1
|
Hartmann F, Baumgartner M, Kaltenbrunner M. Becoming Sustainable, The New Frontier in Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004413. [PMID: 33336520 PMCID: PMC11468029 DOI: 10.1002/adma.202004413] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Indexed: 06/12/2023]
Abstract
The advancement of technology has a profound and far-reaching impact on the society, now penetrating all areas of life. From cradle to grave, one is supported by and depends on a wide range of electronic and robotic appliances, with an ever more intimate integration of the digital and biological spheres. These advances, however, often come at the price of negatively impacting our ecosystem, with growing demands on energy, contributions to greenhouse gas emissions and environmental pollution-from production to improper disposal. Mitigating these adverse effects is among the grand challenges of the society and at the forefront of materials research. The currently emerging forms of soft, biologically inspired electronics and robotics have the unique potential of becoming not only like their natural antitypes in performance and capabilities, but also in terms of their ecological footprint. This review outlines the rise of sustainable materials in soft and bioinspired robotics, targeting all robotic components from actuators to energy storage and electronics. The state-of-the-art in biobased robotics spans flourishing fields and applications ranging from microbots operating in vivo to biohybrid machines and fully biodegradable yet resilient actuators. These first steps initiate the evolution of robotics and guide them into a sustainable future.
Collapse
|
Review |
4 |
50 |
2
|
Tenopala‐Carmona F, Lee OS, Crovini E, Neferu AM, Murawski C, Olivier Y, Zysman‐Colman E, Gather MC. Identification of the Key Parameters for Horizontal Transition Dipole Orientation in Fluorescent and TADF Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100677. [PMID: 34338351 PMCID: PMC11468900 DOI: 10.1002/adma.202100677] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/21/2021] [Indexed: 06/13/2023]
Abstract
In organic light-emitting diodes (OLEDs), horizontal orientation of the emissive transition dipole moment (TDM) can improve light outcoupling efficiency by up to 50% relative to random orientation. Therefore, there have been extensive efforts to identify drivers of horizontal orientation. The aspect ratio of the emitter molecule and the glass-transition temperature (Tg ) of the films are currently regarded as particularly important. However, there remains a paucity of systematic studies that establish the extent to which these and other parameters control orientation in the wide range of emitter systems relevant for state-of-the-art OLEDs. Here, recent work on molecular orientation of fluorescent and thermally activated delayed fluorescent emitters in vacuum-processed OLEDs is reviewed. Additionally, to identify parameters linked to TDM orientation, a meta-analysis of 203 published emitter systems is conducted and combined with density-functional theory calculations. Molecular weight (MW) and linearity are identified as key parameters in neat systems. In host-guest systems with low-MW emitters, orientation is mostly influenced by the host Tg , whereas the length and MW of the emitter become more relevant for systems involving higher-MW emitters. To close, a perspective of where the field must advance to establish a comprehensive model of molecular orientation is given.
Collapse
|
Review |
4 |
50 |
3
|
Cui H, Wang X, Wesslowski J, Tronser T, Rosenbauer J, Schug A, Davidson G, Popova AA, Levkin PA. Assembly of Multi-Spheroid Cellular Architectures by Programmable Droplet Merging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006434. [PMID: 33325613 PMCID: PMC11469186 DOI: 10.1002/adma.202006434] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Indexed: 05/26/2023]
Abstract
Artificial multicellular systems are gaining importance in the field of tissue engineering and regenerative medicine. Reconstruction of complex tissue architectures in vitro is nevertheless challenging, and methods permitting controllable and high-throughput fabrication of complex multicellular architectures are needed. Here, a facile and high-throughput method is developed based on a tunable droplet-fusion technique, allowing programmed assembly of multiple cell spheroids into complex multicellular architectures. The droplet-fusion technique allows for construction of various multicellular architectures (double-spheroids, multi-spheroids, hetero-spheroids) in a miniaturized high-density array format. As an example of application, the propagation of Wnt signaling is investigated within hetero-spheroids formed from two fused Wnt-releasing and Wnt-reporter cell spheroids. The developed method provides an approach for miniaturized, high-throughput construction of complex 3D multicellular architectures and can be applied for studying various biological processes including cell signaling, cancer invasion, embryogenesis, and neural development.
Collapse
|
research-article |
4 |
34 |
4
|
Camarero‐Espinosa S, Carlos‐Oliveira M, Liu H, Mano JF, Bouvy N, Moroni L. 3D Printed Dual-Porosity Scaffolds: The Combined Effect of Stiffness and Porosity in the Modulation of Macrophage Polarization. Adv Healthc Mater 2022; 11:e2101415. [PMID: 34719861 PMCID: PMC11468864 DOI: 10.1002/adhm.202101415] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Indexed: 01/04/2023]
Abstract
Tissue regeneration evolves toward the biofabrication of sophisticated 3D scaffolds. However, the success of these will be contingent to their capability to integrate within the host. The control of the mechanical or topographical properties of the implant appears as an ideal method to modulate the immune response. However, the interplay between these properties is yet not clear. Dual-porosity scaffolds with varying mechanical and topographical features are created, and their immunomodulatory properties in rat alveolar macrophages in vitro and in vivo in a rat subcutaneous model are evaluated. Scaffolds are fabricated via additive manufacturing and thermally induced phase separation methods from two copolymers with virtually identical chemistries, but different stiffness. The introduction of porosity enables the modulation of macrophages toward anti-inflammatory phenotypes, with secretion of IL-10 and TGF-β. Soft scaffolds (<5 kPa) result in a pro-inflammatory phenotype in contrast to stiffer (>40 kPa) scaffolds of comparable porosities supporting a pro-healing phenotype, which appears to be related to the surface spread area of cells. In vivo, stiff scaffolds integrate, while softer scaffolds appear encapsulated after three weeks of implantation, resulting in chronic inflammation after six weeks. The results demonstrate the importance of evaluating the interplay between topography and stiffness of candidate scaffolds.
Collapse
|
research-article |
3 |
29 |
5
|
Malki A, Teulon J, Camacho‐Zarco AR, Chen SW, Adamski W, Maurin D, Salvi N, Pellequer J, Blackledge M. Intrinsically Disordered Tardigrade Proteins Self-Assemble into Fibrous Gels in Response to Environmental Stress. Angew Chem Int Ed Engl 2022; 61:e202109961. [PMID: 34750927 PMCID: PMC9299615 DOI: 10.1002/anie.202109961] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Indexed: 11/08/2022]
Abstract
Tardigrades are remarkable for their ability to survive harsh stress conditions as diverse as extreme temperature and desiccation. The molecular mechanisms that confer this unusual resistance to physical stress remain unknown. Recently, tardigrade-unique intrinsically disordered proteins have been shown to play an essential role in tardigrade anhydrobiosis. Here, we characterize the conformational and physical behaviour of CAHS-8 from Hypsibius exemplaris. NMR spectroscopy reveals that the protein comprises an extended central helical domain flanked by disordered termini. Upon concentration, the protein is shown to successively form oligomers, long fibres, and finally gels constituted of fibres in a strongly temperature-dependent manner. The helical domain forms the core of the fibrillar structure, with the disordered termini remaining highly dynamic within the gel. Soluble proteins can be encapsulated within cavities in the gel, maintaining their functional form. The ability to reversibly form fibrous gels may be associated with the enhanced protective properties of these proteins.
Collapse
|
brief-report |
3 |
29 |
6
|
Guarneri L, Jakobs S, von Hoegen A, Maier S, Xu M, Zhu M, Wahl S, Teichrib C, Zhou Y, Cojocaru‐Mirédin O, Raghuwanshi M, Schön C, Drögeler M, Stampfer C, Lobo RPSM, Piarristeguy A, Pradel A, Raty J, Wuttig M. Metavalent Bonding in Crystalline Solids: How Does It Collapse? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102356. [PMID: 34355435 PMCID: PMC11468997 DOI: 10.1002/adma.202102356] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Indexed: 06/13/2023]
Abstract
The chemical bond is one of the most powerful, yet much debated concepts in chemistry, explaining property trends in solids. Recently, a novel type of chemical bonding was identified in several higher chalcogenides, characterized by a unique property portfolio, unconventional bond breaking, and sharing of about one electron between adjacent atoms. This metavalent bond is a fundamental type of bonding in solids, besides covalent, ionic, and metallic bonding, raising the pertinent question as to whether there is a well-defined transition between metavalent and covalent bonds. Here, three different pseudo-binary lines, namely, GeTe1- x Sex , Sb2 Te3(1- x ) Se3 x , and Bi2-2 x Sb2 x Se3 , are studied, and a sudden change in several properties, including optical absorption ε2 (ω), optical dielectric constant ε∞ , Born effective charge Z*, electrical conductivity, as well as bond breaking behavior for a critical Se or Sb concentration, is evidenced. These findings provide a blueprint to experimentally explore the influence of metavalent bonding on attractive properties of phase-change materials and thermoelectrics. Particularly important is its impact on optical properties, which can be tailored by the amount of electrons shared between adjacent atoms. This correlation can be used to design optoelectronic materials and to explore systematic changes in chemical bonding with stoichiometry and atomic arrangement.
Collapse
|
research-article |
4 |
26 |
7
|
Li Y, Liou Y, Oliveira JCA, Ackermann L. Ruthenium(II)/Imidazolidine Carboxylic Acid-Catalyzed C-H Alkylation for Central and Axial Double Enantio-Induction. Angew Chem Int Ed Engl 2022; 61:e202212595. [PMID: 36108175 PMCID: PMC9828380 DOI: 10.1002/anie.202212595] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Enantioselective C-H activation has surfaced as a transformative toolbox for the efficient assembly of chiral molecules. However, despite of major advances in rhodium and palladium catalysis, ruthenium(II)-catalyzed enantioselective C-H activation has thus far largely proven elusive. In contrast, we herein report on a ruthenium(II)-catalyzed highly regio-, diastereo- and enantioselective C-H alkylation. The key to success was represented by the identification of novel C2-symmetric chiral imidazolidine carboxylic acids (CICAs), which are easily accessible in a one-pot fashion, as highly effective chiral ligands. This ruthenium/CICA system enabled the efficient installation of central and axial chirality, and featured excellent branched to linear ratios with generally >20 : 1 dr and up to 98 : 2 er. Mechanistic studies by experiment and computation were carried out to understand the catalyst mode of action.
Collapse
|
research-article |
3 |
25 |
8
|
Shi W, Salerno F, Ward MD, Santana‐Bonilla A, Wade J, Hou X, Liu T, Dennis TJS, Campbell AJ, Jelfs KE, Fuchter MJ. Fullerene Desymmetrization as a Means to Achieve Single-Enantiomer Electron Acceptors with Maximized Chiroptical Responsiveness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004115. [PMID: 33225503 PMCID: PMC11468824 DOI: 10.1002/adma.202004115] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Solubilized fullerene derivatives have revolutionized the development of organic photovoltaic devices, acting as excellent electron acceptors. The addition of solubilizing addends to the fullerene cage results in a large number of isomers, which are generally employed as isomeric mixtures. Moreover, a significant number of these isomers are chiral, which further adds to the isomeric complexity. The opportunities presented by single-isomer, and particularly single-enantiomer, fullerenes in organic electronic materials and devices are poorly understood however. Here, ten pairs of enantiomers are separated from the 19 structural isomers of bis[60]phenyl-C61-butyric acid methyl ester, using them to elucidate important chiroptical relationships and demonstrating their application to a circularly polarized light (CPL)-detecting device. Larger chiroptical responses are found, occurring through the inherent chirality of the fullerene. When used in a single-enantiomer organic field-effect transistor, the potential to discriminate CPL with a fast light response time and with a very high photocurrent dissymmetry factor (gph = 1.27 ± 0.06) is demonstrated. This study thus provides key strategies to design fullerenes with large chiroptical responses for use as chiral components of organic electronic devices. It is anticipated that this data will position chiral fullerenes as an exciting material class for the growing field of chiral electronic technologies.
Collapse
|
research-article |
4 |
24 |
9
|
Mayorga‐Martinez CC, Zelenka J, Grmela J, Michalkova H, Ruml T, Mareš J, Pumera M. Swarming Aqua Sperm Micromotors for Active Bacterial Biofilms Removal in Confined Spaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101301. [PMID: 34369099 PMCID: PMC8498868 DOI: 10.1002/advs.202101301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Indexed: 06/01/2023]
Abstract
Microscale self-propelled robots show great promise in the biomedical field and are the focus of many researchers. These tiny devices, which move and navigate by themselves, are typically based on inorganic microstructures that are not biodegradable and potentially toxic, often using toxic fuels or elaborate external energy sources, which limits their real-world applications. One potential solution to these issues is to go back to nature. Here, the authors use high-speed Aqua Sperm micromotors obtained from North African catfish (Clarias gariepinus, B. 1822) to destroy bacterial biofilm. These Aqua Sperm micromotors use water-induced dynein ATPase catalyzed adenosine triphosphate (ATP) degradation as biocompatible fuel to trigger their fast speed and snake-like undulatory locomotion that facilitate biofilm destruction in less than one minute. This efficient biofilm destruction is due to the ultra-fast velocity as well as the head size of Aqua Sperm micromotors being similar to bacteria, which facilitates their entry to and navigation within the biofilm matrix. In addition, the authors demonstrate the real-world application of Aqua Sperm micromotors by destroying biofilms that had colonized medical and laboratory tubing. The implemented system extends the biomedical application of Aqua Sperm micromotors to include hybrid robots for fertilization or cargo tasks.
Collapse
|
research-article |
4 |
21 |
10
|
Yang W, Radha B, Choudhary A, You Y, Mettela G, Geim AK, Aksimentiev A, Keerthi A, Dekker C. Translocation of DNA through Ultrathin Nanoslits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007682. [PMID: 33522015 PMCID: PMC8011289 DOI: 10.1002/adma.202007682] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Indexed: 05/29/2023]
Abstract
2D nanoslit devices, where two crystals with atomically flat surfaces are separated by only a few nanometers, have attracted considerable attention because their tunable control over the confinement allows for the discovery of unusual transport behavior of gas, water, and ions. Here, the passage of double-stranded DNA molecules is studied through nanoslits fabricated from exfoliated 2D materials, such as graphene or hexagonal boron nitride, and the DNA polymer behavior is examined in this tight confinement. Two types of events are observed in the ionic current: long current blockades that signal DNA translocation and short spikes where DNA enters the slits but withdraws. DNA translocation events exhibit three distinct phases in their current-blockade traces-loading, translation, and exit. Coarse-grained molecular dynamics simulation allows the different polymer configurations of these phases to be identified. DNA molecules, including folds and knots in their polymer structure, are observed to slide through the slits with near-uniform velocity without noticeable frictional interactions of DNA with the confining graphene surfaces. It is anticipated that this new class of 2D-nanoslit devices will provide unique ways to study polymer physics and enable lab-on-a-chip biotechnology.
Collapse
|
research-article |
4 |
19 |
11
|
Gebhardt C, Lehmann M, Reif MM, Zacharias M, Gemmecker G, Cordes T. Molecular and Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF Series*. Chemphyschem 2021; 22:1566-1583. [PMID: 34185946 PMCID: PMC8457111 DOI: 10.1002/cphc.202000935] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/01/2021] [Indexed: 12/23/2022]
Abstract
The use of fluorescence techniques has an enormous impact on various research fields including imaging, biochemical assays, DNA-sequencing and medical technologies. This has been facilitated by the development of numerous commercial dyes with optimized photophysical and chemical properties. Often, however, information about the chemical structures of dyes and the attached linkers used for bioconjugation remain a well-kept secret. This can lead to problems for research applications where knowledge of the dye structure is necessary to predict or understand (unwanted) dye-target interactions, or to establish structural models of the dye-target complex. Using a combination of optical spectroscopy, mass spectrometry, NMR spectroscopy and molecular dynamics simulations, we here investigate the molecular structures and spectroscopic properties of dyes from the Alexa Fluor (Alexa Fluor 555 and 647) and AF series (AF555, AF647, AFD647). Based on available data and published structures of the AF and Cy dyes, we propose a structure for Alexa Fluor 555 and refine that of AF555. We also resolve conflicting reports on the linker composition of Alexa Fluor 647 maleimide. We also conducted a comprehensive comparison between Alexa Fluor and AF dyes by continuous-wave absorption and emission spectroscopy, quantum yield determination, fluorescence lifetime and anisotropy spectroscopy of free and protein-attached dyes. All these data support the idea that Alexa Fluor and AF dyes have a cyanine core and are a derivative of Cy3 and Cy5. In addition, we compared Alexa Fluor 555 and Alexa Fluor 647 to their structural homologs AF555 and AF(D)647 in single-molecule FRET applications. Both pairs showed excellent performance in solution-based smFRET experiments using alternating laser excitation. Minor differences in apparent dye-protein interactions were investigated by molecular dynamics simulations. Our findings clearly demonstrate that the AF-fluorophores are an attractive alternative to Alexa- and Cy-dyes in smFRET studies or other fluorescence applications.
Collapse
|
research-article |
4 |
19 |
12
|
Zhu Q, Danowski W, Mondal AK, Tassinari F, van Beek CLF, Heideman GH, Santra K, Cohen SR, Feringa BL, Naaman R. Multistate Switching of Spin Selectivity in Electron Transport through Light-Driven Molecular Motors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101773. [PMID: 34292678 PMCID: PMC8456272 DOI: 10.1002/advs.202101773] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Indexed: 05/25/2023]
Abstract
It is established that electron transmission through chiral molecules depends on the electron's spin. This phenomenon, termed the chiral-induced spin selectivity (CISS), effect has been observed in chiral molecules, supramolecular structures, polymers, and metal-organic films. Which spin is preferred in the transmission depends on the handedness of the system and the tunneling direction of the electrons. Molecular motors based on overcrowded alkenes show multiple inversions of helical chirality under light irradiation and thermal relaxation. The authors found here multistate switching of spin selectivity in electron transfer through first generation molecular motors based on the four accessible distinct helical configurations, measured by magnetic-conductive atomic force microscopy. It is shown that the helical state dictates the molecular organization on the surface. The efficient spin polarization observed in the photostationary state of the right-handed motor coupled with the modulation of spin selectivity through the controlled sequence of helical states, opens opportunities to tune spin selectivity on-demand with high spatio-temporal precision. An energetic analysis correlates the spin injection barrier with the extent of spin polarization.
Collapse
|
research-article |
4 |
16 |
13
|
Georgiou M, Yang C, Atkinson R, Pan K, Buskin A, Molina MM, Collin J, Al‐Aama J, Goertler F, Ludwig SEJ, Davey T, Lührmann R, Nagaraja‐Grellscheid S, Johnson CA, Ali R, Armstrong L, Korolchuk V, Urlaub H, Mozaffari‐Jovin S, Lako M. Activation of autophagy reverses progressive and deleterious protein aggregation in PRPF31 patient-induced pluripotent stem cell-derived retinal pigment epithelium cells. Clin Transl Med 2022; 12:e759. [PMID: 35297555 PMCID: PMC8926896 DOI: 10.1002/ctm2.759] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Mutations in pre-mRNA processing factor 31 (PRPF31), a core protein of the spliceosomal tri-snRNP complex, cause autosomal-dominant retinitis pigmentosa (adRP). It has remained an enigma why mutations in ubiquitously expressed tri-snRNP proteins result in retina-specific disorders, and so far, the underlying mechanism of splicing factors-related RP is poorly understood. METHODS We used the induced pluripotent stem cell (iPSC) technology to generate retinal organoids and RPE models from four patients with severe and very severe PRPF31-adRP, unaffected individuals and a CRISPR/Cas9 isogenic control. RESULTS To fully assess the impacts of PRPF31 mutations, quantitative proteomics analyses of retinal organoids and RPE cells were carried out showing RNA splicing, autophagy and lysosome, unfolded protein response (UPR) and visual cycle-related pathways to be significantly affected. Strikingly, the patient-derived RPE and retinal cells were characterised by the presence of large amounts of cytoplasmic aggregates containing the mutant PRPF31 and misfolded, ubiquitin-conjugated proteins including key visual cycle and other RP-linked tri-snRNP proteins, which accumulated progressively with time. The mutant PRPF31 variant was not incorporated into splicing complexes, but reduction of PRPF31 wild-type levels led to tri-snRNP assembly defects in Cajal bodies of PRPF31 patient retinal cells, altered morphology of nuclear speckles and reduced formation of active spliceosomes giving rise to global splicing dysregulation. Moreover, the impaired waste disposal mechanisms further exacerbated aggregate formation, and targeting these by activating the autophagy pathway using Rapamycin reduced cytoplasmic aggregates, leading to improved cell survival. CONCLUSIONS Our data demonstrate that it is the progressive aggregate accumulation that overburdens the waste disposal machinery rather than direct PRPF31-initiated mis-splicing, and thus relieving the RPE cells from insoluble cytoplasmic aggregates presents a novel therapeutic strategy that can be combined with gene therapy studies to fully restore RPE and retinal cell function in PRPF31-adRP patients.
Collapse
|
research-article |
3 |
14 |
14
|
Shi Y, Wareham DW, Yuan Y, Deng X, Mata A, Azevedo HS. Polymyxin B-Triggered Assembly of Peptide Hydrogels for Localized and Sustained Release of Combined Antimicrobial Therapy. Adv Healthc Mater 2021; 10:e2101465. [PMID: 34523266 PMCID: PMC11469027 DOI: 10.1002/adhm.202101465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Indexed: 12/30/2022]
Abstract
Repurposing old antibiotics into more effective and safer formulations is an emergent approach to tackle the growing threat of antimicrobial resistance. Herein, a peptide hydrogel is reported for the localized and sustained release of polymyxin B (PMB), a decade-old antibiotic with increasing clinical utility for treating multidrug-resistant Gram-negative bacterial infections. The hydrogel is assembled by additing PMB solution into a rationally designed peptide amphiphile (PA) solution and its mechanical properties can be adjusted through the addition of counterions, envisioning its application in diverse infection scenarios. Sustained release of PMB from the hydrogel over a 5-day period and prolonged antimicrobial activities against Gram-negative bacteria are observed. The localized release of active PMB from the hydrogel is shown to be effective in vivo for treating Pseudomonas aeruginosa infection in the Galleria mellonella burn wound infection model, dramatically reducing the mortality from 93% to 13%. Complementary antimicrobial activity against Gram-positive Staphylococcus aureus and enhanced antimicrobial effect against the Gram-negative Acinetobacter baumannii are observed when an additional antibiotic fusidic acid is incorporated into the hydrogen network. These results demonstrate the potential of the PMB-triggered PA hydrogel as a versatile platform for the localized and sustained delivery of combined antimicrobial therapies.
Collapse
|
research-article |
4 |
13 |
15
|
Xu Y, Qi R, Zhu H, Li B, Shen Y, Krainer G, Klenerman D, Knowles TPJ. Liquid-Liquid Phase-Separated Systems from Reversible Gel-Sol Transition of Protein Microgels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008670. [PMID: 34235786 PMCID: PMC11468722 DOI: 10.1002/adma.202008670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Liquid-liquid phase-separated biomolecular systems are increasingly recognized as key components in the intracellular milieu where they provide spatial organization to the cytoplasm and the nucleoplasm. The widespread use of phase-separated systems by nature has given rise to the inspiration of engineering such functional systems in the laboratory. In particular, reversible gelation of liquid-liquid phase-separated systems could confer functional advantages to the generation of new soft materials. Such gelation processes of biomolecular condensates have been extensively studied due to their links with disease. However, the inverse process, the gel-sol transition, has been less explored. Here, a thermoresponsive gel-sol transition of an extracellular protein in microgel form is explored, resulting in an all-aqueous liquid-liquid phase-separated system with high homogeneity. During this gel-sol transition, elongated gelatin microgels are demonstrated to be converted to a spherical geometry due to interfacial tension becoming the dominant energetic contribution as elasticity diminishes. The phase-separated system is further explored with respect to the diffusion of small particles for drug-release scenarios. Together, this all-aqueous system opens up a route toward size-tunable and monodisperse synthetic biomolecular condensates and controlled liquid-liquid interfaces, offering possibilities for applications in bioengineering and biomedicine.
Collapse
|
research-article |
4 |
13 |
16
|
Greenaway RL, Jelfs KE. Integrating Computational and Experimental Workflows for Accelerated Organic Materials Discovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004831. [PMID: 33565203 PMCID: PMC11468036 DOI: 10.1002/adma.202004831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Indexed: 06/12/2023]
Abstract
Organic materials find application in a range of areas, including optoelectronics, sensing, encapsulation, molecular separations, and photocatalysis. The discovery of materials is frustratingly slow however, particularly when contrasted to the vast chemical space of possibilities based on the near limitless options for organic molecular precursors. The difficulty in predicting the material assembly, and consequent properties, of any molecule is another significant roadblock to targeted materials design. There has been significant progress in the development of computational approaches to screen large numbers of materials, for both their structure and properties, helping guide synthetic researchers toward promising materials. In particular, artificial intelligence techniques have the potential to make significant impact in many elements of the discovery process. Alongside this, automation and robotics are increasing the scale and speed with which materials synthesis can be realized. Herein, the focus is on demonstrating the power of integrating computational and experimental materials discovery programmes, including both a summary of key situations where approaches can be combined and a series of case studies that demonstrate recent successes.
Collapse
|
Review |
4 |
12 |
17
|
Guin SN, Xu Q, Kumar N, Kung H, Dufresne S, Le C, Vir P, Michiardi M, Pedersen T, Gorovikov S, Zhdanovich S, Manna K, Auffermann G, Schnelle W, Gooth J, Shekhar C, Damascelli A, Sun Y, Felser C. 2D-Berry-Curvature-Driven Large Anomalous Hall Effect in Layered Topological Nodal-Line MnAlGe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006301. [PMID: 33734505 PMCID: PMC11469258 DOI: 10.1002/adma.202006301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Topological magnets comprising 2D magnetic layers with Curie temperatures (TC ) exceeding room temperature are key for dissipationless quantum transport devices. However, the identification of a material with 2D ferromagnetic planes that exhibits an out-of-plane-magnetization remains a challenge. This study reports a ferromagnetic, topological, nodal-line, and semimetal MnAlGe composed of square-net Mn layers that are separated by nonmagnetic Al-Ge spacers. The 2D ferromagnetic Mn layers exhibit an out-of-plane magnetization below TC ≈ 503 K. Density functional calculations demonstrate that 2D arrays of Mn atoms control the electrical, magnetic, and therefore topological properties in MnAlGe. The unique 2D distribution of the Berry curvature resembles the 2D Fermi surface of the bands that form the topological nodal line near the Fermi energy. A large anomalous Hall conductivity of ≈700 S cm-1 is obtained at 2 K and related to this nodal-line-induced 2D Berry curvature distribution. The high transition temperature, large anisotropic out-of-plane magnetism, and natural heterostructure-type atomic arrangements consisting of magnetic Mn and nonmagnetic Al/Ge elements render nodal-line MnAlGe one of the few, unique, and layered topological ferromagnets that have ever been observed.
Collapse
|
research-article |
4 |
11 |
18
|
Hughes A, Oliveira HR, Fradgley N, Corke FMK, Cockram J, Doonan JH, Nibau C. μCT trait analysis reveals morphometric differences between domesticated temperate small grain cereals and their wild relatives. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:98-111. [PMID: 30868647 PMCID: PMC6618119 DOI: 10.1111/tpj.14312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 05/29/2023]
Abstract
Wheat and barley are two of the founder crops domesticated in the Fertile Crescent, and currently represent crops of major economic importance in temperate regions. Due to impacts on yield, quality and end-use, grain morphometric traits remain an important goal for modern breeding programmes and are believed to have been selected for by human populations. To directly and accurately assess the three-dimensional (3D) characteristics of grains, we combine X-ray microcomputed tomography (μCT) imaging techniques with bespoke image analysis tools and mathematical modelling to investigate how grain size and shape vary across wild and domesticated wheat and barley. We find that grain depth and, to a lesser extent, width are major drivers of shape change and that these traits are still relatively plastic in modern bread wheat varieties. Significant changes in grain depth are also observed to be associated with differences in ploidy. Finally, we present a model that can accurately predict the wild or domesticated status of a grain from a given taxa based on the relationship between three morphometric parameters (length, width and depth) and suggest its general applicability to both archaeological identification studies and breeding programmes.
Collapse
|
research-article |
6 |
10 |
19
|
Hegner KI, Wong WSY, Vollmer D. Ultrafast Bubble Bursting by Superamphiphobic Coatings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101855. [PMID: 34365676 PMCID: PMC11468632 DOI: 10.1002/adma.202101855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Indexed: 05/18/2023]
Abstract
Controlling bubble motion or passively bursting bubbles using solid interfaces is advantageous in numerous industrial applications including flotation, catalysis, electrochemical processes, and microfluidics. Current research has explored the formation, dissolution, pinning, and rupturing of bubbles on different surfaces. However, the ability to tune and control the rate of bubble bursting is not yet achieved. Scaling down surface-induced bubble bursting to just a few milliseconds is important for any application. In this work, the hierarchical structure of superamphiphobic surfaces is tuned in order to rapidly rupture contacting bubbles. Surfaces prepared using liquid flame spray show ultrafast bubble bursting (down to 2 ms) and superior durability. The coatings demonstrate excellent mechanical and chemical stability even in the presence of surface-active species. Air from the ruptured bubble is absorbed into the aerophilic Cassie-state. Long-term applicability is demonstrated by preventing the accumulation of air in the plastron via a connection of the plastron to the environment. The times recorded for bubble rupture and complete reorganization of air are reduced by approximately a factor of 3 compared to previously reported values. The concept is utilized to passively control surfactant-rich foam in froth flotation. Material collection efficiency increased by more than 60 times compared to controls.
Collapse
|
research-article |
4 |
9 |
20
|
Hu S, Elliott E, Sánchez‐Iglesias A, Huang J, Guo C, Hou Y, Kamp M, Goerlitzer ESA, Bedingfield K, de Nijs B, Peng J, Demetriadou A, Liz‐Marzán LM, Baumberg JJ. Full Control of Plasmonic Nanocavities Using Gold Decahedra-on-Mirror Constructs with Monodisperse Facets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207178. [PMID: 36737852 PMCID: PMC10104671 DOI: 10.1002/advs.202207178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Bottom-up assembly of nanoparticle-on-mirror (NPoM) nanocavities enables precise inter-metal gap control down to ≈ 0.4 nm for confining light to sub-nanometer scales, thereby opening opportunities for developing innovative nanophotonic devices. However limited understanding, prediction, and optimization of light coupling and the difficulty of controlling nanoparticle facet shapes restricts the use of such building blocks. Here, an ultraprecise symmetry-breaking plasmonic nanocavity based on gold nanodecahedra is presented, to form the nanodecahedron-on-mirror (NDoM) which shows highly consistent cavity modes and fields. By characterizing > 20 000 individual NDoMs, the variability of light in/output coupling is thoroughly explored and a set of robust higher-order plasmonic whispering gallery modes uniquely localized at the edges of the triangular facet in contact with the metallic substrate is found. Assisted by quasinormal mode simulations, systematic elaboration of NDoMs is proposed to give nanocavities with near hundred-fold enhanced radiative efficiencies. Such systematically designed and precisely-assembled metallic nanocavities will find broad application in nanophotonic devices, optomechanics, and surface science.
Collapse
|
research-article |
2 |
8 |
21
|
Sylantyev S, Savtchenko LP, O'Neill N, Rusakov DA. Extracellular GABA waves regulate coincidence detection in excitatory circuits. J Physiol 2020; 598:4047-4062. [PMID: 32667048 PMCID: PMC8432164 DOI: 10.1113/jp279744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022] Open
Abstract
KEY POINTS Rapid changes in neuronal network activity trigger widespread waves of extracellular GABA in hippocampal neuropil. Elevations of extracellular GABA narrow the coincidence detection window for excitatory inputs to CA1 pyramidal cells. GABA transporters control the effect of extracellular GABA on coincidence detection. Small changes in the kinetics of dendritic excitatory currents amplify when reaching the soma. ABSTRACT Coincidence detection of excitatory inputs by principal neurons underpins the rules of signal integration and Hebbian plasticity in the brain. In the hippocampal circuitry, detection fidelity is thought to depend on the GABAergic synaptic input through a feedforward inhibitory circuit also involving the hyperpolarisation-activated Ih current. However, afferent connections often bypass feedforward circuitry, suggesting that a different GABAergic mechanism might control coincidence detection in such cases. To test whether fluctuations in the extracellular GABA concentration [GABA] could play a regulatory role here, we use a GABA 'sniffer' patch in acute hippocampal slices of the rat and document strong dependence of [GABA] on network activity. We find that blocking GABAergic signalling strongly widens the coincidence detection window of direct excitatory inputs to pyramidal cells whereas increasing [GABA] through GABA uptake blockade shortens it. The underlying mechanism involves membrane-shunting tonic GABAA receptor current; it does not have to rely on Ih but depends strongly on the neuronal GABA transporter GAT-1. We use dendrite-soma dual patch-clamp recordings to show that the strong effect of membrane shunting on coincidence detection relies on nonlinear amplification of changes in the decay of dendritic synaptic currents when they reach the soma. Our results suggest that, by dynamically regulating extracellular GABA, brain network activity can optimise signal integration rules in local excitatory circuits.
Collapse
|
research-article |
5 |
8 |
22
|
Baker AN, Muguruza AR, Richards S, Georgiou PG, Goetz S, Walker M, Dedola S, Field RA, Gibson MI. Lateral Flow Glyco-Assays for the Rapid and Low-Cost Detection of Lectins-Polymeric Linkers and Particle Engineering Are Essential for Selectivity and Performance. Adv Healthc Mater 2022; 11:e2101784. [PMID: 34747143 PMCID: PMC7612396 DOI: 10.1002/adhm.202101784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Indexed: 12/13/2022]
Abstract
Lateral flow immuno-assays, such as the home pregnancy test, are rapid point-of-care diagnostics that use antibody-coated nanoparticles to bind antigens/analytes (e.g., viruses, toxins or hormones). Ease of use, no need for centralized infrastructure and low-cost, makes these devices appealing for rapid disease identification, especially in low-resource environments. Here glycosylated polymer-coated nanoparticles are demonstrated for the sensitive, label-free detection of lectins in lateral flow and flow-through. The systems introduced here use glycans, not antibodies, to provide recognition: a "lateral flow glyco-assay," providing unique biosensing opportunities. Glycans are installed onto polymer termini and immobilized onto gold nanoparticles, providing colloidal stability but crucially also introducing assay tunability and selectivity. Using soybean agglutinin and Ricinus communis agglutinin I (RCA120 ) as model analytes, the impact of polymer chain length and nanoparticle core size are evaluated, with chain length found to have a significant effect on signal generation-highlighting the need to control the macromolecular architecture to tune response. With optimized systems, lectins are detectable at subnanomolar concentrations, comparable to antibody-based systems. Complete lateral flow devices are also assembled to show how these devices can be deployed in the "real world." This work shows that glycan-binding can be a valuable tool in rapid diagnostics.
Collapse
|
research-article |
3 |
4 |
23
|
Puchta H. Breaking DNA in plants: how I almost missed my personal breakthrough. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:437-40. [PMID: 26096544 PMCID: PMC11388934 DOI: 10.1111/pbi.12420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
|
Autobiography |
9 |
4 |
24
|
Iritani R, West SA, Abe J. Cooperative interactions among females can lead to even more extraordinary sex ratios. Evol Lett 2021; 5:370-384. [PMID: 34367662 PMCID: PMC8327954 DOI: 10.1002/evl3.217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 11/29/2022] Open
Abstract
Hamilton's local mate competition theory provided an explanation for extraordinary female-biased sex ratios in a range of organisms. When mating takes place locally, in structured populations, a female-biased sex ratio is favored to reduce competition between related males, and to provide more mates for males. However, there are a number of wasp species in which the sex ratios appear to more female biased than predicted by Hamilton's theory. It has been hypothesized that the additional female bias in these wasp species results from cooperative interactions between females. We investigated theoretically the extent to which cooperation between related females can interact with local mate competition to favor even more female-biased sex ratios. We found that (i) cooperation between females can lead to sex ratios that are more female biased than predicted by local competition theory alone, and (ii) sex ratios can be more female biased when the cooperation occurs from offspring to mothers before dispersal, rather than cooperation between siblings after dispersal. Our models formally confirm the verbal predictions made in previous experimental studies, which could be applied to a range of organisms. Specifically, cooperation can help explain sex ratio biases in Sclerodermus and Melittobia wasps, although quantitative comparisons between predictions and data suggest that some additional factors may be operating.
Collapse
|
letter |
4 |
4 |
25
|
Johannesson K, Leder EH, André C, Dupont S, Eriksson SP, Harding K, Havenhand JN, Jahnke M, Jonsson PR, Kvarnemo C, Pavia H, Rafajlović M, Rödström EM, Thorndyke M, Blomberg A. Ten years of marine evolutionary biology-Challenges and achievements of a multidisciplinary research initiative. Evol Appl 2023; 16:530-541. [PMID: 36793681 PMCID: PMC9923476 DOI: 10.1111/eva.13389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
The Centre for Marine Evolutionary Biology (CeMEB) at the University of Gothenburg, Sweden, was established in 2008 through a 10-year research grant of 8.7 m€ to a team of senior researchers. Today, CeMEB members have contributed >500 scientific publications, 30 PhD theses and have organised 75 meetings and courses, including 18 three-day meetings and four conferences. What are the footprints of CeMEB, and how will the centre continue to play a national and international role as an important node of marine evolutionary research? In this perspective article, we first look back over the 10 years of CeMEB activities and briefly survey some of the many achievements of CeMEB. We furthermore compare the initial goals, as formulated in the grant application, with what has been achieved, and discuss challenges and milestones along the way. Finally, we bring forward some general lessons that can be learnt from a research funding of this type, and we also look ahead, discussing how CeMEB's achievements and lessons can be used as a springboard to the future of marine evolutionary biology.
Collapse
|
research-article |
2 |
3 |