1
|
Villa R, Ruiz FJ, Velasco F, Nieto S, Porcar R, Garcia-Verdugo E, Lozano P. A Green Chemo-Enzymatic Approach for CO 2 Capture and Transformation into Bis(cyclic carbonate) Esters in Solvent-Free Media. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:15033-15043. [PMID: 39421635 PMCID: PMC11481583 DOI: 10.1021/acssuschemeng.4c04102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
A sustainable approach for CO2 capture and chemo-enzymatic transformation into bis(cyclic carbonate) esters from CO2, glycidol, and organic anhydrides under solvent-free conditions has been demonstrated. The chemo-enzymatic process is based on two consecutive catalytic steps, which can be executed through separated operations or within a one-pot combo system, taking advantage of the synergic effects that emerge from integrating ionic liquid (IL) technologies and biocatalysts. In a first step, lipase-catalyzed transesterification and esterification reactions of different diacyl donors (e.g., glutaric anhydride, succinic anhydride, dimethyl succinate, etc.) with glycidol in solvent-free under mild reaction conditions (70 °C, 6 h) produce the corresponding diglycidyl ester derivatives in up to 41% yield. By a second step, the synthesis of bis(cyclic carbonate) esters was carried out as a result of the cycloaddition reaction of CO2 (from an exhausted gas source, 15% CO2 purity) on these diglycidyl esters, catalyzed by the covalently attached 1-decyl-2-methylimidazolium IL (supported ionic liquid-like phase, SILLP), in solvent-free condition, leading up to 65% yield after 8 h at 45 °C and 1 MPa CO2 pressure. Both key elements of the reaction system (biocatalyst and SILLP) were successfully recovered and reused for at least 5 operational cycles. Finally, different metrics have been applied to assess the greenness of the solvent-free chemo-enzymatic synthesis of bis(cyclic carbonate) esters here reported.
Collapse
|
2
|
Puigcerver J, Zamora-Gallego JM, Marin-Luna M, Martinez-Cuezva A, Berna J. Urea-Based [2]Rotaxanes as Effective Phase-Transfer Organocatalysts: Hydrogen-Bonding Cooperative Activation Enabled by the Mechanical Bond. J Am Chem Soc 2024; 146:22887-22892. [PMID: 38975636 PMCID: PMC11345763 DOI: 10.1021/jacs.4c06630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
We finely designed a set of [2]rotaxanes with urea threads and tested them as hydrogen-bonding phase-transfer catalysts in two different nucleophilic substitutions requiring the activation of the reactant fluoride anion. The [2]rotaxane bearing a fluorinated macrocycle and a fluorine-containing urea thread displayed significantly enhanced catalytic activity in comparison with the combination of both noninterlocked components. This fact highlights the notably beneficial role of the mechanical bond, cooperatively activating the processes through hydrogen-bonding interactions.
Collapse
|
3
|
Fernández-Rodríguez MJ, Jones PG, Vicente J, Martínez-Viviente E. Synthesis and Reactivity of Dipalladated Derivatives of Terephthalaldehyde. Organometallics 2024; 43:1647-1657. [PMID: 39148863 PMCID: PMC11323953 DOI: 10.1021/acs.organomet.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
The polynuclear complex [{μ-C1,C4,N,N″-C6H2{C(H)=N(nBu)}2-2,5}{Pd(μ-OAc)}]2 (I) reacts with tbbpy (4,4'-di-tert-butyl-2,2'-bipyridine) and TlOTf to form the dinuclear complex [{μ-C1,C4,N,N″-C6H2{C(H)=N(nBu)}2-2,5}{Pd(tbbpy)}2] (1). The hydrolysis of I with acetic acid in a 5:1 acetone/water mixture, in the presence of two equivalents of tbbpy and excess NaX (X = Br, I), yields the dipalladated terephthalaldehyde complexes [C6H2{PdX(tbbpy)}2-1,4-(CHO)2-2,5] [X = Br (2a), X = I (2b)], which are the first fully characterized complexes of this type. The reaction of 2a,b with CO results in the insertion of CO into both aryl-Pd bonds, forming [C6H2{C(O){PdX(tbbpy)}}2-1,4-(CHO)2-2,5] [X = Br (3a), X = I (3b)], which are the first examples of complexes with CO inserted into two separate aryl-metal bonds involving the same ligand. The bromo complex 2a reacts with excess XylNC in acetone, causing the precipitation of the dinuclear complex 2,3,6,7-tetrahydrobenzo[1,2-c:4,5-c']dipyrrole-1,5-dione-2,6-dixylyl-3,7-bis{=C(NHXyl)-C(=NXyl)-[PdBr(CNXyl)2]} (4), which is the result of the insertion of three molecules of the isocyanide into each aryl-Pd bond and the nucleophilic attack of one of them at each formyl group. When complex 4 reacts with TlOTf and residual water in 1,2-dichloroethane at 70 °C, depalladation occurs, and the organic compound 2,3,6,7-tetrahydrobenzo[1,2-c:4,5-c']dipyrrole-1,5-dione-2,6-dixylyl-3,7-bis{=C(NHXyl)-C(O)NHXyl} (5) can be isolated. The crystal structures of 1·4CHCl3, 4·2CH2Cl2·3hexane, and 5·2CDCl3 have been determined by X-ray crystallography.
Collapse
|
4
|
Marco A, Ashoo P, Hernández-García S, Martínez-Rodríguez P, Cutillas N, Vollrath A, Jordan D, Janiak C, Gandía-Herrero F, Ruiz J. Novel Re(I) Complexes as Potential Selective Theranostic Agents in Cancer Cells and In Vivo in Caenorhabditis elegans Tumoral Strains. J Med Chem 2024; 67:7891-7910. [PMID: 38451016 PMCID: PMC11129195 DOI: 10.1021/acs.jmedchem.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
A series of rhenium(I) complexes of the type fac-[Re(CO)3(N^N)L]0/+, Re1-Re9, was synthesized, where N^N = benzimidazole-derived bidentate ligand with an ester functionality and L = chloride or pyridine-type ligand. The new compounds demonstrated potent activity toward ovarian A2780 cancer cells. The most active complexes, Re7-Re9, incorporating 4-NMe2py, exhibited remarkable activity in 3D HeLa spheroids. The emission in the red region of Re9, which contains an electron-deficient benzothiazole moiety, allowed its operability as a bioimaging tool for in vitro and in vivo visualization. Re9 effectivity was tested in two different C. elegans tumoral strains, JK1466 and MT2124, to broaden the oncogenic pathways studied. The results showed that Re9 was able to reduce the tumor growth in both strains by increasing the ROS production inside the cells. Moreover, the selectivity of the compound toward cancerous cells was remarkable as it did not affect neither the development nor the progeny of the nematodes.
Collapse
|
5
|
Ballester F, Hernández-García A, Santana MD, Bautista D, Ashoo P, Ortega-Forte E, Barone G, Ruiz J. Photoactivatable Ruthenium Complexes Containing Minimal Straining Benzothiazolyl-1,2,3-triazole Chelators for Cancer Treatment. Inorg Chem 2024; 63:6202-6216. [PMID: 38385171 PMCID: PMC11005040 DOI: 10.1021/acs.inorgchem.3c04432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Ruthenium(II) complexes containing diimine ligands have contributed to the development of agents for photoactivated chemotherapy. Several approaches have been used to obtain photolabile Ru(II) complexes. The two most explored have been the use of monodentate ligands and the incorporation of steric effects between the bidentate ligands and the Ru(II). However, the introduction of electronic effects in the ligands has been less explored. Herein, we report a systematic experimental, theoretical, and photocytotoxicity study of a novel series of Ru(II) complexes Ru1-Ru5 of general formula [Ru(phen)2(N∧N')]2+, where N∧N' are different minimal strained ligands based on the 1-aryl-4-benzothiazolyl-1,2,3-triazole (BTAT) scaffold, being CH3 (Ru1), F (Ru2), CF3 (Ru3), NO2 (Ru4), and N(CH3)2 (Ru5) substituents in the R4 of the phenyl ring. The complexes are stable in solution in the dark, but upon irradiation in water with blue light (λex = 465 nm, 4 mW/cm2) photoejection of the ligand BTAT was observed by HPLC-MS spectrometry and UV-vis spectroscopy, with t1/2 ranging from 4.5 to 14.15 min depending of the electronic properties of the corresponding BTAT, being Ru4 the less photolabile (the one containing the more electron withdrawing substituent, NO2). The properties of the ground state singlet and excited state triplet of Ru1-Ru5 have been explored using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. A mechanism for the photoejection of the BTAT ligand from the Ru complexes, in H2O, is proposed. Phototoxicity studies in A375 and HeLa human cancer cell lines showed that the new Ru BTAT complexes were strongly phototoxic. An enhancement of the emission intensity of HeLa cells treated with Ru5 was observed in response to increasing doses of light due to the photoejection of the BTAT ligand. These studies suggest that BTAT could serve as a photocleavable protecting group for the cytotoxic bis-aqua ruthenium warhead [Ru(phen)2(OH2)2]2+.
Collapse
|
6
|
Frezza F, Matěj A, Sánchez-Grande A, Carrera M, Mutombo P, Kumar M, Curiel D, Jelínek P. On-Surface Synthesis of a Radical 2D Supramolecular Organic Framework. J Am Chem Soc 2024; 146:3531-3538. [PMID: 38269436 PMCID: PMC10859929 DOI: 10.1021/jacs.3c13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The design of supramolecular organic radical cages and frameworks is one of the main challenges in supramolecular chemistry. Their interesting material properties and wide applications make them very promising for (photo)redox catalysis, sensors, or host-guest spin-spin interactions. However, the high reactivity of radical organic systems makes the design of such supramolecular radical assemblies challenging. Here, we report the on-surface synthesis of a purely organic supramolecular radical framework on Au(111), by combining supramolecular and on-surface chemistry. We employ a tripodal precursor, functionalized with 7-azaindole groups that, catalyzed by a single gold atom on the surface, forms a radical molecular product constituted by a π-extended fluoradene-based radical core. The radical products self-assemble through hydrogen bonding, leading to extended 2D domains ordered in a Kagome-honeycomb lattice. This approach demonstrates the potential of on-surface synthesis for developing 2D supramolecular radical organic chemistry.
Collapse
|
7
|
Puigcerver J, Marin-Luna M, Iglesias-Sigüenza J, Alajarin M, Martinez-Cuezva A, Berna J. Mechanically Planar-to-Point Chirality Transmission in [2]Rotaxanes. J Am Chem Soc 2024; 146:2882-2887. [PMID: 38266249 PMCID: PMC10859924 DOI: 10.1021/jacs.3c11611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Herein we describe an effective transmission of chirality, from mechanically planar chirality to point chirality, in hydrogen-bonded [2]rotaxanes. A highly selective mono-N-methylation of one (out of four) amide N atom at the macrocyclic counterpart of starting achiral rotaxanes generates mechanically planar chirality. Followed by chiral resolution, both enantiomers were subjected to a base-promoted intramolecular cyclization, where their interlocked threads were transformed into new lactam moieties. As a matter of fact, the mechanically planar chiral information was effectively transferred to the resulting stereocenters (covalent chirality) of the newly formed heterocycles. Upon removing the entwined macrocycle, the final lactams were obtained with high enantiopurity.
Collapse
|
8
|
Kasparkova J, Hernández-García A, Kostrhunova H, Goicuría M, Novohradsky V, Bautista D, Markova L, Santana MD, Brabec V, Ruiz J. Novel 2-(5-Arylthiophen-2-yl)-benzoazole Cyclometalated Iridium(III) dppz Complexes Exhibit Selective Phototoxicity in Cancer Cells by Lysosomal Damage and Oncosis. J Med Chem 2024; 67:691-708. [PMID: 38141031 PMCID: PMC10788912 DOI: 10.1021/acs.jmedchem.3c01978] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
A second-generation series of biscyclometalated 2-(5-aryl-thienyl)-benzimidazole and -benzothiazole Ir(III) dppz complexes [Ir(C^N)2(dppz)]+, Ir1-Ir4, were rationally designed and synthesized, where the aryl group attached to the thienyl ring was p-CF3C6H4 or p-Me2NC6H4. These new Ir(III) complexes were assessed as photosensitizers to explore the structure-activity correlations for their potential use in biocompatible anticancer photodynamic therapy. When irradiated with blue light, the complexes exhibited high selective potency across several cancer cell lines predisposed to photodynamic therapy; the benzothiazole derivatives (Ir1 and Ir2) were the best performers, Ir2 being also activatable with green or red light. Notably, when irradiated, the complexes induced leakage of lysosomal content into the cytoplasm of HeLa cancer cells and induced oncosis-like cell death. The capability of the new Ir complexes to photoinduce cell death in 3D HeLa spheroids has also been demonstrated. The investigated Ir complexes can also catalytically photo-oxidate NADH and photogenerate 1O2 and/or •OH in cell-free media.
Collapse
|
9
|
Poveda D, Vivancos Á, Bautista D, González-Herrero P. Luminescent Platinum(II) Complexes with Terdentate N∧C∧C Ligands. Inorg Chem 2023; 62:20987-21002. [PMID: 38051299 PMCID: PMC10751801 DOI: 10.1021/acs.inorgchem.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
The synthesis, structure, and luminescence of Pt(II) complexes of the type [Pt(N∧C∧C)(L)] are reported, where N∧C∧C is a terdentate ligand resulting from the cycloplatination of 2-(3,5-diphenoxyphenyl)pyridine or 2-(4,4″-dimethyl-[1,1':3',1″-terphenyl]-5'-yl)pyridine, and L represents a monodentate ancillary ligand, which can be γ-picoline, 4-pyridinecarboxaldehyde, PPh3, n-butyl or 2,6-dimethylphenyl isocyanide, CO, or the N-heterocyclic carbenes 1-butyl-3-methylimidazol-2-ylidene or 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene. Derivatives bearing CO, isocyanides, or carbenes showed the highest stabilities in solution, whereas the pyridine and PPh3 derivatives establish ligand-exchange equilibria in acetonitrile. Different supramolecular structures are observed in the solid state, which largely depend on the nature of the ancillary ligand. Isocyanides and CO favor π interactions between the aromatic rings, metallophilic Pt···Pt contacts, or a combination of both. In contrast, pyridine ligands may lead to bimolecular assemblies driven by C-H···O, C-H···Pt, or C-H/π hydrogen bonds. Luminescence was examined in fluid solution, poly(methyl methacrylate) matrices, and the solid state at 298 K, and in 2-methyltetrahydrofuran glasses at 77 K. The majority of derivatives show highly efficient emissions from 3ILCT/MLCT or 3ILCT/MLCT/LLCT excited states of monomeric species. The formation of excimers and different types of emissive aggregates are demonstrated, which lead to red-shifted emissions of different origins and characteristics depending on the involved noncovalent interactions.
Collapse
|
10
|
Saura-Sanmartin A, Lopez-Sanchez J, Lopez-Leonardo C, Pastor A, Berna J. Exploring the Chemistry of the Mechanical Bond: Synthesis of a [2]Rotaxane through Multicomponent Reactions. JOURNAL OF CHEMICAL EDUCATION 2023; 100:3355-3363. [PMID: 37720524 PMCID: PMC10501439 DOI: 10.1021/acs.jchemed.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Indexed: 09/19/2023]
Abstract
The synthesis of a [2]rotaxane through three- or five-component coupling reactions has been adapted to an organic chemistry experiment for upper-division students. The experimental procedure addresses the search for the most favorable reaction conditions for the synthesis of the interlocked compound, which is obtained in a yield of up to 71%. Moreover, the interlocked nature of the rotaxane is proven by NMR spectroscopy. The content of the sessions has been designed on the basis of a proactive methodology whereby upper-division undergraduate students have a dynamic role. The laboratory experience not only introduces students to the chemistry of the mechanical bond but also reinforces their previous knowledge of basic organic laboratory procedures and their skills with structural elucidation techniques such as NMR and FT-IR spectroscopies. The experiment has been designed in such a customizable way that both experimental procedures and laboratory material can be adapted to a wide range of undergraduate course curricula.
Collapse
|
11
|
Beltrán D, Frutos-Lisón MD, García-Villalba R, Yuste JE, García V, Espín JC, Selma MV, Tomás-Barberán FA. NMR Spectroscopic Identification of Urolithin G, a Novel Trihydroxy Urolithin Produced by Human Intestinal Enterocloster Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11921-11928. [PMID: 37494568 PMCID: PMC10416303 DOI: 10.1021/acs.jafc.3c01675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Urolithins are gut microbiota metabolites of ellagic acid. Here, we have identified and chemically characterized a novel urolithin produced from urolithin D (3,4,8,9-tetrahydroxy urolithin) by in vitro incubation with different human gut Enterocloster species under anaerobic conditions. Urolithin G (3,4,8-trihydroxy urolithin) was identified by 1H NMR, 13C NMR, UV, HRMS, and 2D NMR. For the identification, NMR spectra of other known urolithins were also recorded and compared. Urolithin G was present in the feces of 12% of volunteers in an overweight-obese group after consuming an ellagitannin-rich pomegranate extract. The production of urolithin G required a bacterial 9-dehydroxylase activity and was not specific to the known human urolithin metabotypes A and B. The ability to produce urolithin G could be considered an additional metabolic feature for volunteer stratification and bioactivity studies. This is the first urolithin with a catechol group in ring A while having only one hydroxyl in ring B, a unique feature not found in human and animal samples so far.
Collapse
|
12
|
Alajarin M, Cutillas-Font G, Lopez-Leonardo C, Orenes RA, Marin-Luna M, Pastor A. Intramolecular Cyclization of Azido-Isocyanides Triggered by the Azide Anion: An Experimental and Computational Study. J Org Chem 2023; 88:8658-8668. [PMID: 37338459 PMCID: PMC10861138 DOI: 10.1021/acs.joc.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 06/21/2023]
Abstract
This work describes the unprecedented intramolecular cyclization occurring in a set of α-azido-ω-isocyanides in the presence of catalytic amounts of sodium azide. These species yield the tricyclic cyanamides [1,2,3]triazolo[1,5-a]quinoxaline-5(4H)-carbonitriles, whereas in the presence of an excess of the same reagent, the azido-isocyanides convert into the respective C-substituted tetrazoles through a [3 + 2] cycloaddition between the cyano group of the intermediate cyanamides and the azide anion. The formation of tricyclic cyanamides has been examined by experimental and computational means. The computational study discloses the intermediacy of a long-lived N-cyanoamide anion, detected by NMR monitoring of the experiments, subsequently converting into the final cyanamide in the rate-determining step. The chemical behavior of these azido-isocyanides endowed with an aryl-triazolyl linker has been compared with that of a structurally identical azido-cyanide isomer, experiencing a conventional intramolecular [3 + 2] cycloaddition between its azido and cyanide functionalities. The synthetic procedures described herein constitute metal-free approaches to novel complex heterocyclic systems, such as [1,2,3]triazolo[1,5-a]quinoxalines and 9H-benzo[f]tetrazolo[1,5-d][1,2,3]triazolo[1,5-a][1,4]diazepines.
Collapse
|
13
|
Abad J, Martínez JI, Gómez P, Más-Montoya M, Rodríguez L, Cossaro A, Verdini A, Floreano L, Martín-Gago JA, Curiel D, Méndez J. Two-Dimensional Self-Assembly Driven by Intermolecular Hydrogen Bonding in Benzodi-7-azaindole Molecules on Au(111). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:11591-11599. [PMID: 37377501 PMCID: PMC10291637 DOI: 10.1021/acs.jpcc.3c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Indexed: 06/29/2023]
Abstract
The control of molecular structures at the nanoscale plays a critical role in the development of materials and applications. The adsorption of a polyheteroaromatic molecule with hydrogen bond donor and acceptor sites integrated in the conjugated structure itself, namely, benzodi-7-azaindole (BDAI), has been studied on Au(111). Intermolecular hydrogen bonding determines the formation of highly organized linear structures where surface chirality, resulting from the 2D confinement of the centrosymmetric molecules, is observed. Moreover, the structural features of the BDAI molecule lead to the formation of two differentiated arrangements with extended brick-wall and herringbone packing. A comprehensive experimental study that combines scanning tunneling microscopy, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory theoretical calculations has been performed to fully characterize the 2D hydrogen-bonded domains and the on-surface thermal stability of the physisorbed material.
Collapse
|
14
|
Nieto S, Bernal JM, Villa R, Garcia-Verdugo E, Donaire A, Lozano P. Sustainable Setups for the Biocatalytic Production and Scale-Up of Panthenyl Monoacyl Esters under Solvent-Free Conditions. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:5737-5747. [PMID: 37064495 PMCID: PMC10091472 DOI: 10.1021/acssuschemeng.3c00266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Indexed: 06/19/2023]
Abstract
A sustainable scaling-up process for the biocatalytic production of new bioactive provitamin-B5 monoacyl esters has been demonstrated. A solvent-free reaction protocol, based on the formation of eutectic mixtures between neat substrates, renders highly efficient direct esterification of free fatty acids (i.e., from C6 to C18 alkyl-chain length) with panthenol catalyzed by lipase. The scale-up from 0.5 to 500 g was evaluated by means of using several reaction systems (i.e., ultrasound assistance, orbital shaking, rotary evaporator, and mechanical stirring coupled to vacuum). For all reactor systems, the yield in panthenyl monoacyl esters was improved by increasing the length of the alkyl chain of the fatty acid (i.e., from 63% yield for panthenyl butyrate to 83% yield for panthenyl myristate). The best results (87-95% product yield, for all cases) were obtained upon a scale-up (50-500 g size) and when a vacuum system was coupled to the biocatalytic reaction unit. Under the optimized conditions, a 5-fold reduction of the amount of biocatalysts with respect to reactors without vacuum was achieved. The recovery and reuse of the immobilized enzyme for five operation cycles were also demonstrated. Finally, different metrics have been applied to assess the greenness of the solvent-free biocatalytic synthesis of panthenyl monoesters here reported.
Collapse
|
15
|
Iglesias-Aguirre C, García-Villalba R, Beltrán D, Frutos-Lisón MD, Espín JC, Tomás-Barberán FA, Selma MV. Gut Bacteria Involved in Ellagic Acid Metabolism To Yield Human Urolithin Metabotypes Revealed. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4029-4035. [PMID: 36840624 PMCID: PMC9999415 DOI: 10.1021/acs.jafc.2c08889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
We aimed to elucidate the gut bacteria that characterize the human urolithin metabotypes A and B (UM-A and UM-B). We report here a new bacterium isolated from the feces of a healthy woman, capable of producing the final metabolites urolithins A and B and different intermediates. Besides, we describe two gut bacterial co-cultures that reproduced the urolithin formation pathways upon in vitro fermentation of both UM-A and UM-B. This is the first time that the capacity of pure strains to metabolize ellagic acid cooperatively to yield urolithin profiles associated with UM-A and UM-B has been demonstrated. The urolithin-producing bacteria described herein could have potential as novel probiotics and in the industrial manufacture of bioactive urolithins to develop new ingredients, beverages, nutraceuticals, pharmaceuticals, and (or) functional foods. This is especially relevant in UM-0 individuals since they cannot produce bioactive urolithins.
Collapse
|
16
|
Bonelli J, Ortega-Forte E, Rovira A, Bosch M, Torres O, Cuscó C, Rocas J, Ruiz J, Marchán V. Improving Photodynamic Therapy Anticancer Activity of a Mitochondria-Targeted Coumarin Photosensitizer Using a Polyurethane-Polyurea Hybrid Nanocarrier. Biomacromolecules 2022; 23:2900-2913. [PMID: 35695426 PMCID: PMC9277592 DOI: 10.1021/acs.biomac.2c00361] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Integration of photosensitizers (PSs) within nanoscale delivery systems offers great potential for overcoming some of the "Achiles' heels" of photodynamic therapy (PDT). Herein, we have encapsulated a mitochondria-targeted coumarin PS into amphoteric polyurethane-polyurea hybrid nanocapsules (NCs) with the aim of developing novel nanoPDT agents. The synthesis of coumarin-loaded NCs involved the nanoemulsification of a suitable prepolymer in the presence of a PS without needing external surfactants, and the resulting small nanoparticles showed improved photostability compared with the free compound. Nanoencapsulation reduced dark cytotoxicity of the coumarin PS and significantly improved in vitro photoactivity with red light toward cancer cells, which resulted in higher phototherapeutic indexes compared to free PS. Importantly, this nanoformulation impaired tumoral growth of clinically relevant three-dimensional multicellular tumor spheroids. Mitochondrial photodamage along with reactive oxygen species (ROS) photogeneration was found to trigger autophagy and apoptotic cell death of cancer cells.
Collapse
|
17
|
Alvarez E, Romero-Fernandez M, Iglesias D, Martinez-Cuenca R, Okafor O, Delorme A, Lozano P, Goodridge R, Paradisi F, Walsh DA, Sans V. Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:2388-2396. [PMID: 35223215 PMCID: PMC8864614 DOI: 10.1021/acssuschemeng.1c06799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/14/2022] [Indexed: 05/16/2023]
Abstract
Electrochemical continuous-flow reactors offer a great opportunity for enhanced and sustainable chemical syntheses. Here, we present a novel application of electrochemical continuous-flow oscillatory baffled reactors (ECOBRs) that combines advanced mixing features with electrochemical transformations to enable efficient electrochemical oxidations under continuous flow at a millimeter distance between electrodes. Different additive manufacturing techniques have been employed to rapidly fabricate reactors. The electrochemical oxidation of NADH, a very sensitive substrate key for the regeneration of enzymes in biocatalytic transformations, has been employed as a benchmark reaction. The oscillatory conditions improved bulk mixing, facilitating the contact of reagents to electrodes. Under oscillatory conditions, the ECOBR demonstrated improved performance in the electrochemical oxidation of NADH, which is attributed to improved mass transfer associated with the oscillatory regime.
Collapse
|
18
|
Vivancos Á, Jiménez-García A, Bautista D, González-Herrero P. Strongly Luminescent Pt(IV) Complexes with a Mesoionic N-Heterocyclic Carbene Ligand: Tuning Their Photophysical Properties. Inorg Chem 2021; 60:7900-7913. [PMID: 33970000 PMCID: PMC8893362 DOI: 10.1021/acs.inorgchem.1c00410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/18/2022]
Abstract
The synthesis, electrochemistry, and photophysical properties of a series of bis-cyclometalated Pt(IV) complexes that combine the mesoionic aryl-NHC ligand 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene (trz) with either 1-phenylpyrazole or 2-arylpyridine (C∧N) are reported. The complexes (OC-6-54)-[PtCl2(C∧N)(trz)] bearing cyclometalating 2-arylpyridines present phosphorescent emissions in the blue to yellow color range, which essentially arise from 3LC(C∧N) states, and reach quantum yields of ca. 0.3 in fluid solutions and almost unity in poly(methyl methacrylate) (PMMA) matrices at 298 K, thus representing a class of strong emitters with tunable properties. A systematic comparison with the homologous C2-symmetrical species (OC-6-33)-[PtCl2(C∧N)2], which contains two equal 2-arylpyridine ligands, shows that the introduction of a trz ligand leads to significantly lower nonradiative decay rates and higher quantum efficiencies. Computational calculations substantiate the effect of the carbene ligand, which raises the energy of dσ* orbitals in these derivatives and results in the higher energies of nonemissive deactivating 3LMCT states. In contrast, the isomers (OC-6-42)-[PtCl2(C∧N)(trz)] are not luminescent because they present a 3LMCT state as the lowest triplet.
Collapse
|
19
|
Gómez P, Georgakopoulos S, Más-Montoya M, Cerdá J, Pérez J, Ortí E, Aragó J, Curiel D. Improving the Robustness of Organic Semiconductors through Hydrogen Bonding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8620-8630. [PMID: 33576612 PMCID: PMC8893359 DOI: 10.1021/acsami.0c18928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/02/2021] [Indexed: 05/05/2023]
Abstract
Molecular organization plays an essential role in organic semiconductors since it determines the extent of intermolecular interactions that govern the charge transport present in all electronic applications. The benefits of hydrogen bond-directed self-assembly on charge transport properties are demonstrated by comparing two analogous pyrrole-based, fused heptacyclic molecules. The rationally designed synthesis of these materials allows for inducing or preventing hydrogen bonding. Strategically located hydrogen bond donor and acceptor sites control the solid-state arrangement, favoring the supramolecular expansion of the π-conjugated surface and the subsequent π-stacking as proved by X-ray diffraction and computational calculations. The consistency observed for the performance of organic field-effect transistors and the morphology of the organic thin films corroborate that higher stability and thermal robustness are achieved in the hydrogen-bonded material.
Collapse
|