1
|
De Zutter N, Ameye M, Debode J, De Tender C, Ommeslag S, Verwaeren J, Vermeir P, Audenaert K, De Gelder L. Shifts in the rhizobiome during consecutive in planta enrichment for phosphate-solubilizing bacteria differentially affect maize P status. Microb Biotechnol 2021; 14:1594-1612. [PMID: 34021699 PMCID: PMC8313256 DOI: 10.1111/1751-7915.13824] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Phosphorus (P) is despite its omnipresence in soils often unavailable for plants. Rhizobacteria able to solubilize P are therefore crucial to avoid P deficiency. Selection for phosphate-solubilizing bacteria (PSB) is frequently done in vitro; however, rhizosphere competence is herein overlooked. Therefore, we developed an in planta enrichment concept enabling simultaneous microbial selection for P-solubilization and rhizosphere competence. We used an ecologically relevant combination of iron- and aluminium phosphate to select for PSB in maize (Zea mays L.). In each consecutive enrichment, plant roots were inoculated with rhizobacterial suspensions from plants that had grown in substrate with insoluble P. To assess the plants' P statuses, non-destructive multispectral imaging was used for quantifying anthocyanins, a proxy for maize's P status. After the third consecutive enrichment, plants supplied with insoluble P and inoculated with rhizobacterial suspensions showed a P status similar to plants supplied with soluble P. A parallel metabarcoding approach uncovered that the improved P status in the third enrichment coincided with a shift in the rhizobiome towards bacteria with plant growth-promoting and P-solubilizing capacities. Finally, further consecutive enrichment led to a functional relapse hallmarked by plants with a low P status and a second shift in the rhizobiome at the level of Azospirillaceae and Rhizobiaceae.
Collapse
|
research-article |
4 |
18 |
2
|
Ayuso M, Buyssens L, Stroe M, Valenzuela A, Allegaert K, Smits A, Annaert P, Mulder A, Carpentier S, Van Ginneken C, Van Cruchten S. The Neonatal and Juvenile Pig in Pediatric Drug Discovery and Development. Pharmaceutics 2020; 13:44. [PMID: 33396805 PMCID: PMC7823749 DOI: 10.3390/pharmaceutics13010044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy in pediatric patients is challenging in view of the maturation of organ systems and processes that affect pharmacokinetics and pharmacodynamics. Especially for the youngest age groups and for pediatric-only indications, neonatal and juvenile animal models can be useful to assess drug safety and to better understand the mechanisms of diseases or conditions. In this respect, the use of neonatal and juvenile pigs in the field of pediatric drug discovery and development is promising, although still limited at this point. This review summarizes the comparative postnatal development of pigs and humans and discusses the advantages of the juvenile pig in view of developmental pharmacology, pediatric diseases, drug discovery and drug safety testing. Furthermore, limitations and unexplored aspects of this large animal model are covered. At this point in time, the potential of the neonatal and juvenile pig as nonclinical safety models for pediatric drug development is underexplored.
Collapse
|
Review |
5 |
14 |
3
|
Neyrinck K, Van Den Daele J, Vervliet T, De Smedt J, Wierda K, Nijs M, Vanbokhoven T, D'hondt A, Planque M, Fendt SM, Shih PY, Seibt F, Almenar JP, Kreir M, Kumar D, Broccoli V, Bultynck G, Ebneth A, Cabrera-Socorro A, Verfaillie C. SOX9-induced Generation of Functional Astrocytes Supporting Neuronal Maturation in an All-human System. Stem Cell Rev Rep 2021; 17:1855-1873. [PMID: 33982246 PMCID: PMC8553725 DOI: 10.1007/s12015-021-10179-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/29/2022]
Abstract
Astrocytes, the main supportive cell type of the brain, show functional impairments upon ageing and in a broad spectrum of neurological disorders. Limited access to human astroglia for pre-clinical studies has been a major bottleneck delaying our understanding of their role in brain health and disease. We demonstrate here that functionally mature human astrocytes can be generated by SOX9 overexpression for 6 days in pluripotent stem cell (PSC)-derived neural progenitor cells. Inducible (i)SOX9-astrocytes display functional properties comparable to primary human astrocytes comprising glutamate uptake, induced calcium responses and cytokine/growth factor secretion. Importantly, electrophysiological properties of iNGN2-neurons co-cultured with iSOX9-astrocytes are indistinguishable from gold-standard murine primary cultures. The high yield, fast timing and the possibility to cryopreserve iSOX9-astrocytes without losing functional properties makes them suitable for scaled-up production for high-throughput analyses. Our findings represent a step forward to an all-human iPSC-derived neural model for drug development in neuroscience and towards the reduction of animal use in biomedical research.
Collapse
|
Journal Article |
4 |
11 |
4
|
Asselman K, Pellens N, Thijs B, Doppelhammer N, Haouas M, Taulelle F, Martens JA, Breynaert E, Kirschhock CE. Ion-Pairs in Aluminosilicate-Alkali Synthesis Liquids Determine the Aluminum Content and Topology of Crystallizing Zeolites. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7150-7158. [PMID: 36032556 PMCID: PMC9404546 DOI: 10.1021/acs.chemmater.2c00773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Using hydrated silicate ionic liquids, phase selection and framework silicon-to-aluminum ratio during inorganic zeolite synthesis were studied as a function of batch composition. Consisting of homogeneous single phasic liquids, this synthesis concept allows careful control of crystallization parameters and evaluation of yield and sample homogeneity. Ternary phase diagrams were constructed for syntheses at 90 °C for 1 week. The results reveal a cation-dependent continuous relation between batch stoichiometry and framework aluminum content, valid across the phase boundaries of all different zeolites formed in the system. The framework aluminum content directly correlates to the type of alkali cation and gradually changes with batch alkalinity and dilution. This suggests that the observed zeolites form through a solution-mediated mechanism involving the concerted assembly of soluble cation-oligomer ion pairs. Phase selection is a consequence of the stability for a particular framework at the given aluminum content and alkali type.
Collapse
|
research-article |
3 |
10 |
5
|
Goyens J. High ellipticity reduces semi-circular canal sensitivity in squamates compared to mammals. Sci Rep 2019; 9:16428. [PMID: 31712592 PMCID: PMC6848070 DOI: 10.1038/s41598-019-52828-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/22/2019] [Indexed: 11/15/2022] Open
Abstract
The semi-circular canals in the inner ear sense head rotations. It is widely recognised that the anatomy of the semi-circular canals is often adapted to the species-specific agility, in order to provide the necessary sensitivity. Based on research on mammals, the ellipticity of the semi-circular canal was so far considered as a non-important factor herein. A dataset of 125 squamate species and 156 mammalian species, now shows that the posterior semi-circular canal of squamates is much more elliptical (eccentricities ranging between 0.76 and 0.94) than that of mammals (eccentricities ranging between 0 and 0.71). Fluid-Structure Interaction computer models show that the effect of the ellipticity on sensitivity is strongest in small semi-circular canals. This new insight indicates that the high ellipticity in squamates leads to a severe reduction in sensitivity of up to 45%. In mammals, on the other hand, the reduction in sensitivity is limited to 13%, which is consistent with previous literature that found a limited effect of semi-circular canal ellipticity in mammals. Further, there is a strongly negative correlation between semi-circular canal size and eccentricity in squamates, which is absent in mammals. Hence, the smallest squamates have the most elliptical semi-circular canals. In general, the smaller the semi-circular canal, the less sensitive it is. Therefore, the highly elliptical squamate canals are probably the result of fitting the largest possible canal in small and flat head. Miniaturising the canals while maintaining a circular shape would reduce the sensitivity by another 73% compared to the highly elliptical canals.
Collapse
|
research-article |
6 |
8 |
6
|
Comasio A, Van Kerrebroeck S, Harth H, Verté F, De Vuyst L. Potential of Bacteria from Alternative Fermented Foods as Starter Cultures for the Production of Wheat Sourdoughs. Microorganisms 2020; 8:E1534. [PMID: 33036188 PMCID: PMC7599913 DOI: 10.3390/microorganisms8101534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 01/31/2023] Open
Abstract
Microbial strains for starter culture-initiated sourdough productions are commonly isolated from a fermenting flour-water mixture. Yet, starter culture strains isolated from matrices other than sourdoughs could provide the dough with interesting metabolic properties and hence change the organoleptic properties of the concomitant breads. Furthermore, the selection of sourdough starter cultures does not need to be limited to lactic acid bacteria (LAB), as other food-grade microorganisms are sometimes found in sourdoughs. Therefore, different strains belonging to LAB, acetic acid bacteria (AAB), and coagulase-negative staphylococci (CNS) that originated from different fermented food matrices (fermenting cocoa pulp-bean mass, fermented sausage, and water kefir), were examined as to their prevalence in a wheat sourdough ecosystem during 72-h fermentations. Limosilactobacillus fermentum IMDO 222 (fermented cocoa pulp-bean mass isolate) and Latilactobacillus sakei CTC 494 (fermented sausage isolate) seemed to be promising candidates as sourdough starter culture strains, as were the AAB strains Acetobacter pasteurianus IMDO 386B and Gluconobacter oxydans IMDO A845 (both isolated from fermented cocoa pulp-bean mass), due to their competitiveness in the wheat flour-water mixtures. Wheat breads made with G. oxydans IMDO A845 sourdoughs were significantly darker than reference wheat breads.
Collapse
|
research-article |
5 |
8 |
7
|
Kozak S, Bloch Y, De Munck S, Mikula A, Bento I, Savvides SN, Meijers R. Homogeneously N-glycosylated proteins derived from the GlycoDelete HEK293 cell line enable diffraction-quality crystallogenesis. Acta Crystallogr D Struct Biol 2020; 76:1244-1255. [PMID: 33263330 PMCID: PMC7709199 DOI: 10.1107/s2059798320013753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Structural studies of glycoproteins and their complexes provide critical insights into their roles in normal physiology and disease. Most glycoproteins contain N-linked glycosylation, a key post-translation modification that critically affects protein folding and stability and the binding kinetics underlying protein interactions. However, N-linked glycosylation is often an impediment to yielding homogeneous protein preparations for structure determination by X-ray crystallography or other methods. In particular, obtaining diffraction-quality crystals of such proteins and their complexes often requires modification of both the type of glycosylation patterns and their extent. Here, we demonstrate the benefits of producing target glycoproteins in the GlycoDelete human embryonic kidney 293 cell line that has been engineered to produce N-glycans as short glycan stumps comprising N-acetylglucosamine, galactose and sialic acid. Protein fragments of human Down syndrome cell-adhesion molecule and colony-stimulating factor 1 receptor were obtained from the GlycoDelete cell line for crystallization. The ensuing reduction in the extent and complexity of N-glycosylation in both protein molecules compared with alternative glycoengineering approaches enabled their productive deployment in structural studies by X-ray crystallography. Furthermore, a third successful implementation of the GlycoDelete technology focusing on murine IL-12B is shown to lead to N-glycosylation featuring an immature glycan in diffraction-quality crystals. It is proposed that the GlycoDelete cell line could serve as a valuable go-to option for the production of homogeneous glycoproteins and their complexes for structural studies by X-ray crystallography and cryo-electron microscopy.
Collapse
|
research-article |
5 |
6 |
8
|
Luyck K, Scheyltjens I, Nuttin B, Arckens L, Luyten L. c-Fos expression following context conditioning and deep brain stimulation in the bed nucleus of the stria terminalis in rats. Sci Rep 2020; 10:20529. [PMID: 33239732 PMCID: PMC7688637 DOI: 10.1038/s41598-020-77603-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
Deep brain stimulation (DBS) in the bed nucleus of the stria terminalis (BST), a region implicated in the expression of anxiety, shows promise in psychiatric patients, but its effects throughout the limbic system are largely unknown. In male Wistar rats, we first evaluated the neural signature of contextual fear (N = 16) and next, of the anxiolytic effects of high-frequency electrical stimulation in the BST (N = 31), by means of c-Fos protein expression. In non-operated animals, we found that the left medial anterior BST displayed increased c-Fos expression in anxious (i.e., context-conditioned) versus control subjects. Moreover, control rats showed asymmetric expression in the basolateral amygdala (BLA) (i.e., higher intensities in the right hemisphere), which was absent in anxious animals. The predominant finding in rats receiving bilateral BST stimulation was a striking increase in c-Fos expression throughout much of the left hemisphere, which was not confined to the predefined regions of interest. To conclude, we found evidence for lateralized c-Fos expression during the expression of contextual fear and anxiolytic high-frequency electrical stimulation of the BST, particularly in the medial anterior BST and BLA. In addition, we observed an extensive and unexpected left-sided c-Fos spread following bilateral stimulation in the BST.
Collapse
|
research-article |
5 |
5 |
9
|
Peeters KJ, Ameye M, Demeestere K, Audenaert K, Höfte M. Auxin, Abscisic Acid and Jasmonate Are the Central Players in Rice Sheath Rot Caused by Sarocladium oryzae and Pseudomonas fuscovaginae. RICE (NEW YORK, N.Y.) 2020; 13:78. [PMID: 33242152 PMCID: PMC7691414 DOI: 10.1186/s12284-020-00438-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/06/2020] [Indexed: 06/01/2023]
Abstract
Sheath rot is an emerging rice disease that causes severe yield losses worldwide. The main causal agents are the toxin producers Sarocladium oryzae and Pseudomonas fuscovaginae. The fungus S. oryzae produces helvolic acid and cerulenin and the bacterium P. fuscovaginae produces cyclic lipopeptides. Helvolic acid and the lipopeptide, fuscopeptin, inhibit membrane-bound H+-ATPase pumps in the rice plant. To manage rice sheath rot, a better understanding of the host response and virulence strategies of the pathogens is required. This study investigated the interaction of the sheath rot pathogens with their host and the role of their toxins herein. Japonica rice was inoculated with high- and low-helvolic acid-producing S. oryzae isolates or with P. fuscovaginae wild type and fuscopeptin mutant strains. During infection, cerulenin, helvolic acid and the phytohormones abscisic acid, jasmonate, auxin and salicylic acid were quantified in the sheath. In addition, disease severity and grain yield parameters were assessed. Rice plants responded to high-toxin-producing S. oryzae and P. fuscovaginae strains with an increase in abscisic acid, jasmonate and auxin levels. We conclude that, for both pathogens, toxins play a core role during sheath rot infection. S. oryzae and P. fuscovaginae interact with their host in a similar way. This may explain why both sheath rot pathogens cause very similar symptoms despite their different nature.
Collapse
|
research-article |
5 |
4 |
10
|
Kahler JP, Verhelst SHL. Phosphinate esters as novel warheads for activity-based probes targeting serine proteases. RSC Chem Biol 2021; 2:1285-1290. [PMID: 34458842 PMCID: PMC8341442 DOI: 10.1039/d1cb00117e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
Activity-based protein profiling enables the specific detection of the active fraction of an enzyme and is of particular use for the profiling of proteases. The technique relies on a mechanism-based reaction between small molecule activity-based probes (ABPs) with the active enzyme. Here we report a set of new ABPs for serine proteases, specifically neutrophil serine proteases. The probes contain a phenylphosphinate warhead that mimics the P1 amino acid recognized by the primary recognition pocket of S1 family serine proteases. The warhead is easily synthesized from commercial starting materials and leads to potent probes which can be used for fluorescent in-gel protease detection and fluorescent microscopy imaging experiments.
Collapse
|
research-article |
4 |
4 |
11
|
van de Velde SJ, Burdorf LDW, Hidalgo-Martinez S, Leermakers M, Meysman FJR. Cable Bacteria Activity Modulates Arsenic Release From Sediments in a Seasonally Hypoxic Marine Basin. Front Microbiol 2022; 13:907976. [PMID: 35910627 PMCID: PMC9329047 DOI: 10.3389/fmicb.2022.907976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
Eutrophication and global change are increasing the occurrence of seasonal hypoxia (bottom-water oxygen concentration <63 μM) in coastal systems worldwide. In extreme cases, the bottom water can become completely anoxic, allowing sulfide to escape from the sediments and leading to the development of bottom-water euxinia. In seasonally hypoxic coastal basins, electrogenic sulfur oxidation by long, filamentous cable bacteria has been shown to stimulate the formation of an iron oxide layer near the sediment-water interface, while the bottom waters are oxygenated. Upon the development of bottom-water anoxia, this iron oxide “firewall” prevents the sedimentary release of sulfide. Iron oxides also act as an adsorption trap for elements such as arsenic. Arsenic is a toxic trace metal, and its release from sediments can have a negative impact on marine ecosystems. Yet, it is currently unknown how electrogenic sulfur oxidation impacts arsenic cycling in seasonally hypoxic basins. In this study, we presented results from a seasonal field study of an uncontaminated marine lake, complemented with a long-term sediment core incubation experiment, which reveals that cable bacteria have a strong impact on the arsenic cycle in a seasonally hypoxic system. Electrogenic sulfur oxidation significantly modulates the arsenic fluxes over a seasonal time scale by enriching arsenic in the iron oxide layer near the sediment-water interface in the oxic period and pulse-releasing arsenic during the anoxic period. Fluxes as large as 20 μmol m−2 day−1 were measured, which are comparable to As fluxes reported from highly contaminated sediments. Since cable bacteria are recognized as active components of the microbial community in seasonally hypoxic systems worldwide, this seasonal amplification of arsenic fluxes is likely a widespread phenomenon.
Collapse
|
|
3 |
4 |
12
|
Asselman K, Haouas M, Houlleberghs M, Radhakrishnan S, Wangermez W, Kirschhock CEA, Breynaert E. Does Water Enable Porosity in Aluminosilicate Zeolites? Porous Frameworks versus Dense Minerals. CRYSTAL GROWTH & DESIGN 2023; 23:3338-3348. [PMID: 37159660 PMCID: PMC10161221 DOI: 10.1021/acs.cgd.2c01476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/14/2023] [Indexed: 05/11/2023]
Abstract
Recently identified zeolite precursors consisting of concentrated, hyposolvated homogeneous alkalisilicate liquids, hydrated silicate ionic liquids (HSIL), minimize correlation of synthesis variables and enable one to isolate and examine the impact of complex parameters such as water content on zeolite crystallization. HSIL are highly concentrated, homogeneous liquids containing water as a reactant rather than bulk solvent. This simplifies elucidation of the role of water during zeolite synthesis. Hydrothermal treatment at 170 °C of Al-doped potassium HSIL with chemical composition 0.5SiO2:1KOH:xH2O:0.013Al2O3 yields porous merlinoite (MER) zeolite when H2O/KOH exceeds 4 and dense, anhydrous megakalsilite when H2O/KOH is lower. Solid phase products and precursor liquids were fully characterized using XRD, SEM, NMR, TGA, and ICP analysis. Phase selectivity is discussed in terms of cation hydration as the mechanism, allowing a spatial cation arrangement enabling the formation of pores. Under water deficient conditions, the entropic penalty of cation hydration in the solid is large and cations need to be entirely coordinated by framework oxygens, leading to dense, anhydrous networks. Hence, the water activity in the synthesis medium and the affinity of a cation to either coordinate to water or to aluminosilicate decides whether a porous, hydrated, or a dense, anhydrous framework is formed.
Collapse
|
research-article |
2 |
3 |
13
|
de Bournonville S, Geris L, Kerckhofs G. Micro computed tomography with and without contrast enhancement for the characterization of microcarriers in dry and wet state. Sci Rep 2021; 11:2819. [PMID: 33531524 PMCID: PMC7854591 DOI: 10.1038/s41598-021-81998-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
In the field of regenerative medicine, microcarriers are used as support matrix for the growth of adherent cells. They are increasingly recognised as promising biomaterials for large scale, cost-effective cell expansion bioreactor processes. However, their individual morphologies can be highly heterogeneous which increases bioprocesses' variability. Additionally, only limited information is available on the microcarriers' 3D morphology and how it affects cell proliferation. Most imaging modalities do not provide sufficient 3D information or have a too limited field of view to appropriately study the 3D morphology. While microfocus X-ray computed tomography (microCT) could be appropriate, many microcarriers are hydrated before in-vitro use. This wet state makes them swell, changing considerably their morphology and making them indistinguishable from the culture solution in regular microCT images due to their physical density close to water. The use of contrast-enhanced microCT (CE-CT) has been recently reported for 3D imaging of soft materials. In this study, we selected a range of commercially available microcarrier types and used a combination of microCT and CE-CT for full 3D morphological characterization of large numbers of microcarriers, both in their dry and wet state. With in-house developed image processing and analysis tools, morphometrics of individual microcarriers were collected. Also, the morphology in wet state was assessed and related to accessible attachment surface area as a function of cell size. The morphological information on all microcarriers was collected in a publicly available database. This work provides a quantitative basis for optimization and modelling of microcarrier based cell expansion processes.
Collapse
|
research-article |
4 |
1 |
14
|
Li BY, Voets L, Van Lommel R, Hoppenbrouwers F, Alonso M, Verhelst SHL, De Borggraeve WM, Demaerel J. SuFEx-enabled, chemoselective synthesis of triflates, triflamides and triflimidates. Chem Sci 2022; 13:2270-2279. [PMID: 35310484 PMCID: PMC8864708 DOI: 10.1039/d1sc06267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Sulfur(vi) Fluoride Exchange (SuFEx) chemistry has emerged as a next-generation click reaction, designed to assemble functional molecules quickly and modularly. Here, we report the ex situ generation of trifluoromethanesulfonyl fluoride (CF3SO2F) gas in a two chamber system, and its use as a new SuFEx handle to efficiently synthesize triflates and triflamides. This broadly tolerated protocol lends itself to peptide modification or to telescoping into coupling reactions. Moreover, redesigning the SVI-F connector with a S[double bond, length as m-dash]O → S[double bond, length as m-dash]NR replacement furnished the analogous triflimidoyl fluorides as SuFEx electrophiles, which were engaged in the synthesis of rarely reported triflimidate esters. Notably, experiments showed H2O to be the key towards achieving chemoselective trifluoromethanesulfonation of phenols vs. amine groups, a phenomenon best explained-using ab initio metadynamics simulations-by a hydrogen bonded termolecular transition state for the CF3SO2F triflylation of amines.
Collapse
|
research-article |
3 |
1 |
15
|
Salazar Marcano DE, Moussawi MA, Anyushin AV, Lentink S, Van Meervelt L, Ivanović-Burmazović I, Parac-Vogt TN. Versatile post-functionalisation strategy for the formation of modular organic-inorganic polyoxometalate hybrids. Chem Sci 2022; 13:2891-2899. [PMID: 35382468 PMCID: PMC8905796 DOI: 10.1039/d1sc06326j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 11/28/2022] Open
Abstract
Hybrid structures incorporating different organic and inorganic constituents are emerging as a very promising class of materials since they synergistically combine the complementary and diverse properties of the individual components. Hybrid materials based on polyoxometalate clusters (POMs) are particularly interesting due to their versatile catalytic, redox, electronic, and magnetic properties, yet the controlled incorporation of different clusters into a hybrid structure is challenging and has been scarcely reported. Herein we propose a novel and general strategy for combining multiple types of metal-oxo clusters in a single hybrid molecule. Two novel hybrid POM structures (HPOMs) bis-functionalised with dipentaerythritol (R-POM1-R; R = (OCH2)3CCH2OCH2C(CH2OH)) were synthesised as building-blocks for the formation of heterometallic hybrid triads (POM2-R-POM1-R-POM2). Such a modular approach resulted in the formation of four novel heterometallic hybrids combing the Lindqvist {V6}, Anderson-Evans {XMo6} (X = Cr or Al) and trisubstituted Wells-Dawson {P2V3W15} POM structures. Their formation was confirmed by multinuclear Nuclear Magnetic Resonance (NMR), infrared (IR) and UV-Vis spectroscopy, as well as Mass Spectrometry, Diffusion Ordered Spectroscopy (DOSY) and elemental analysis. The thermal stability of the hybrids was also examined by Thermogravimetric Analysis (TGA), which showed that the HPOM triads exhibit higher thermal stability than comparable hybrid structures containing only one type of POM. The one-pot synthesis of these novel compounds was achieved in high yields in aqueous and organic media under simple reflux conditions, without the need of any additives, and could be translated to create other hybrid materials based on a variety of metal-oxo cluster building-blocks.
Collapse
|
research-article |
3 |
1 |
16
|
Stroe MS, De Clerck L, Dhaenens M, Dennis RS, Deforce D, Carpentier S, Annaert P, Leys K, Smits A, Allegaert K, Van Ginneken C, Van Cruchten S. Effects of hypothermia and hypoxia on cytochrome P450-mediated drug metabolism in neonatal Göttingen minipigs. Basic Clin Pharmacol Toxicol 2024; 135:620-640. [PMID: 39315536 DOI: 10.1111/bcpt.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Asphyxiated neonates often undergo therapeutic hypothermia (TH) to reduce morbidity and mortality. As perinatal asphyxia and TH impact neonatal physiology, this could also influence enzyme functionality. Therefore, this study aimed to unravel the impact of age, hypothermia and hypoxia on porcine hepatic cytochrome P450 (CYP) gene expression, protein abundance and activity. Hepatic CYP expression, protein abundance and activity were assessed in naive adult and neonatal Göttingen minipigs, alongside those from an (non-survival) in vivo study, where four conditions-control (C), therapeutic hypothermia (TH), hypoxia (H), hypoxia and TH (H + TH)-were examined. Naive neonatal Göttingen minipigs exhibited 75% lower general CYP activity and different gene expression patterns than adults. In vitro hypothermia (33°C) decreased general CYP activity in adult liver microsomes by 36%. Gene expression was not different between TH and C while hypoxia up-regulated several genes (i.e., CYP3A29 [expression ratio; ER = 5.1472] and CYP2C33 [ER = 3.2292] in the H group and CYP2C33 [ER = 2.4914] and CYP2C42 [ER = 4.0197] in the H + TH group). The medical treatment and the interventions over 24 h, along with hypoxia and TH, affected the protein abundance. These data on CYP expression, abundance and activity in young animals can be valuable in building physiologically-based pharmacokinetic models for neonatal drug dose predictions.
Collapse
|
|
1 |
|
17
|
Bourda L, Bhandary S, Ito S, Göb CR, Van Der Voort P, Van Hecke K. Analysis of COF-300 synthesis: probing degradation processes and 3D electron diffraction structure. IUCRJ 2024; 11:510-518. [PMID: 38727171 PMCID: PMC11220877 DOI: 10.1107/s2052252524003713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/23/2024] [Indexed: 07/04/2024]
Abstract
Although COF-300 is often used as an example to study the synthesis and structure of (3D) covalent organic frameworks (COFs), knowledge of the underlying synthetic processes is still fragmented. Here, an optimized synthetic procedure based on a combination of linker protection and modulation was applied. Using this approach, the influence of time and temperature on the synthesis of COF-300 was studied. Synthesis times that were too short produced materials with limited crystallinity and porosity, lacking the typical pore flexibility associated with COF-300. On the other hand, synthesis times that were too long could be characterized by loss of crystallinity and pore order by degradation of the tetrakis(4-aminophenyl)methane (TAM) linker used. The presence of the degradation product was confirmed by visual inspection, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). As TAM is by far the most popular linker for the synthesis of 3D COFs, this degradation process might be one of the reasons why the development of 3D COFs is still lagging compared with 2D COFs. However, COF crystals obtained via an optimized procedure could be structurally probed using 3D electron diffraction (3DED). The 3DED analysis resulted in a full structure determination of COF-300 at atomic resolution with satisfying data parameters. Comparison of our 3DED-derived structural model with previously reported single-crystal X-ray diffraction data for this material, as well as parameters derived from the Cambridge Structural Database, demonstrates the high accuracy of the 3DED method for structure determination. This validation might accelerate the exploitation of 3DED as a structure determination technique for COFs and other porous materials.
Collapse
|
research-article |
1 |
|
18
|
Kummamuru NB, Ciocarlan RG, Houlleberghs M, Martens J, Breynaert E, Verbruggen SW, Cool P, Perreault P. Surface modification of mesostructured cellular foam to enhance hydrogen storage in binary THF/H 2 clathrate hydrate. SUSTAINABLE ENERGY & FUELS 2024; 8:2824-2838. [PMID: 38933237 PMCID: PMC11197926 DOI: 10.1039/d4se00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/12/2024] [Indexed: 06/28/2024]
Abstract
This study introduces solid-state tuning of a mesostructured cellular foam (MCF) to enhance hydrogen (H2) storage in clathrate hydrates. Grafting of promoter-like molecules (e.g., tetrahydrofuran) at the internal surface of the MCF resulted in a substantial improvement in the kinetics of formation of binary H2-THF clathrate hydrate. Identification of the confined hydrate as sII clathrate hydrate and enclathration of H2 in its small cages was performed using XRD and high-pressure 1H NMR spectroscopy respectively. Experimental findings show that modified MCF materials exhibit a ∼1.3 times higher H2 storage capacity as compared to non-modified MCF under the same conditions (7 MPa, 265 K, 100% pore volume saturation with a 5.56 mol% THF solution). The enhancement in H2 storage is attributed to the hydrophobicity originating from grafting organic molecules onto pristine MCF, thereby influencing water interactions and fostering an environment conducive to H2 enclathration. Gas uptake curves indicate an optimal tuning point for higher H2 storage, favoring a lower density of carbon per nm2. Furthermore, a direct correlation emerges between higher driving forces and increased H2 storage capacity, culminating at 0.52 wt% (46.77 mmoles of H2 per mole of H2O and 39.78% water-to-hydrate conversions) at 262 K for the modified MCF material with fewer carbons per nm2. Notably, the substantial H2 storage capacity achieved without energy-intensive processes underscores solid-state tuning's potential for H2 storage in the synthesized hydrates. This study evaluated two distinct kinetic models to describe hydrate growth in MCF. The multistage kinetic model showed better predictive capabilities for experimental data and maintained a low average absolute deviation. This research provides valuable insights into augmenting H2 storage capabilities and holds promising implications for future advancements.
Collapse
|
research-article |
1 |
|
19
|
De Sloovere D, Mercken J, D'Haen J, Derveaux E, Adriaensens P, Vereecken PM, Van Bael MK, Hardy A. Organic-Inorganic Hybrid Solid Composite Electrolytes for High Energy Density Lithium Batteries: Combining Manufacturability, Conductivity, and Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406774. [PMID: 39540463 DOI: 10.1002/advs.202406774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Indexed: 11/16/2024]
Abstract
The deployment of solid and quasi-solid electrolytes in lithium metal batteries is envisioned to push their energy densities to even higher levels, in addition to providing enhanced safety. This article discusses a set of hybrid solid composite electrolytes which combine functional properties with electrode compatibility and manufacturability. Their anodic stability >5 V versus Li+/Li and compatibility with lithium metal stem from the incorporated ionic liquid electrolyte, whereas the organic-inorganic hybrid host structure boosts their conductivity up to 2.7 mS cm-1 at room temperature. The absence of strong acids enables compatibility with porous NMC811 electrodes. Liquid precursor solutions can be readily impregnated into porous electrodes, facilitating cell assembly. Electrolytes containing TFSI- as the only anion have a superior compatibility toward high-voltage positive electrode materials, whereas electrolytes containing both FSI- and TFSI- have a better compatibility toward lithium metal. Using the former as catholyte and the latter as anolyte, NMC811/Li coin cells retain up to 100% of their initial capacity after 100 cycles (0.2 C, 3.0-4.4 V vs Li+/Li). Because of their unprecedented combination of functional properties, electrode compatibility, and manufacturability, these hybrid solid composite electrolytes are potential candidates for the further development of lithium metal battery technology.
Collapse
|
|
1 |
|
20
|
Chalyan T, Feizpour M, Liu Q, Vanmol K, Solerdelcoll N, Takebe G, Thienpont H, Ottevaere H. Toward nanofabrication of SERS substrates with two-photon polymerization. NANOSCALE ADVANCES 2025; 7:840-849. [PMID: 39698462 PMCID: PMC11651303 DOI: 10.1039/d4na00742e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has shown its ability to characterize biological substances down to a single-molecule level without a specific biorecognition mechanism. Various nanofabrication technologies enable SERS substrate prototyping and mass manufacturing. This study reports a complete cycle of design, fabrication, prototyping, and metrology of SERS substrates based on two-photon polymerization (2PP). Highly controllable direct laser writing allows the fabrication of individual nanopillars with up to an aspect ratio of 4. The developed SERS substrates show up to 106 Raman signal enhancement, comparable to commercial substrates. Moreover, the rapid prototyping of the 2PP-printed SERS substrates takes from a minute to less than 2 hours, depending upon the nano-printing approach and aspect ratio requirements. The process is well-controlled and reproducible for achieving a uniform distribution of nanostructure arrays, allowing the SERS substrates to be used for a broad range of applications and the characterization of different molecules.
Collapse
|
research-article |
1 |
|
21
|
Meyvisch P, Mertens KN, Gurdebeke PR, Sandt C, Pospelova V, Vrielinck H, Borondics F, Louwye S. Does dinocyst wall composition really reflect trophic affinity? New evidence from ATR micro-FTIR spectroscopy measurements. JOURNAL OF PHYCOLOGY 2023; 59:1064-1084. [PMID: 37623312 DOI: 10.1111/jpy.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/02/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
Attenuated total reflection (ATR) microscope Fourier transform infrared (micro-FTIR) spectroscopy was used to investigate the dinosporin composition in the walls of modern, organic-walled dinoflagellate resting cysts (dinocysts). Variable cyst wall compositions were observed, which led to the erection of four spectrochemical groups, some with striking similarities to other resistant biomacromolecules such as sporopollenin and algaenan. Furthermore, possible proxies derivable from the spectrochemical composition of modern and fossil dinocysts were discussed. The color of the dinocyst walls was reflected in the spectral data. When comparing that color with a standard and the results of a series of bleaching experiments with oxidative agents, eumelanin was assigned as a likely pigment contributing to the observed color. Following this assignment, the role of eumelanin as an ultraviolet sunscreen in colored dinocysts was hypothesized, and its implications on the autofluorescence and morphological preservation of dinocysts were further discussed. Unlike what had previously been assumed, it was shown that micro-FTIR data from dinocysts cannot be used to unambiguously infer trophic affinities of their associated cells. Finally, using methods with high spatial resolutions (synchrotron transmission micro-FTIR and optical photothermal infrared spectroscopy), it was shown that dinocyst wall layers are chemically homogenous at the probed scales. This study fills a large knowledge gap in our understanding of the chemical nature of dinocyst walls and has nuanced certain assumptions and interpretations made in the past.
Collapse
|
|
2 |
|
22
|
Vanlommel S, Hoffman AEJ, Smet S, Radhakrishnan S, Asselman K, Chandran CV, Breynaert E, Kirschhock CEA, Martens JA, Van Speybroeck V. How Water and Ion Mobility Affect the NMR Fingerprints of the Hydrated JBW Zeolite: A Combined Computational-Experimental Investigation. Chemistry 2022; 28:e202202621. [PMID: 36005885 PMCID: PMC10092413 DOI: 10.1002/chem.202202621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/08/2022]
Abstract
An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27 Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.
Collapse
|
research-article |
3 |
|
23
|
Wu P, Demaerel J, Statham BJ, Bolm C. Azasulfur(iv) derivatives of sulfite and sulfinate esters by formal S-S bond insertion of dichloramines. Chem Sci 2024; 15:5333-5339. [PMID: 38577380 PMCID: PMC10988629 DOI: 10.1039/d4sc00500g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Azasulfur(vi) compounds such as sulfoximines and sulfonimidamides are attractive due to the unique properties of the S[double bond, length as m-dash]N bond. While the synthesis of these carbon-attached sulfonimidoyl derivatives is well-established, the situation is different for their heteroatom-bound counterparts. In this work, we propose azasulfur(iv) esters as platform chemicals that can be derivatized to obtain all types of SVI[double bond, length as m-dash]N functional groups, among these are the poorly accessible, all-heteroatom imidosulfate esters. Using a chloroamination workflow established here, S-S bond-containing structures such as elemental sulfur or diaryl disulfides can be transformed into imidothionyl or sulfinimidoyl chlorides, which are easily esterified or amidated. Thus, chloramines serve as a versatile [N] and [Cl+] source, and by using them in the context reported here, we advance the set of mild synthetic methods as the latest toolbox member to cover even more of the azasulfur(iv) and (vi) chemical space.
Collapse
|
research-article |
1 |
|
24
|
Sosa-Fajardo A, Díaz-Muñoz C, Van der Veken D, Pradal I, Verce M, Weckx S, Leroy F. Genomic exploration of the fermented meat isolate Staphylococcus shinii IMDO-S216 with a focus on competitiveness-enhancing secondary metabolites. BMC Genomics 2024; 25:575. [PMID: 38849728 PMCID: PMC11161930 DOI: 10.1186/s12864-024-10490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Staphylococcus shinii appears as an umbrella species encompassing several strains of Staphylococcus pseudoxylosus and Staphylococcus xylosus. Given its phylogenetic closeness to S. xylosus, S. shinii can be found in similar ecological niches, including the microbiota of fermented meats where the species may contribute to colour and flavour development. In addition to these conventional functionalities, a biopreservation potential based on the production of antagonistic compounds may be available. Such potential, however, remains largely unexplored in contrast to the large body of research that is available on the biopreservative properties of lactic acid bacteria. The present study outlines the exploration of the genetic basis of competitiveness and antimicrobial activity of a fermented meat isolate, S. shinii IMDO-S216. To this end, its genome was sequenced, de novo assembled, and annotated. RESULTS The genome contained a single circular chromosome and eight plasmid replicons. Focus of the genomic exploration was on secondary metabolite biosynthetic gene clusters coding for ribosomally synthesized and posttranslationally modified peptides. One complete cluster was coding for a bacteriocin, namely lactococcin 972; the genes coding for the pre-bacteriocin, the ATP-binding cassette transporter, and the immunity protein were also identified. Five other complete clusters were identified, possibly functioning as competitiveness factors. These clusters were found to be involved in various responses such as membrane fluidity, iron intake from the medium, a quorum sensing system, and decreased sensitivity to antimicrobial peptides and competing microorganisms. The presence of these clusters was equally studied among a selection of multiple Staphylococcus species to assess their prevalence in closely-related organisms. CONCLUSIONS Such factors possibly translate in an improved adaptation and competitiveness of S. shinii IMDO-S216 which are, in turn, likely to improve its fitness in a fermented meat matrix.
Collapse
|
research-article |
1 |
|
25
|
De Belder M, Morais AF, De Vos N, Van Meervelt L, Denayer JFM, Martens JA, Breynaert E. Performance of ferrite nanoparticles in inductive heating swing adsorption (IHSA): how tailoring material properties can circumvent the design limitations of a system. MATERIALS HORIZONS 2024; 11:4144-4149. [PMID: 38895786 PMCID: PMC11352890 DOI: 10.1039/d4mh00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Inductive heating swing adsorption (IHSA) using hybrid adsorbents incorporating a porous material and ferrite nanoparticles holds promise to be a performant, electrified alternative for conventional gas separation. Successful implementation of hybrid adsorbents in IHSA depends on achieving a maximal specific absorption rate (SAR) in the conditions and at the frequency of the induction setup. This paper outlines and demonstrates successful strategies for optimization of the particle composition, tailoring the coercivity and susceptibility of the ferrite particles to optimal performance in a given alternating magnetic field.
Collapse
|
brief-report |
1 |
|