1
|
Bonfrate A, Ronga MG, Patriarca A, Heinrich S, De Marzi L. Monte Carlo modeling of a commercial machine and experimental setup for FLASH-minibeam irradiations with electrons. Med Phys 2024. [PMID: 39504384 DOI: 10.1002/mp.17492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Ultra-high dose rate (UHDR/FLASH) irradiations, along with particle minibeam therapy (PMBT) are both emerging as promising alternatives to current radiotherapy techniques thanks to their improved healthy tissue sparing and similar tumor control. PURPOSE Monte Carlo (MC) modeling of a commercial machine delivering 5-7 MeV electrons at UHDR. This model was used afterward to compare measurements against simulations for an experimental setup combining both FLASH and PMBT modalities. METHODS We modeled the main accelerator elements with TOPAS3.8/Geant4.10.07.p03, optimized the electron source parameters, and subsequently benchmarked this geometry against measurements. Minibeam experiments were performed by delivering 7 MeV electrons at UHDR on three different 65-mm thick brass collimators as manufactured for protons with a 400-µm slit width: single slit, 5 slits with a center-to-center (CTC) distance of 4 mm and 9 slits with CTC of 2 mm. Finally, complementary simulations were run by changing critical PMBT collimator parameters to assess their specific impact on peak-to-valley dose ratio (PVDR) as well as on the Bremsstrahlung photon contribution to the total dose. RESULTS Percentage depth dose (PDD) distributions and lateral dose profiles showed a good agreement between simulations and measurements, with a maximum discrepancy of less than 4%. With the PMBT collimators in place, discrepancies between simulated and measured dose profiles, lateral and in-depth in peaks and valleys, were within 3%. High PVDR between 5 and 26 were observed until 4 mm in the phantom. During the experiments, a mean dose rate of 167 Gy/s and an instantaneous dose rate of 1.2 × 105 Gy/s were obtained for the FLASH-minibeam setup. PMBT collimator parameters need to be optimized to maximize PVDR while limiting Bremsstrahlung photon contribution to the total dose. CONCLUSIONS The validation of the MC model and the configuration of an electron FLASH-minibeam setup were successfully completed, paving the way for future radiobiological investigations.
Collapse
|
2
|
Kelleher P, Ortiz Charneco G, Kampff Z, Diaz-Garrido N, Bottacini F, McDonnell B, Lugli G, Ventura M, Fomenkov A, Quénée P, Kulakauskas S, de Waal P, van Peij NME, Cambillau C, Roberts RJ, van Sinderen D, Mahony J. Phage defence loci of Streptococcus thermophilus-tip of the anti-phage iceberg? Nucleic Acids Res 2024; 52:11853-11869. [PMID: 39315705 PMCID: PMC11514479 DOI: 10.1093/nar/gkae814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Bacteria possess (bacterio)phage defence systems to ensure their survival. The thermophilic lactic acid bacterium, Streptococcus thermophilus, which is used in dairy fermentations, harbours multiple CRISPR-Cas and restriction and modification (R/M) systems to protect itself against phage attack, with limited reports on other types of phage-resistance. Here, we describe the systematic identification and functional analysis of the phage resistome of S. thermophilus using a collection of 27 strains as representatives of the species. In addition to CRISPR-Cas and R/M systems, we uncover nine distinct phage-resistance systems including homologues of Kiwa, Gabija, Dodola, defence-associated sirtuins and classical lactococcal/streptococcal abortive infection systems. The genes encoding several of these newly identified S. thermophilus antiphage systems are located in proximity to the genetic determinants of CRISPR-Cas systems thus constituting apparent Phage Defence Islands. Other phage-resistance systems whose encoding genes are not co-located with genes specifying CRISPR-Cas systems may represent anchors to identify additional Defence Islands harbouring, as yet, uncharacterised phage defence systems. We estimate that up to 2.5% of the genetic material of the analysed strains is dedicated to phage defence, highlighting that phage-host antagonism plays an important role in driving the evolution and shaping the composition of dairy streptococcal genomes.
Collapse
|
3
|
Gheeraert A, Bailly T, Ren Y, Hamraoui A, Te J, Vander Meersche Y, Cretin G, Leon Foun Lin R, Gelly JC, Pérez S, Guyon F, Galochkina T. DIONYSUS: a database of protein-carbohydrate interfaces. Nucleic Acids Res 2024:gkae890. [PMID: 39436020 DOI: 10.1093/nar/gkae890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Protein-carbohydrate interactions govern a wide variety of biological processes and play an essential role in the development of different diseases. Here, we present DIONYSUS, the first database of protein-carbohydrate interfaces annotated according to structural, chemical and functional properties of both proteins and carbohydrates. We provide exhaustive information on the nature of interactions, binding site composition, biological function and specific additional information retrieved from existing databases. The user can easily search the database using protein sequence and structure information or by carbohydrate binding site properties. Moreover, for a given interaction site, the user can perform its comparison with a representative subset of non-covalent protein-carbohydrate interactions to retrieve information on its potential function or specificity. Therefore, DIONYSUS is a source of valuable information both for a deeper understanding of general protein-carbohydrate interaction patterns, for annotation of the previously unannotated proteins and for such applications as carbohydrate-based drug design. DIONYSUS is freely available at www.dsimb.inserm.fr/DIONYSUS/.
Collapse
|
4
|
Ata K, Mineva T, Alonso B. Strength of London Dispersion Forces in Organic Structure Directing Agent-Zeolite Assemblies. Molecules 2024; 29:4489. [PMID: 39339483 PMCID: PMC11434474 DOI: 10.3390/molecules29184489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Herein, we study the London dispersion forces between organic structure directing agents (OSDAs)-here tetraalkyl-ammonium or -phosphonium molecules-and silica zeolite frameworks (FWs). We demonstrate that the interaction energy for these dispersion forces is correlated to the number of H atoms in OSDAs, irrespective of the structures of OSDAs or FWs, and of variations in charges and thermal motions. All calculations considered-DFT-D3 and BOMD undertaken by us, and molecular mechanics from an accessible database-led to the same trend. The mean energy of these dispersion forces is ca. -2 kcal.mol-1 per H for efficient H-O contacts.
Collapse
|
5
|
Grafakou A, Mosterd C, Beck MH, Kelleher P, McDonnell B, de Waal PP, van Rijswijck IMH, van Peij NNME, Cambillau C, Mahony J, van Sinderen D. Discovery of antiphage systems in the lactococcal plasmidome. Nucleic Acids Res 2024; 52:9760-9776. [PMID: 39119896 PMCID: PMC11381338 DOI: 10.1093/nar/gkae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Until the late 2000s, lactococci substantially contributed to the discovery of various plasmid-borne phage defence systems, rendering these bacteria an excellent antiphage discovery resource. Recently, there has been a resurgence of interest in identifying novel antiphage systems in lactic acid bacteria owing to recent reports of so-called 'defence islands' in diverse bacterial genera. Here, 321 plasmid sequences from 53 lactococcal strains were scrutinized for the presence of antiphage systems. Systematic evaluation of 198 candidates facilitated the discovery of seven not previously described antiphage systems, as well as five systems, of which homologues had been described in other bacteria. All described systems confer resistance against the most prevalent lactococcal phages, and act post phage DNA injection, while all except one behave like abortive infection systems. Structure and domain predictions provided insights into their mechanism of action and allow grouping of several genetically distinct systems. Although rare within our plasmid collection, homologues of the seven novel systems appear to be widespread among bacteria. This study highlights plasmids as a rich repository of as yet undiscovered antiphage systems.
Collapse
|
6
|
Bernard C, Postic G, Ghannay S, Tahi F. State-of-the-RNArt: benchmarking current methods for RNA 3D structure prediction. NAR Genom Bioinform 2024; 6:lqae048. [PMID: 38745991 PMCID: PMC11091930 DOI: 10.1093/nargab/lqae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
RNAs are essential molecules involved in numerous biological functions. Understanding RNA functions requires the knowledge of their 3D structures. Computational methods have been developed for over two decades to predict the 3D conformations from RNA sequences. These computational methods have been widely used and are usually categorised as either ab initio or template-based. The performances remain to be improved. Recently, the rise of deep learning has changed the sight of novel approaches. Deep learning methods are promising, but their adaptation to RNA 3D structure prediction remains difficult. In this paper, we give a brief review of the ab initio, template-based and novel deep learning approaches. We highlight the different available tools and provide a benchmark on nine methods using the RNA-Puzzles dataset. We provide an online dashboard that shows the predictions made by benchmarked methods, freely available on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr/evryrna/state_of_the_rnart/.
Collapse
|
7
|
Amor Z, Le Ster C, Gr C, Daval-Frérot G, Boulant N, Mauconduit F, Thirion B, Ciuciu P, Vignaud A. Impact of B 0 $$ {\mathrm{B}}_0 $$ field imperfections correction on BOLD sensitivity in 3D-SPARKLING fMRI data. Magn Reson Med 2024; 91:1434-1448. [PMID: 38156952 DOI: 10.1002/mrm.29943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Static and dynamicB 0 $$ {\mathrm{B}}_0 $$ field imperfections are detrimental to functional MRI (fMRI) applications, especially at ultra-high magnetic fields (UHF). In this work, a field camera is used to assess the benefits of retrospectively correctingB 0 $$ {\mathrm{B}}_0 $$ field perturbations on Blood Oxygen Level Dependent (BOLD) sensitivity in non-Cartesian three-dimensional (3D)-SPARKLING fMRI acquisitions. METHODS fMRI data were acquired at 1 mm3 $$ {}^3 $$ and for a 2.4s-TR while concurrently monitoring in real-time field perturbations using a Skope Clip-on field camera in a novel experimental setting involving a shorter TR than the required minimal TR of the field probes. Measurements of the dynamic field deviations were used along with a staticΔ B 0 $$ \Delta {\mathrm{B}}_0 $$ map to retrospectively correct static and dynamic field imperfections, respectively. In order to evaluate the impact of such a correction on fMRI volumes, a comparative study was conducted on healthy volunteers. RESULTS Correction ofB 0 $$ {\mathrm{B}}_0 $$ deviations improved image quality and yielded between 20% and 30% increase in median temporal signal-to-noise ratio (tSNR).Using fMRI data collected during a retinotopic mapping experiment, we demonstrated a significant increase in sensitivity to the BOLD contrast and improved accuracy of the BOLD phase maps: 44% (resp., 159%) more activated voxels were retrieved when using a significance control level based on a p-value of 0.001 without correcting for multiple comparisons (resp., 0.05 with a false discovery rate correction). CONCLUSION 3D-SPARKLING fMRI hugely benefits from static and dynamicB 0 $$ {\mathrm{B}}_0 $$ imperfections correction. However, the proposed experimental protocol is flexible enough to be deployed on a large spectrum of encoding schemes, including arbitrary non-Cartesian readouts.
Collapse
|
8
|
Smirnova E, Bignon E, Schultz P, Papai G, Ben Shem A. Binding to nucleosome poises human SIRT6 for histone H3 deacetylation. eLife 2024; 12:RP87989. [PMID: 38415718 PMCID: PMC10942634 DOI: 10.7554/elife.87989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Sirtuin 6 (SIRT6) is an NAD+-dependent histone H3 deacetylase that is prominently found associated with chromatin, attenuates transcriptionally active promoters and regulates DNA repair, metabolic homeostasis and lifespan. Unlike other sirtuins, it has low affinity to free histone tails but demonstrates strong binding to nucleosomes. It is poorly understood how SIRT6 docking on nucleosomes stimulates its histone deacetylation activity. Here, we present the structure of human SIRT6 bound to a nucleosome determined by cryogenic electron microscopy. The zinc finger domain of SIRT6 associates tightly with the acidic patch of the nucleosome through multiple arginine anchors. The Rossmann fold domain binds to the terminus of the looser DNA half of the nucleosome, detaching two turns of the DNA from the histone octamer and placing the NAD+ binding pocket close to the DNA exit site. This domain shows flexibility with respect to the fixed zinc finger and moves with, but also relative to, the unwrapped DNA terminus. We apply molecular dynamics simulations of the histone tails in the nucleosome to show that in this mode of interaction, the active site of SIRT6 is perfectly poised to catalyze deacetylation of the H3 histone tail and that the partial unwrapping of the DNA allows even lysines close to the H3 core to reach the enzyme.
Collapse
|
9
|
Vander Meersche Y, Cretin G, Gheeraert A, Gelly JC, Galochkina T. ATLAS: protein flexibility description from atomistic molecular dynamics simulations. Nucleic Acids Res 2024; 52:D384-D392. [PMID: 37986215 PMCID: PMC10767941 DOI: 10.1093/nar/gkad1084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Dynamical behaviour is one of the most crucial protein characteristics. Despite the advances in the field of protein structure resolution and prediction, analysis and prediction of protein dynamic properties remains a major challenge, mostly due to the low accessibility of data and its diversity and heterogeneity. To address this issue, we present ATLAS, a database of standardised all-atom molecular dynamics simulations, accompanied by their analysis in the form of interactive diagrams and trajectory visualisation. ATLAS offers a large-scale view and valuable insights on protein dynamics for a large and representative set of proteins, by combining data obtained through molecular dynamics simulations with information extracted from experimental structures. Users can easily analyse dynamic properties of functional protein regions, such as domain limits (hinge positions) and residues involved in interaction with other biological molecules. Additionally, the database enables exploration of proteins with uncommon dynamic properties conditioned by their environment such as chameleon subsequences and Dual Personality Fragments. The ATLAS database is freely available at https://www.dsimb.inserm.fr/ATLAS.
Collapse
|
10
|
Camerel F, Jeannin O, Lagrost C. Improved Bipolar Properties of Ester-Functionalized Discotic Diimine-Dithiolene Complexes. Chemphyschem 2024; 25:e202300675. [PMID: 37867388 DOI: 10.1002/cphc.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
A series of platinum diimine-dithiolene complexes with a 5,6-dihydro-1,4-dithiin-2,3-dithiolato (dddt2- ) dithiolene ligand and a bipyridine carrying tris-alkoxyphenyl fragments connected through an ester linker (bpyCn, n=8, 12, 16, 10(s), 20) (Scheme 1) has been developed. The mesomorphic properties of the ligands and of the platinum complexes have been investigated by a combination of DSC, POM and SAXS analyses. The platinum complexes were found to self-organize into columnar mesophases of hexagonal symmetry over large temperature range including room temperature. Their electronic properties were also characterized by a combination of electrochemistry, absorption and emission spectroscopy measurements and TD-DFT calculations. Besides being liquid crystalline, these compounds can undergo two oxidation processes and two reduction processes in a fully reversible manner, allowing the isolation of stable dicationic and dianionic species. Such a behavior is highly promising for the development of ambipolar semiconducting soft materials.
Collapse
|
11
|
Bous J, Fouillen A, Orcel H, Trapani S, Cong X, Fontanel S, Saint-Paul J, Lai-Kee-Him J, Urbach S, Sibille N, Sounier R, Granier S, Mouillac B, Bron P. Structure of the vasopressin hormone-V2 receptor-β-arrestin1 ternary complex. SCIENCE ADVANCES 2022; 8:eabo7761. [PMID: 36054364 PMCID: PMC10866553 DOI: 10.1126/sciadv.abo7761] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Arrestins interact with G protein-coupled receptors (GPCRs) to stop G protein activation and to initiate key signaling pathways. Recent structural studies shed light on the molecular mechanisms involved in GPCR-arrestin coupling, but whether this process is conserved among GPCRs is poorly understood. Here, we report the cryo-electron microscopy active structure of the wild-type arginine-vasopressin V2 receptor (V2R) in complex with β-arrestin1. It reveals an atypical position of β-arrestin1 compared to previously described GPCR-arrestin assemblies, associated with an original V2R/β-arrestin1 interface involving all receptor intracellular loops. Phosphorylated sites of the V2R carboxyl terminus are clearly identified and interact extensively with the β-arrestin1 N-lobe, in agreement with structural data obtained with chimeric or synthetic systems. Overall, these findings highlight a notable structural variability among GPCR-arrestin signaling complexes.
Collapse
|
12
|
Feng Y, Roney CH, Bayer JD, Niederer SA, Hocini M, Vigmond EJ. Detection of focal source and arrhythmogenic substrate from body surface potentials to guide atrial fibrillation ablation. PLoS Comput Biol 2022; 18:e1009893. [PMID: 35312675 PMCID: PMC8970486 DOI: 10.1371/journal.pcbi.1009893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/31/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
Focal sources (FS) are believed to be important triggers and a perpetuation mechanism for paroxysmal atrial fibrillation (AF). Detecting FS and determining AF sustainability in atrial tissue can help guide ablation targeting. We hypothesized that sustained rotors during FS-driven episodes indicate an arrhythmogenic substrate for sustained AF, and that non-invasive electrical recordings, like electrocardiograms (ECGs) or body surface potential maps (BSPMs), could be used to detect FS and AF sustainability. Computer simulations were performed on five bi-atrial geometries. FS were induced by pacing at cycle lengths of 120-270 ms from 32 atrial sites and four pulmonary veins. Self-sustained reentrant activities were also initiated around the same 32 atrial sites with inexcitable cores of radii of 0, 0.5 and 1 cm. FS fired for two seconds and then AF inducibility was tested by whether activation was sustained for another second. ECGs and BSPMs were simulated. Equivalent atrial sources were extracted using second-order blind source separation, and their cycle length, periodicity and contribution, were used as features for random forest classifiers. Longer rotor duration during FS-driven episodes indicates higher AF inducibility (area under ROC curve = 0.83). Our method had accuracy of 90.6±1.0% and 90.6±0.6% in detecting FS presence, and 93.1±0.6% and 94.2±1.2% in identifying AF sustainability, and 80.0±6.6% and 61.0±5.2% in determining the atrium of the focal site, from BSPMs and ECGs of five atria. The detection of FS presence and AF sustainability were insensitive to vest placement (±9.6%). On pre-operative BSPMs of 52 paroxysmal AF patients, patients classified with initiator-type FS on a single atrium resulted in improved two-to-three-year AF-free likelihoods (p-value < 0.01, logrank tests). Detection of FS and arrhythmogenic substrate can be performed from ECGs and BSPMs, enabling non-invasive mapping towards mechanism-targeted AF treatment, and malignant ectopic beat detection with likely AF progression.
Collapse
|
13
|
Pezzotti S, Serva A, Sebastiani F, Brigiano FS, Galimberti DR, Potier L, Alfarano S, Schwaab G, Havenith M, Gaigeot MP. Molecular Fingerprints of Hydrophobicity at Aqueous Interfaces from Theory and Vibrational Spectroscopies. J Phys Chem Lett 2021; 12:3827-3836. [PMID: 33852317 PMCID: PMC9004482 DOI: 10.1021/acs.jpclett.1c00257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 05/28/2023]
Abstract
Hydrophobicity/hydrophilicity of aqueous interfaces at the molecular level results from a subtle balance in the water-water and water-surface interactions. This is characterized here via density functional theory-molecular dynamics (DFT-MD) coupled with vibrational sum frequency generation (SFG) and THz-IR absorption spectroscopies. We show that water at the interface with a series of weakly interacting materials is organized into a two-dimensional hydrogen-bonded network (2D-HB-network), which is also found above some macroscopically hydrophilic silica and alumina surfaces. These results are rationalized through a descriptor that measures the number of "vertical" and "horizontal" hydrogen bonds formed by interfacial water, quantifying the competition between water-surface and water-water interactions. The 2D-HB-network is directly revealed by THz-IR absorption spectroscopy, while the competition of water-water and water-surface interactions is quantified from SFG markers. The combination of SFG and THz-IR spectroscopies is thus found to be a compelling tool to characterize the finest details of molecular hydrophobicity at aqueous interfaces.
Collapse
|
14
|
Wang K, Wang Y, Wang X, He Y, Li X, Keeling RF, Ciais P, Heimann M, Peng S, Chevallier F, Friedlingstein P, Sitch S, Buermann W, Arora VK, Haverd V, Jain AK, Kato E, Lienert S, Lombardozzi D, Nabel JEMS, Poulter B, Vuichard N, Wiltshire A, Zeng N, Zhu D, Piao S. Causes of slowing-down seasonal CO 2 amplitude at Mauna Loa. GLOBAL CHANGE BIOLOGY 2020; 26:4462-4477. [PMID: 32415896 DOI: 10.1111/gcb.15162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 05/27/2023]
Abstract
Changing amplitude of the seasonal cycle of atmospheric CO2 (SCA) in the northern hemisphere is an emerging carbon cycle property. Mauna Loa (MLO) station (20°N, 156°W), which has the longest continuous northern hemisphere CO2 record, shows an increasing SCA before the 1980s (p < .01), followed by no significant change thereafter. We analyzed the potential driving factors of SCA slowing-down, with an ensemble of dynamic global vegetation models (DGVMs) coupled with an atmospheric transport model. We found that slowing-down of SCA at MLO is primarily explained by response of net biome productivity (NBP) to climate change, and by changes in atmospheric circulations. Through NBP, climate change increases SCA at MLO before the 1980s and decreases it afterwards. The effect of climate change on the slowing-down of SCA at MLO is mainly exerted by intensified drought stress acting to offset the acceleration driven by CO2 fertilization. This challenges the view that CO2 fertilization is the dominant cause of emergent SCA trends at northern sites south of 40°N. The contribution of agricultural intensification on the deceleration of SCA at MLO was elusive according to land-atmosphere CO2 flux estimated by DGVMs and atmospheric inversions. Our results also show the necessity to adequately account for changing circulation patterns in understanding carbon cycle dynamics observed from atmospheric observations and in using these observations to benchmark DGVMs.
Collapse
|
15
|
Vannier T, Hingamp P, Turrel F, Tanet L, Lescot M, Timsit Y. Diversity and evolution of bacterial bioluminescence genes in the global ocean. NAR Genom Bioinform 2020; 2:lqaa018. [PMID: 33575578 PMCID: PMC7671414 DOI: 10.1093/nargab/lqaa018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
Although bioluminescent bacteria are the most abundant and widely distributed of all light-emitting organisms, the biological role and evolutionary history of bacterial luminescence are still shrouded in mystery. Bioluminescence has so far been observed in the genomes of three families of Gammaproteobacteria in the form of canonical lux operons that adopt the CDAB(F)E(G) gene order. LuxA and luxB encode the two subunits of bacterial luciferase responsible for light-emission. Our deep exploration of public marine environmental databases considerably expands this view by providing a catalog of new lux homolog sequences, including 401 previously unknown luciferase-related genes. It also reveals a broader diversity of the lux operon organization, which we observed in previously undescribed configurations such as CEDA, CAED and AxxCE. This expanded operon diversity provides clues for deciphering lux operon evolution and propagation within the bacterial domain. Leveraging quantitative tracking of marine bacterial genes afforded by planetary scale metagenomic sampling, our study also reveals that the novel lux genes and operons described herein are more abundant in the global ocean than the canonical CDAB(F)E(G) operon.
Collapse
|
16
|
Fraux G, Chibani S, Coudert FX. Modelling of framework materials at multiple scales: current practices and open questions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180220. [PMID: 31130101 PMCID: PMC6562347 DOI: 10.1098/rsta.2018.0220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The last decade has seen an explosion of the family of framework materials and their study, from both the experimental and computational points of view. We propose here a short highlight of the current state of methodologies for modelling framework materials at multiple scales, putting together a brief review of new methods and recent endeavours in this area, as well as outlining some of the open challenges in this field. We will detail advances in atomistic simulation methods, the development of material databases and the growing use of machine learning for the prediction of properties. This article is part of the theme issue 'Mineralomimesis: natural and synthetic frameworks in science and technology'.
Collapse
|
17
|
Scheid P, Chatelier C, Ledieu J, Fournée V, Gaudry É. Bonding network and stability of clusters: the case study of Al 13TM 4 pseudo-tenfold surfaces. Acta Crystallogr A Found Adv 2019; 75:314-324. [PMID: 30821264 PMCID: PMC6396397 DOI: 10.1107/s2053273319000202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/04/2019] [Indexed: 11/10/2022] Open
Abstract
Clusters, i.e. polyhedral geometric entities, are widely used to describe the structure of complex intermetallic compounds. However, little is generally known about their physical significance. The atomic and electronic structures of the Al13TM4 complex intermetallic compounds (TM = Fe, Co, Ru, Rh) have been investigated using a wide range of ab initio tools in order to examine the influence of the chemical composition on the pertinence of the bulk structure description based on 3D clusters. In addition, since surface studies were found to be a relevant approach to address the question of cluster stability in complex phases, the interplay of the cluster substructure with the 2D surface is addressed in the case of the Al13Co4(100) and Al13Fe4(010) surfaces.
Collapse
|