamaguchi M, Masuda K, Chiyoda T, Yamagami W, Okada C, Nohara S, Tanishima S, Nishihara H. BRCA1/2 reversion mutations in a pan-cancer cohort. Cancer Sci 2024; 115:635-647. [PMID: 38041241 PMCID: PMC10859608 DOI: 10.1111/cas.16033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
Tumor sensitivity to platinum (Pt)-based chemotherapy and poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors is increased by homologous recombination deficiency-causing mutations; in particular, reversion mutations cause drug resistance by restoring protein function. Treatment response is predicted by breast cancer susceptibility gene 1/2 (BRCA1/2) mutations; however, BRCA1/2 reversion mutations have not been comprehensively studied in pan-cancer cohorts. We aimed to characterize BRCA1/2 reversion mutations in a large pan-cancer cohort of Japanese patients by retrospectively analyzing sequencing data for BRCA1/2 pathogenic/likely pathogenic mutations in 3738 patients with 32 cancer types. We identified somatic mutations in tumors or circulating cell-free DNA that could restore the ORF of adverse alleles, including reversion mutations. We identified 12 (0.32%) patients with somatic BRCA1 (n = 3) and BRCA2 (n = 9) reversion mutations in breast (n = 4), ovarian/fallopian tube/peritoneal (n = 4), pancreatic (n = 2), prostate (n = 1), and gallbladder (n = 1) cancers. We identified 21 reversion events-BRCA1 (n = 3), BRCA2 (n = 18)-including eight pure deletions, one single-nucleotide variant, six multinucleotide variants, and six deletion-insertions. Seven (33.3%) reversion deletions showed a microhomology length greater than 1 bp, suggesting microhomology-mediated end-join repair. Disease course data were obtained for all patients with reversion events: four patients acquired mutations after PARP-inhibitor treatment failure, two showed somatic reversion mutations after disease progression, following Pt-based treatment, five showed mutations after both treatments, one patient with pancreatic cancer and BRCA1 reversion mutations had no history of either treatment. Although reversion mutations commonly occur in BRCA-associated cancers, our findings suggest that reversion mutations due to Pt-chemotherapy might be correlated with BRCA1/2-mediated tumorigenesis even in non-BRCA-associated histologies.
Collapse
|
research-article |
1 |
6 |
14
|
Wu Z, Yoshikawa T, Inoue S, Ito Y, Kasuya H, Nakashima T, Zhang H, Kotaka S, Hosoda W, Suzuki S, Kagoya Y. CD83 expression characterizes precursor exhausted T cell population. Commun Biol 2023; 6:258. [PMID: 36906640 PMCID: PMC10008643 DOI: 10.1038/s42003-023-04631-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
T cell exhaustion is a main obstacle against effective cancer immunotherapy. Exhausted T cells include a subpopulation that maintains proliferative capacity, referred to as precursor exhausted T cells (TPEX). While functionally distinct and important for antitumor immunity, TPEX possess some overlapping phenotypic features with the other T-cell subsets within the heterogeneous tumor-infiltrating T-lymphocytes (TIL). Here we explore surface marker profiles unique to TPEX using the tumor models treated by chimeric antigen receptor (CAR)-engineered T cells. We find that CD83 is predominantly expressed in the CCR7+PD1+ intratumoral CAR-T cells compared with the CCR7-PD1+ (terminally differentiated) and CAR-negative (bystander) T cells. The CD83+CCR7+ CAR-T cells exhibit superior antigen-induced proliferation and IL-2 production compared with the CD83- T cells. Moreover, we confirm selective expression of CD83 in the CCR7+PD1+ T-cell population in primary TIL samples. Our findings identify CD83 as a marker to discriminate TPEX from terminally exhausted and bystander TIL.
Collapse
|
research-article |
2 |
5 |
15
|
Yamashita M, Tamamitsu M, Kirisako H, Goda Y, Chen X, Hattori K, Ota S. High-Throughput 3D Imaging Flow Cytometry of Suspended Adherent 3D Cell Cultures. SMALL METHODS 2024; 8:e2301318. [PMID: 38133483 DOI: 10.1002/smtd.202301318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Indexed: 12/23/2023]
Abstract
3D cell cultures are indispensable in recapitulating in vivo environments. Among the many 3D culture methods, culturing adherent cells on hydrogel beads to form spheroid-like structures is a powerful strategy for maintaining high cell viability and functions in the adherent states. However, high-throughput, scalable technologies for 3D imaging of individual cells cultured on the hydrogel scaffolds are lacking. This study reports the development of a high throughput, scalable 3D imaging flow cytometry platform for analyzing spheroid models. This platform is realized by integrating a single objective fluorescence light-sheet microscopy with a microfluidic device that combines hydrodynamic and acoustofluidic focusing techniques. This integration enabled unprecedentedly high-throughput and scalable optofluidic 3D imaging, processing 1310 spheroids consisting of 28 117 cells min-1. The large dataset obtained enables precise quantification and comparison of the nuclear morphology of adhering and suspended cells, revealing that the adhering cells have smaller nuclei with less rounded surfaces. This platform's high throughput, robustness, and precision for analyzing the morphology of subcellular structures in 3D culture models hold promising potential for various biomedical analyses, including image-based phenotypic screening of drugs with spheroids or organoids.
Collapse
|
|
1 |
5 |
16
|
Suzuki M, Uchibori K, Oh-Hara T, Nomura Y, Suzuki R, Takemoto A, Araki M, Matsumoto S, Sagae Y, Kukimoto-Niino M, Kawase Y, Shirouzu M, Okuno Y, Nishio M, Fujita N, Katayama R. A macrocyclic kinase inhibitor overcomes triple resistant mutations in EGFR-positive lung cancer. NPJ Precis Oncol 2024; 8:46. [PMID: 38396251 PMCID: PMC10891166 DOI: 10.1038/s41698-024-00542-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Brigatinib-based therapy was effective against osimertinib-resistant EGFR C797S mutants and is undergoing clinical studies. However, tumor relapse suggests additional resistance mutations might emerge. Here, we first demonstrated the binding mode of brigatinib to the EGFR-T790M/C797S mutant by crystal structure analysis and predicted brigatinib-resistant mutations through a cell-based assay including N-ethyl-N-nitrosourea (ENU) mutagenesis. We found that clinically reported L718 and G796 compound mutations appeared, consistent with their proximity to the binding site of brigatinib, and brigatinib-resistant quadruple mutants such as EGFR-activating mutation/T790M/C797S/L718M were resistant to all the clinically available EGFR-TKIs. BI-4020, a fourth-generation EGFR inhibitor with a macrocyclic structure, overcomes the quadruple and major EGFR-activating mutants but not the minor mutants, such as L747P or S768I. Molecular dynamics simulation revealed the binding mode and affinity between BI-4020 and EGFR mutants. This study identified potential therapeutic strategies using the new-generation macrocyclic EGFR inhibitor to overcome the emerging ultimate resistance mutants.
Collapse
|
research-article |
1 |
3 |
17
|
Kohler J, Omachi K, Charu V, Miner JH, Bhalla V. A COL4A4-G394S Variant and Impaired Collagen IV Trimerization in a Patient with Mild Alport Syndrome. KIDNEY360 2022; 3:1899-1908. [PMID: 36514391 PMCID: PMC9717634 DOI: 10.34067/kid.0005472022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 04/14/2023]
Abstract
Background Missense variants in COL4A genes are often found in patients with an Alport syndrome-like presentation, but their pathogenicity is not always clear. We encountered a woman with microscopic hematuria and proteinuria at 33 years of age with a diagnosis of thin basement membrane disease who was approaching end stage kidney disease at 59 years of age. We hypothesized that this patient's kidney disease was within the spectrum of Alport syndrome. Methods We used histologic, genetic, and biochemical approaches to investigate the mechanisms of kidney disease. By immunofluorescence, we investigated collagen IV chain composition of the glomerular basement membrane (GBM). We employed targeted sequencing to search for pathogenic variants in COL4A and other relevant genes. We utilized N- and C-terminal split NanoLuciferase assays to determine the effect of a novel COL4A4 variant of uncertain significance (VUS) on collagen IV heterotrimer formation in vitro. We transfected COL4A4 expression constructs with split NanoLuciferase fragment-fused COL4A3 and COL4A5 constructs into human embryonic kidney 293T cells. To assay for α3α4α5(IV) heterotrimer formation and secretion, we measured luminescence in cell lysates and culture supernatants from transfected cells. Results Immunostaining suggested that the collagen α3α4α5(IV) network was present throughout the patient's GBMs. DNA sequencing revealed a novel homozygous VUS: COL4A4 c.1180G>A (p. Gly394Ser). In the C-terminal split luciferase-based α3α4α5(IV) heterotrimer formation assays, luminescence levels for G394S were comparable to WT, but in the N-terminal tag assays, the extracellular luminescence levels for G394S were decreased by approximately 50% compared with WT. Conclusions Our cell-based assay provides a platform to test COL4 VUS and shows that G394S impairs assembly of the α3α4α5(IV) N-terminus and subsequent trimer secretion. These data suggest that the COL4A4-G394S variant is pathogenic and causes an atypical mild form of autosomal recessive Alport syndrome.
Collapse
|
Case Reports |
3 |
2 |
18
|
Satouh Y, Tatebe T, Tanida I, Yamaguchi J, Uchiyama Y, Sato K. Endosomal-lysosomal organellar assembly (ELYSA) structures coordinate lysosomal degradation systems through mammalian oocyte-to-embryo transition. eLife 2025; 13:RP99358. [PMID: 40094202 PMCID: PMC11913445 DOI: 10.7554/elife.99358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Mouse oocytes undergo drastic changes in organellar composition and their activities during maturation from the germinal vesicle (GV) to metaphase II (MII) stage. After fertilization, the embryo degrades parts of the maternal components via lysosomal degradation systems, including autophagy and endocytosis, as zygotic gene expression begins during embryogenesis. Here, we demonstrate that endosomal-lysosomal organelles form large spherical assembly structures, termed endosomal-lysosomal organellar assemblies (ELYSAs), in mouse oocytes. ELYSAs are observed in GV oocytes, attaining sizes up to 7-8 μm in diameter in MII oocytes. ELYSAs comprise tubular-vesicular structures containing endosomes and lysosomes along with cytosolic components. Most ELYSAs are also positive for an autophagy regulator, LC3. These characteristics of ELYSA resemble those of ELVA (endolysosomal vesicular assemblies) identified independently. The signals of V1-subunit of vacuolar ATPase tends to be detected on the periphery of ELYSAs in MII oocytes. After fertilization, the localization of the V1-subunit on endosomes and lysosomes increase as ELYSAs gradually disassemble at the 2-cell stage, leading to further acidification of endosomal-lysosomal organelles. These findings suggest that the ELYSA/ELVA maintain endosomal-lysosomal activity in a static state in oocytes for timely activation during early development.
Collapse
|
research-article |
1 |
1 |
19
|
Watanabe-Takano H, Kato K, Oguri-Nakamura E, Ishii T, Kobayashi K, Murata T, Tsujikawa K, Miyata T, Kubota Y, Hanada Y, Nishiyama K, Watabe T, Fässler R, Ishii H, Mochizuki N, Fukuhara S. Endothelial cells regulate alveolar morphogenesis by constructing basement membranes acting as a scaffold for myofibroblasts. Nat Commun 2024; 15:1622. [PMID: 38438343 PMCID: PMC10912381 DOI: 10.1038/s41467-024-45910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Alveologenesis is a spatially coordinated morphogenetic event, during which alveolar myofibroblasts surround the terminal sacs constructed by epithelial cells and endothelial cells (ECs), then contract to form secondary septa to generate alveoli in the lungs. Recent studies have demonstrated the important role of alveolar ECs in this morphogenetic event. However, the mechanisms underlying EC-mediated alveologenesis remain unknown. Herein, we show that ECs regulate alveologenesis by constructing basement membranes (BMs) acting as a scaffold for myofibroblasts to induce septa formation through activating mechanical signaling. Rap1, a small GTPase of the Ras superfamily, is known to stimulate integrin-mediated cell adhesions. EC-specific Rap1-deficient (Rap1iECKO) mice exhibit impaired septa formation and hypo-alveolarization due to the decreased mechanical signaling in myofibroblasts. In Rap1iECKO mice, ECs fail to stimulate integrin β1 to recruit Collagen type IV (Col-4) into BMs required for myofibroblast-mediated septa formation. Consistently, EC-specific integrin β1-deficient mice show hypo-alveolarization, defective mechanical signaling in myofibroblasts, and disorganized BMs. These data demonstrate that alveolar ECs promote integrin β1-mediated Col-4 recruitment in a Rap1-dependent manner, thereby constructing BMs acting as a scaffold for myofibroblasts to induce mechanical signal-mediated alveologenesis. Thus, this study unveils a mechanism of organ morphogenesis mediated by ECs through intrinsic functions.
Collapse
|
research-article |
1 |
|
20
|
Kanno T, Konno R, Miyako K, Nakajima T, Yokoyama S, Sasamoto S, Asou HK, Ohzeki J, Kawashima Y, Hasegawa Y, Ohara O, Endo Y. Characterization of proteogenomic signatures of differentiation of CD4+ T cell subsets. DNA Res 2023; 30:dsac054. [PMID: 36579714 PMCID: PMC9886070 DOI: 10.1093/dnares/dsac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Functionally distinct CD4+ helper T (Th) cell subsets, including Th1, Th2, Th17, and regulatory T cells (Treg), play a pivotal role in the regulation of acquired immunity. Although the key proteins involved in the regulation of Th cell differentiation have already been identified how the proteogenomic landscape changes during the Th cell activation remains unclear. To address this issue, we characterized proteogenomic signatures of differentiation to each Th cell subsets by RNA sequencing and liquid chromatography-assisted mass spectrometry, which enabled us to simultaneously quantify more than 10,000 protein-coding transcripts and 8,000 proteins in a single-shot. The results indicated that T cell receptor activation affected almost half of the transcript and protein levels in a low correlative and gene-specific manner, and specific cytokine treatments modified the transcript and protein profiles in a manner specific to each Th cell subsets: Th17 and Tregs particularly exhibited unique proteogenomic signatures compared to other Th cell subsets. Interestingly, the in-depth proteome data revealed that mRNA profiles alone were not enough to delineate functional changes during Th cell activation, suggesting that the proteogenomic dataset obtained in this study serves as a unique and indispensable data resource for understanding the comprehensive molecular mechanisms underlying effector Th cell differentiation.
Collapse
|
research-article |
2 |
|
21
|
Nishijo D, Inoue S, Dai Z, Nomura S, Abe R, Hiruma T, Bujo C, Oshima T, Katoh M, Shimizu Y, Ito M, Yamagata K, Ishida J, Amiya E, Takeda N, Fujiu K, Hatano M, Morita H, Takeda N, Komuro I. Genetic cardiomyopathy mimicking isolated cardiac sarcoidosis: Diagnostic challenges with positron emission tomography. ESC Heart Fail 2025; 12:2347-2352. [PMID: 39905734 PMCID: PMC12055401 DOI: 10.1002/ehf2.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 02/06/2025] Open
|
Case Reports |
1 |
|
22
|
Kasuya H, Zhang H, Ito Y, Yoshikawa T, Nakashima T, Li Y, Matsukawa T, Inoue S, Kagoya Y. High CD62L expression predicts the generation of chimeric antigen receptor T cells with potent effector functions. Int Immunol 2024; 36:353-364. [PMID: 38517027 DOI: 10.1093/intimm/dxae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
The efficient generation of chimeric antigen receptor (CAR) T cells is highly influenced by the quality of apheresed T cells. Healthy donor-derived T cells usually proliferate better than patients-derived T cells and are precious resources to generate off-the-shelf CAR-T cells. However, relatively little is known about the determinants that affect the efficient generation of CAR-T cells from healthy donor-derived peripheral blood mononuclear cells (PBMCs) compared with those from the patients' own PBMCs. We here examined the efficiency of CAR-T cell generation from multiple healthy donor samples and analyzed its association with the phenotypic features of the starting peripheral blood T cells. We found that CD62L expression levels within CD8+ T cells were significantly correlated with CAR-T cell expansion. Moreover, high CD62L expression within naïve T cells was associated with the efficient expansion of T cells with a stem cell-like memory phenotype, an indicator of high-quality infusion products. Intriguingly, genetic disruption of CD62L significantly impaired CAR-T cell proliferation and cytokine production upon antigen stimulation. Conversely, ectopic expression of a shedding-resistant CD62L mutant augmented CAR-T cell effector functions compared to unmodified CAR-T cells, resulting in improved antitumor activity in vivo. Collectively, we identified the surface expression of CD62L as a concise indicator of potent T-cell proliferation. CD62L expression is also associated with the functional properties of CAR-T cells. These findings are potentially applicable to selecting optimal donors to massively generate CAR-T cell products.
Collapse
|
|
1 |
|
23
|
Kikuta S, Han B, Yoshihara S, Nishijima H, Kondo K, Yamasoba T. High CT Attenuation Values Relative to the Brainstem Predict Fungal Hyphae Within the Sinus. Front Surg 2022; 9:876340. [PMID: 35784936 PMCID: PMC9243468 DOI: 10.3389/fsurg.2022.876340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives There is currently no established objective diagnostic indicator for the differentiation of sinus fungal ball (SFB) from unilateral nonfungal chronic sinusitis (UCRS). This study evaluated whether computed tomography (CT) attenuation values relative to those of the brainstem (relative CT number) are useful for differentiating SFB from UCRS. Materials and Methods Consecutive patients who were pathologically diagnosed with SFB or UCRS between 2013 and 2021 were retrospectively identified. The relative CT numbers of region of interest (ROIs) within the sinuses were compared between the two patient groups. Factors with predictive power for differentiating SFBs from UCRSs were identified by uni/multivariable logistic regression analyses. Results One hundred and eighty-three patients with unilateral chronic sinusitis were finally analyzed (SFB, 86 cases; UCRS, 97 cases). Regardless of the presence or absence of calcified lesions, the relative CT numbers in SFB were significantly higher than those in UCRS. ROIs showing high relative CT numbers were those where fungal hyphae were present. In the uni/multivariable logistic regression analysis, age (p < 0.001), relative CT number (p < 0.001), and calcification (p = 0.002) had predictive value for distinguishing SFB from UCRS. Within those cases not showing calcification, age (p = 0.004) and relative CT number (p < 0.001) were predictive factors for differentiating SFB from UCRS. A relative CT number >1.5 was significantly associated with SFB (sensitivity, 70%; specificity, 91%), with a significantly larger area under the receiver operating characteristics curve than age. Conclusions High relative CT numbers within the sinus are strongly associated with the presence of fungal hyphae, and measurement of relative CT number is a powerful adjunctive diagnostic method for distinguishing between SFB and UCRS.
Collapse
|
|
3 |
|
24
|
Miyoshi G, Ueta Y, Yagasaki Y, Kishi Y, Fishell G, Machold RP, Miyata M. Developmental trajectories of GABAergic cortical interneurons are sequentially modulated by dynamic FoxG1 expression levels. Proc Natl Acad Sci U S A 2024; 121:e2317783121. [PMID: 38588430 PMCID: PMC11032493 DOI: 10.1073/pnas.2317783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.
Collapse
|
research-article |
1 |
|
25
|
Haraguchi M, Kiyotani K, Tate T, Sakata S, Sagawa R, Takagi S, Nagayama S, Takeuchi K, Takahashi K, Katayama R. Spatiotemporal commonality of the TCR repertoire in a T-cell memory murine model and in metastatic human colorectal cancer. Cancer Immunol Immunother 2023; 72:2971-2989. [PMID: 37270735 PMCID: PMC10992958 DOI: 10.1007/s00262-023-03473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have shown superior clinical responses and significantly prolong overall survival (OS) for many types of cancer. However, some patients exhibit long-term OS, whereas others do not respond to ICI therapy at all. To develop more effective and long-lasting ICI therapy, understanding the host immune response to tumors and the development of biomarkers are imperative. In this study, we established an MC38 immunological memory mouse model by administering an anti-PD-L1 antibody and evaluating the detailed characteristics of the immune microenvironment including the T cell receptor (TCR) repertoire. In addition, we found that the memory mouse can be established by surgical resection of residual tumor following anti-PD-L1 antibody treatment with a success rate of > 40%. In this model, specific depletion of CD8 T cells revealed that they were responsible for the rejection of reinoculated MC38 cells. Analysis of the tumor microenvironment (TME) of memory mice using RNA-seq and flow cytometry revealed that memory mice had a quick and robust immune response to MC38 cells compared with naïve mice. A TCR repertoire analysis indicated that T cells with a specific TCR repertoire were expanded in the TME, systemically distributed, and preserved in the host for a long time period. We also identified shared TCR clonotypes between serially resected tumors in patients with colorectal cancer (CRC). Our results suggest that memory T cells are widely preserved in patients with CRC, and the MC38 memory model is potentially useful for the analysis of systemic memory T-cell behavior.
Collapse
|
research-article |
2 |
|