1
|
El Andari J, Renaud-Gabardos E, Tulalamba W, Weinmann J, Mangin L, Pham QH, Hille S, Bennett A, Attebi E, Bourges E, Leborgne C, Guerchet N, Fakhiri J, Krämer C, Wiedtke E, McKenna R, Guianvarc’h L, Toueille M, Ronzitti G, Hebben M, Mingozzi F, VandenDriessche T, Agbandje-McKenna M, Müller OJ, Chuah MK, Buj-Bello A, Grimm D. Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders. SCIENCE ADVANCES 2022; 8:eabn4704. [PMID: 36129972 PMCID: PMC9491714 DOI: 10.1126/sciadv.abn4704] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
Bioengineering of viral vectors for therapeutic gene delivery is a pivotal strategy to reduce doses, facilitate manufacturing, and improve efficacy and patient safety. Here, we engineered myotropic adeno-associated viral (AAV) vectors via a semirational, combinatorial approach that merges AAV capsid and peptide library screens. We first identified shuffled AAVs with increased specificity in the murine skeletal muscle, diaphragm, and heart, concurrent with liver detargeting. Next, we boosted muscle specificity by displaying a myotropic peptide on the capsid surface. In a mouse model of X-linked myotubular myopathy, the best vectors-AAVMYO2 and AAVMYO3-prolonged survival, corrected growth, restored strength, and ameliorated muscle fiber size and centronucleation. In a mouse model of Duchenne muscular dystrophy, our lead capsid induced robust microdystrophin expression and improved muscle function. Our pipeline is compatible with complementary AAV genome bioengineering strategies, as demonstrated here with two promoters, and could benefit many clinical applications beyond muscle gene therapy.
Collapse
|
research-article |
3 |
41 |
2
|
Maitre M, Jeltsch-David H, Okechukwu NG, Klein C, Patte-Mensah C, Mensah-Nyagan AG. Myelin in Alzheimer's disease: culprit or bystander? Acta Neuropathol Commun 2023; 11:56. [PMID: 37004127 PMCID: PMC10067200 DOI: 10.1186/s40478-023-01554-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with neuronal and synaptic losses due to the accumulation of toxic amyloid β (Αβ) peptide oligomers, plaques, and tangles containing tau (tubulin-associated unit) protein. While familial AD is caused by specific mutations, the sporadic disease is more common and appears to result from a complex chronic brain neuroinflammation with mitochondriopathies, inducing free radicals' accumulation. In aged brain, mutations in DNA and several unfolded proteins participate in a chronic amyloidosis response with a toxic effect on myelin sheath and axons, leading to cognitive deficits and dementia. Αβ peptides are the most frequent form of toxic amyloid oligomers. Accumulations of misfolded proteins during several years alters different metabolic mechanisms, induce chronic inflammatory and immune responses with toxic consequences on neuronal cells. Myelin composition and architecture may appear to be an early target for the toxic activity of Aβ peptides and others hydrophobic misfolded proteins. In this work, we describe the possible role of early myelin alterations in the genesis of neuronal alterations and the onset of symptomatology. We propose that some pathophysiological and clinical forms of the disease may arise from structural and metabolic disorders in the processes of myelination/demyelination of brain regions where the accumulation of non-functional toxic proteins is important. In these forms, the primacy of the deleterious role of amyloid peptides would be a matter of questioning and the initiating role of neuropathology would be primarily the fact of dysmyelination.
Collapse
|
Review |
2 |
35 |
3
|
Moura A, Lefrancq N, Wirth T, Leclercq A, Borges V, Gilpin B, Dallman TJ, Frey J, Franz E, Nielsen EM, Thomas J, Pightling A, Howden BP, Tarr CL, Gerner-Smidt P, Cauchemez S, Salje H, Brisse S, Lecuit M, Listeria CC1 Study Group. Emergence and global spread of Listeria monocytogenes main clinical clonal complex. SCIENCE ADVANCES 2021; 7:eabj9805. [PMID: 34851675 PMCID: PMC8635441 DOI: 10.1126/sciadv.abj9805] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The bacterial foodborne pathogen Listeria monocytogenes clonal complex 1 (Lm-CC1) is the most prevalent clonal group associated with human listeriosis and is strongly associated with cattle and dairy products. Here, we analyze 2021 isolates collected from 40 countries, covering Lm-CC1 first isolation to present days, to define its evolutionary history and population dynamics. We show that Lm-CC1 spread worldwide from North America following the Industrial Revolution through two waves of expansion, coinciding with the transatlantic livestock trade in the second half of the 19th century and the rapid growth of cattle farming and food industrialization in the 20th century. In sharp contrast to its global spread over the past century, transmission chains are now mostly local, with limited inter- and intra-country spread. This study provides an unprecedented insight into L. monocytogenes phylogeography and population dynamics and highlights the importance of genome analyses for a better control of pathogen transmission.
Collapse
|
research-article |
4 |
30 |
4
|
Vigne P, Gimond C, Ferrari C, Vielle A, Hallin J, Pino-Querido A, El Mouridi S, Mignerot L, Frøkjær-Jensen C, Boulin T, Teotónio H, Braendle C. A single-nucleotide change underlies the genetic assimilation of a plastic trait. SCIENCE ADVANCES 2021; 7:7/6/eabd9941. [PMID: 33536214 PMCID: PMC7857674 DOI: 10.1126/sciadv.abd9941] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/15/2020] [Indexed: 05/09/2023]
Abstract
Genetic assimilation-the evolutionary process by which an environmentally induced phenotype is made constitutive-represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation-by either genetic drift or selection-of an ancestrally plastic trait.
Collapse
|
research-article |
4 |
22 |
5
|
Ruiz-Demoulin S, Trenquier E, Dekkar S, Deshayes S, Boisguérin P, Serrano C, de Santa Barbara P, Faure S. LIX1 Controls MAPK Signaling Reactivation and Contributes to GIST-T1 Cell Resistance to Imatinib. Int J Mol Sci 2023; 24:ijms24087138. [PMID: 37108337 PMCID: PMC10138740 DOI: 10.3390/ijms24087138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST), the most common sarcoma, is mainly caused by an oncogenic mutation in the KIT receptor tyrosine kinase. Targeting KIT using tyrosine kinase inhibitors, such as imatinib and sunitinib, provides substantial benefit; however, in most patients, the disease will eventually progress due to KIT secondary mutations leading to treatment failure. Understanding how GIST cells initially adapt to KIT inhibition should guide the selection of appropriate therapies to overcome the emergence of resistance. Several mechanisms have been broadly implicated in the resistance to imatinib anti-tumoral effects, including the reactivation of MAPK signaling upon KIT/PDGFRA targeted inhibition. This study provides evidence that LImb eXpression 1 (LIX1), a protein we identified as a regulator of the Hippo transducers YAP1 and TAZ, is upregulated upon imatinib or sunitinib treatment. LIX1 silencing in GIST-T1 cells impaired imatinib-induced MAPK signaling reactivation and enhanced imatinib anti-tumor effect. Our findings identified LIX1 as a key regulator of the early adaptative response of GIST cells to targeted therapies.
Collapse
|
|
2 |
6 |
6
|
Nguyen PV, Aubry C, Boudaoud N, Gaubert A, Langlois MH, Marchivie M, Gaudin K, Arpin C, Barthélémy P, Kauss T. Oligonucleotide Solid Nucleolipid Nanoparticles against Antibiotic Resistance of ESBL-Producing Bacteria. Pharmaceutics 2022; 14:299. [PMID: 35214036 PMCID: PMC8876242 DOI: 10.3390/pharmaceutics14020299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance has become a major issue in the global healthcare system, notably in the case of Gram-negative bacteria. Recent advances in technology with oligonucleotides have an enormous potential for tackling this problem, providing their efficient intrabacterial delivery. The current work aimed to apply this strategy by using a novel nanoformulation consisting of DOTAU, a nucleolipid carrier, in an attempt to simultaneously deliver antibiotic and anti-resistance oligonucleotides. Ceftriaxone, a third-generation cephalosporin, was formulated with DOTAU to form an ion pair, and was then nanoprecipitated. The obtained solid nanocapsules were characterized using FT-IR, XRD, HPLC, TEM and DLS techniques and further functionalized by the anti-resistance ONα sequence. To obtain an optimal anti-resistance activity and encapsulation yield, both the formulation protocol and the concentration of ONα were optimized. As a result, monodispersed negatively charged nanoparticles of CFX-DOTAU-ONα with a molar ratio of 10:24:1 were obtained. The minimum inhibitory concentration of these nanoparticles on the resistant Escherichia coli strain was significantly reduced (by 75%) in comparison with that of non-vectorized ONα. All aforementioned results reveal that our nanoformulation can be considered as an efficient and relevant strategy for oligonucleotide intrabacterial delivery in the fight against antibiotic resistance.
Collapse
|
research-article |
3 |
3 |
7
|
Chhuon C, Herrera-Marcos LV, Zhang SY, Charrière-Bertrand C, Jung V, Lipecka J, Savas B, Nasser N, Pawlak A, Boulmerka H, Audard V, Sahali D, Guerrera IC, Ollero M. Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2023; 24:12124. [PMID: 37569500 PMCID: PMC10418338 DOI: 10.3390/ijms241512124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Focal and segmental glomerulosclerosis (FSGS) is a severe form of idiopathic nephrotic syndrome (INS), a glomerulopathy of presumably immune origin that is attributed to extrarenal pathogenic circulating factors. The recurrence of FSGS (rFSGS) after transplant occurs in 30% to 50% of cases. The direct analysis of patient plasma proteome has scarcely been addressed to date, mainly due to the methodological difficulties associated with plasma complexity and dynamic range. In this study, first, we compared different methods of plasma preparation, second, we compared the plasma proteomes of rFSGS and controls using two preparation methods, and third, we analyzed the early proximal signaling events in podocytes subjected to patient plasma, through a combination of phosphoproteomics and lipid-raft proteomics (raftomics). By combining immunodepletion and high pH fractionation, we performed a differential proteomic analysis of soluble plasma proteins and of extracellular vesicles (EV) obtained from healthy controls, non-INS patient controls, and rFSGS patients (n = 4). In both the soluble- and the EV-protein sets from the rFSGS patients, we found a statistically significant increase in a cluster of proteins involved in neutrophil degranulation. A group of lipid-binding proteins, generally associated with lipoproteins, was found to be decreased in the soluble set from the rFSGS patients. In addition, three amino acid transporters involved in mTORC1 activation were found to be significantly increased in the EV from the rFSGS. Next, we incubated human podocytes for 30 min with 10% plasma from both groups of patients. The phosphoproteomics and raftomics of the podocytes revealed profound differences in the proteins involved in the mTOR pathway, in autophagy, and in cytoskeleton organization. We analyzed the correlation between the abundance of plasma and plasma-regulated podocyte proteins. The observed changes highlight some of the mechanisms involved in FSGS recurrence and could be used as specific early markers of circulating-factor activity in podocytes.
Collapse
|
research-article |
2 |
2 |
8
|
Le Jeune S, Sadoudi S, Charue D, Abid S, Guigner JM, Helley D, Bihan H, Baudry C, Lelong H, Mirault T, Vicaut E, Dhote R, Mourad JJ, Boulanger CM, Blanc-Brude OP. Low grade intravascular hemolysis associates with peripheral nerve injury in type 2 diabetes. PLoS One 2022; 17:e0275337. [PMID: 36251660 PMCID: PMC9576093 DOI: 10.1371/journal.pone.0275337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Type 2 diabetes (T2D) induces hyperglycemia, alters hemoglobin (Hb), red blood cell (RBC) deformability and impairs hemorheology. The question remains whether RBC breakdown and intravascular hemolysis (IVH) occur in T2D patients. We characterized RBC-degradation products and vesiculation in a case-control study of 109 T2D patients and 65 control subjects. We quantified heme-related absorbance by spectrophotometry and circulating extracellular vesicles (EV) by flow cytometry and electron microscopy. Heme-related absorbance was increased in T2D vs. control plasma (+57%) and further elevated in obese T2D plasma (+27%). However, large CD235a+ EV were not increased in T2D plasma. EV from T2D plasma, or shed by isolated T2D RBC, were notably smaller in diameter (-27%) and carried heme-related absorbance. In T2D plasma, higher heme-related absorbance (+30%) was associated to peripheral sensory neuropathy, and no other vascular complication. In vitro, T2D RBC-derived EV triggered endothelial stress and thrombin activation in a phosphatidylserine- and heme-dependent fashion. We concluded that T2D was associated with low-grade IVH. Plasma absorbance may constitute a novel biomarker of peripheral neuropathy in T2D, while flow cytometry focusing on large EV may be maladapted to characterize RBC EV in T2D. Moreover, therapeutics limiting IVH or neutralizing RBC breakdown products might bolster vasculoprotection in T2D.
Collapse
|
research-article |
3 |
2 |
9
|
Oostveen RF, Zheng KH, Kaiser Y, Nurmohamed NS, Kroon J, de Wit TC, Poel E, Aerts J, Rouzet F, Stroes ESG, Letourneur D, Verberne HJ, Chauvierre C, Ståhle MR. First-in-human study of 99mTc-labeled fucoidan, a SPECT tracer targeting P-selectin. EJNMMI Res 2024; 14:112. [PMID: 39562382 DOI: 10.1186/s13550-024-01173-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Activation of endothelial cells and platelets in atherothrombosis is characterized by upregulation of P-selectin. As a consequence, P-selectin represents a potential target for molecular imaging to identify thrombosis at an early stage. Fucoidan is a polysaccharide ligand extracted from brown algae with nanomolar affinity for P-selectin. This first-in-human study evaluated in healthy volunteers the safety, whole-body biodistribution, and dosimetry of 99mTc-fucoidan (Good Manufacturing Practices grade). We also investigated whether we could observe binding of 99mTc-fucoidan to human thrombi ex vivo and in vivo. In ten healthy volunteers, conjugate whole-body scans were performed up to 24 h following intravenous injection of 99mTc-fucoidan (370 MBq). Moreover, 99mTc-fucoidan uptake in ex vivo human thrombi (n = 11) was measured by gamma counting. Additionally, three patients with a newly diagnosed deep vein thrombosis (DVT) were subjected to 99mTc-fucoidan SPECT/CT imaging. RESULTS 99mTc-fucoidan was well tolerated in all participants without any drug-related adverse events. The total-body absorbed dose in males was comparable to females (0.012 ± 0.004 vs. 0.011 ± 0.005 mSv/MBq; p = 0.97). Gamma counting experiments demonstrated binding of tracer to ex vivo human thrombi that was 16% lower after blocking with a natural P-selectin ligand, Sialyl Lewis X. 99mTc-fucoidan demonstrated specific uptake at the thrombus site in one out of three scanned patients with DVT. CONCLUSIONS 99mTc-Fucoidan has a favorable biodistribution and safety profile. 99mTc-fucoidan exhibited specific binding to human thrombi in both in vivo and ex vivo settings. Nonetheless, the in vivo results do not support further clinical investigation of 99mTc-fucoidan as an imaging modality for DVT. Other clinical implementations of a technetium- 99m-labeled P-selectin tracer should be considered. TRIAL REGISTRATION Clinicaltrials,NCT03422055.Registered 01/15/2018. URL: https://clinicaltrials.gov/study/NCT03422055 Landelijk Trial Register, NL7739. Registered 4/2/2019 . https://onderzoekmetmensen.nl/en/trial/26785.
Collapse
|
|
1 |
1 |
10
|
Ackermann J, Bernard C, Sirven P, Salmon H, Fraldi M, Ben Amar MD. Mechanistic insight for T-cell exclusion by cancer-associated fibroblasts in human lung cancer. eLife 2025; 13:RP101885. [PMID: 40208246 PMCID: PMC11984955 DOI: 10.7554/elife.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The tumor stroma consists mainly of extracellular matrix, fibroblasts, immune cells, and vasculature. Its structure and functions are altered during malignancy: tumor cells transform fibroblasts into cancer-associated fibroblasts, which exhibit immunosuppressive activities on which growth and metastasis depend. These include exclusion of immune cells from the tumor nest, cancer progression, and inhibition of T-cell-based immunotherapy. To understand these complex interactions, we measure the density of different cell types in the stroma using immunohistochemistry techniques on tumor samples from lung cancer patients. We incorporate these data into a minimal dynamical system, explore the variety of outcomes, and finally establish a spatio-temporal model that explains the cell distribution. We reproduce that cancer-associated fibroblasts act as a barrier to tumor expansion, but also reduce the efficiency of the immune response. Our conclusion is that the final outcome depends on the parameter values for each patient and leads to either tumor invasion, persistence, or eradication as a result of the interplay between cancer cell growth, T-cell cytotoxicity, and fibroblast activity. However, despite the existence of a wide range of scenarios, distinct trajectories, and patterns allow quantitative predictions that may help in the selection of new therapies and personalized protocols.
Collapse
|
research-article |
1 |
|
11
|
Robert F, Certain MC, Baron A, Thuillet R, Duhaut L, Ottaviani M, Chelgham MK, Normand C, Berrebeh N, Ricard N, Furlan V, Desroches-Castan A, Gonzales E, Jacquemin E, Sitbon O, Humbert M, Bailly S, Coilly A, Guignabert C, Tu L, Savale L. Disrupted BMP-9 Signaling Impairs Pulmonary Vascular Integrity in Hepatopulmonary Syndrome. Am J Respir Crit Care Med 2024; 210:648-661. [PMID: 38626313 DOI: 10.1164/rccm.202307-1289oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/16/2024] [Indexed: 04/18/2024] Open
Abstract
Rationale: Hepatopulmonary syndrome (HPS) is a severe complication of liver diseases characterized by abnormal dilation of pulmonary vessels, resulting in impaired oxygenation. Recent research highlights the pivotal role of liver-produced BMP-9 (bone morphogenetic protein-9) in maintaining pulmonary vascular integrity. Objectives: This study aimed to investigate the involvement of BMP-9 in human and experimental HPS. Methods: Circulating BMP-9 levels were measured in 63 healthy control subjects and 203 patients with cirrhosis with or without HPS. Two animal models of portal hypertension were employed: common bile duct ligation with cirrhosis and long-term partial portal vein ligation without cirrhosis. Additionally, the therapeutic effect of low-dose BMP activator FK506 was investigated, and the pulmonary vascular phenotype of BMP-9-knockout rats was analyzed. Measurements and Main Results: Patients with HPS related to compensated cirrhosis exhibited lower levels of circulating BMP-9 compared with patients without HPS. Patients with severe cirrhosis exhibited consistently low levels of BMP-9. HPS characteristics were observed in animal models, including intrapulmonary vascular dilations and an increase in the alveolar-arterial gradient. HPS development in both rat models correlated with reduced intrahepatic BMP-9 expression, decreased circulating BMP-9 level and activity, and impaired pulmonary BMP-9 endothelial pathway. Daily treatment with FK506 for 2 weeks restored the BMP pathway in the lungs, alleviating intrapulmonary vascular dilations and improving gas exchange impairment. Furthermore, BMP-9-knockout rats displayed a pulmonary HPS phenotype, supporting its role in disease progression. Conclusions: The study findings suggest that portal hypertension-induced loss of BMP-9 signaling contributes to HPS development.
Collapse
|
|
1 |
|
12
|
Jonchère V, Montémont H, Le Scanf E, Siret A, Letourneur Q, Tubacher E, Battail C, Fall A, Labreche K, Renault V, Ratovomanana T, Buhard O, Jolly A, Le Rouzic P, Feys C, Despras E, Zouali H, Nicolle R, Cervera P, Svrcek M, Bourgoin P, Blanché H, Boland A, Lefèvre J, Parc Y, Touat M, Bielle F, Arzur D, Cueff G, Le Jossic-Corcos C, Quéré G, Dujardin G, Blondel M, Le Maréchal C, Cohen R, André T, Coulet F, de la Grange P, de Reyniès A, Fléjou JF, Renaud F, Alentorn A, Corcos L, Deleuze JF, Collura A, Duval A. Microsatellite instability at U2AF-binding polypyrimidic tract sites perturbs alternative splicing during colorectal cancer initiation. Genome Biol 2024; 25:210. [PMID: 39107855 PMCID: PMC11304650 DOI: 10.1186/s13059-024-03340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Microsatellite instability (MSI) due to mismatch repair deficiency (dMMR) is common in colorectal cancer (CRC). These cancers are associated with somatic coding events, but the noncoding pathophysiological impact of this genomic instability is yet poorly understood. Here, we perform an analysis of coding and noncoding MSI events at the different steps of colorectal tumorigenesis using whole exome sequencing and search for associated splicing events via RNA sequencing at the bulk-tumor and single-cell levels. RESULTS Our results demonstrate that MSI leads to hundreds of noncoding DNA mutations, notably at polypyrimidine U2AF RNA-binding sites which are endowed with cis-activity in splicing, while higher frequency of exon skipping events are observed in the mRNAs of MSI compared to non-MSI CRC. At the DNA level, these noncoding MSI mutations occur very early prior to cell transformation in the dMMR colonic crypt, accounting for only a fraction of the exon skipping in MSI CRC. At the RNA level, the aberrant exon skipping signature is likely to impair colonic cell differentiation in MSI CRC affecting the expression of alternative exons encoding protein isoforms governing cell fate, while also targeting constitutive exons, making dMMR cells immunogenic in early stage before the onset of coding mutations. This signature is characterized by its similarity to the oncogenic U2AF1-S34F splicing mutation observed in several other non-MSI cancer. CONCLUSIONS Overall, these findings provide evidence that a very early RNA splicing signature partly driven by MSI impairs cell differentiation and promotes MSI CRC initiation, far before coding mutations which accumulate later during MSI tumorigenesis.
Collapse
|
research-article |
1 |
|
13
|
Raposo Pereira F, Chaumon M, Dubois B, Bakardjian H, Bahrami M, Habert MO, Andrade K, Younsi N, La Corte V, George N. Recognition memory decline is associated with the progression to prodromal Alzheimer's disease in asymptomatic at-risk individuals. J Neurol 2024; 272:70. [PMID: 39680203 DOI: 10.1007/s00415-024-12834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/17/2024]
Abstract
Episodic memory (EM) alterations are a hallmark of Alzheimer's disease (AD). We assessed EM longitudinally in cognitively normal elders at-risk for AD (with subjective memory complaints), as a function of amyloid-β (Aβ) burden, neurodegeneration (N), and progression to prodromal AD. We stratified 264 INSIGHT-preAD study subjects in controls (Aβ-/N-), stable/N- or N + (Aβ +), and progressors/N- or N + (Aβ +) groups (progressors were included only until AD-diagnosis). We used linear mixed-effect models with Aβ and N status, or progression to AD as factors, to analyze behavioral performance in an old/new word-recognition task based on the free and cued selective reminding test (FCSRT). The controls and stable/N- groups showed near-ceiling accuracy and RT improvement across follow-up. The stable/N + group showed accuracy reduction and no RT improvement, i.e., Aβ + /N + cumulative effect. The progressors showed a marked performance decline. EM alterations may constitute early preclinical markers of progression to prodromal AD, while individuals are cognitively normal according to neuropsychological standards.
Collapse
|
|
1 |
|
14
|
Gelli M, Desterke C, Bani MA, Boige V, Ferté C, Dartigues P, Job B, Perkins G, Laurent-Puig P, Goéré D, Mathieu JRR, Cartry J, Ducreux M, Jaulin F. Primary Colorectal Tumor Displays Differential Genomic Expression Profiles Associated with Hepatic and Peritoneal Metastases. Cancers (Basel) 2023; 15:4418. [PMID: 37686695 PMCID: PMC10648258 DOI: 10.3390/cancers15174418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Despite improvements in characterization of CRC heterogeneity, appropriate risk stratification tools are still lacking in clinical practice. This study aimed to elucidate the primary tumor transcriptomic signatures associated with distinct metastatic routes. METHODS Primary tumor specimens obtained from CRC patients with either isolated LM (CRC-Liver) or PM (CRC-Peritoneum) were analyzed by transcriptomic mRNA sequencing, gene set enrichment analyses (GSEA) and immunohistochemistry. We further assessed the clinico-pathological associations and prognostic value of our signature in the COAD-TCGA independent cohort. RESULTS We identified a significantly different distribution of Consensus Molecular Subtypes between CRC-Liver and CRC-peritoneum groups. A transcriptomic signature based on 61 genes discriminated between liver and peritoneal metastatic routes. GSEA showed a higher expression of immune response and epithelial invasion pathways in CRC-Peritoneum samples and activation of proliferation and metabolic pathways in CRC-Liver samples. The biological relevance of RNA-Seq results was validated by the immunohistochemical expression of three significantly differentially expressed genes (ACE2, CLDN18 and DUSP4) in our signature. In silico analysis of the COAD-TCGA showed that the CRC-Peritoneum signature was associated with negative prognostic factors and poor overall and disease-free survivals. CONCLUSIONS CRC primary tumors spreading to the liver and peritoneum display significantly different transcriptomic profiles. The implementation of this signature in clinical practice could contribute to identify new therapeutic targets for stage IV CRC and to define individualized follow-up programs in stage II-III CRC.
Collapse
|
research-article |
2 |
|
15
|
Desroys du Roure P, Lajoie L, Mallavialle A, Alcaraz LB, Mansouri H, Fenou L, Garambois V, Rubio L, David T, Coenon L, Boissière-Michot F, Chateau MC, Ngo G, Jarlier M, Villalba M, Martineau P, Laurent-Matha V, Roger P, Guiu S, Chardès T, Gros L, Liaudet-Coopman E. A novel Fc-engineered cathepsin D-targeting antibody enhances ADCC, triggers tumor-infiltrating NK cell recruitment, and improves treatment with paclitaxel and enzalutamide in triple-negative breast cancer. J Immunother Cancer 2024; 12:e007135. [PMID: 38290768 PMCID: PMC10828871 DOI: 10.1136/jitc-2023-007135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) prognosis is poor. Immunotherapies to enhance the antibody-induced natural killer (NK) cell antitumor activity are emerging for TNBC that is frequently immunogenic. The aspartic protease cathepsin D (cath-D), a tumor cell-associated extracellular protein with protumor activity and a poor prognosis marker in TNBC, is a prime target for antibody-based therapy to induce NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). This study investigated whether Fc-engineered anti-cath-D antibodies trigger ADCC, their impact on antitumor efficacy and tumor-infiltrating NK cells, and their relevance for combinatory therapy in TNBC. METHODS Cath-D expression and localization in TNBC samples were evaluated by western blotting, immunofluorescence, and immunohistochemistry. The binding of human anti-cath-D F1M1 and Fc-engineered antibody variants, which enhance (F1M1-Fc+) or prevent (F1M1-Fc-) affinity for CD16a, to secreted human and murine cath-D was analyzed by ELISA, and to CD16a by surface plasmon resonance and flow cytometry. NK cell activation was investigated by flow cytometry, and ADCC by lactate dehydrogenase release. The antitumor efficacy of F1M1 Fc-variants was investigated using TNBC cell xenografts in nude mice. NK cell recruitment, activation, and cytotoxic activity were analyzed in MDA-MB-231 cell xenografts by immunophenotyping and RT-qPCR. NK cells were depleted using an anti-asialo GM1 antibody. F1M1-Fc+ antitumor effect was assessed in TNBC patient-derived xenografts (PDXs) and TNBC SUM159 cell xenografts, and in combination with paclitaxel or enzalutamide. RESULTS Cath-D expression on the TNBC cell surface could be exploited to induce ADCC. F1M1 Fc-variants recognized human and mouse cath-D. F1M1-Fc+ activated NK cells in vitro and induced ADCC against TNBC cells and cancer-associated fibroblasts more efficiently than F1M1. F1M1-Fc- was ineffective. In the MDA-MB-231 cell xenograft model, F1M1-Fc+ displayed higher antitumor activity than F1M1, whereas F1M1-Fc- was less effective, reflecting the importance of Fc-dependent mechanisms in vivo. F1M1-Fc+ triggered tumor-infiltrating NK cell recruitment, activation and cytotoxic activity in MDA-MB-231 cell xenografts. NK cell depletion impaired F1M1-Fc+ antitumor activity, demonstrating their key role. F1M1-Fc+ inhibited growth of SUM159 cell xenografts and two TNBC PDXs. In combination therapy, F1M1-Fc+ improved paclitaxel and enzalutamide therapeutic efficacy without toxicity. CONCLUSIONS F1M1-Fc+ is a promising immunotherapy for TNBC that could be combined with conventional regimens, including chemotherapy or antiandrogens.
Collapse
|
research-article |
1 |
|
16
|
Maio M, Barros J, Joly M, Vahlas Z, Marín Franco JL, Genoula M, Monard SC, Vecchione MB, Fuentes F, Gonzalez Polo V, Quiroga MF, Vermeulen M, Vu Manh TP, Argüello RJ, Inwentarz S, Musella R, Ciallella L, González Montaner P, Palmero D, Lugo Villarino G, Sasiain MDC, Neyrolles O, Vérollet C, Balboa L. Elevated glycolytic metabolism of monocytes limits the generation of HIF1A-driven migratory dendritic cells in tuberculosis. eLife 2024; 12:RP89319. [PMID: 38922679 PMCID: PMC11208050 DOI: 10.7554/elife.89319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
During tuberculosis (TB), migration of dendritic cells (DCs) from the site of infection to the draining lymph nodes is known to be impaired, hindering the rapid development of protective T-cell-mediated immunity. However, the mechanisms involved in the delayed migration of DCs during TB are still poorly defined. Here, we found that infection of DCs with Mycobacterium tuberculosis (Mtb) triggers HIF1A-mediated aerobic glycolysis in a TLR2-dependent manner, and that this metabolic profile is essential for DC migration. In particular, the lactate dehydrogenase inhibitor oxamate and the HIF1A inhibitor PX-478 abrogated Mtb-induced DC migration in vitro to the lymphoid tissue-specific chemokine CCL21, and in vivo to lymph nodes in mice. Strikingly, we found that although monocytes from TB patients are inherently biased toward glycolysis metabolism, they differentiate into poorly glycolytic and poorly migratory DCs compared with healthy subjects. Taken together, these data suggest that because of their preexisting glycolytic state, circulating monocytes from TB patients are refractory to differentiation into migratory DCs, which may explain the delayed migration of these cells during the disease and opens avenues for host-directed therapies for TB.
Collapse
Grants
- PICT-2019-01044 Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación
- PICT-2020-00501 Agencia Nacional de Promoción Científica y Tecnológica
- 11220200100299CO Consejo Nacional de Investigaciones Científicas y Técnicas
- ANRS2018-02 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- ECTZ 118551/118554 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- ECTZ 205320/305352 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- ECTZ103104 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- ECTZ101971 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- ANR-20-CE14-0028 Agence Nationale de la Recherche
- MAT-PI-17493-A-04 Inserm Transfert
- CONICET The Argentinean National Council of Scientific and Technical Investigations
- PIP 11220200100299CO The Argentinean National Council of Scientific and Technical Investigations
- ANRS2018-02 The Centre National de la Recherche Scientifique, Université Paul Sabatier, the Agence Nationale de Recherche sur le Sida et les hépatites virales (ANRS)
- ECTZ 118551/118554 The Centre National de la Recherche Scientifique, Université Paul Sabatier, the Agence Nationale de Recherche sur le Sida et les hépatites virales (ANRS)
- ECTZ 205320/305352 The Centre National de la Recherche Scientifique, Université Paul Sabatier, the Agence Nationale de Recherche sur le Sida et les hépatites virales (ANRS)
- ANRS ECTZ103104 The Centre National de la Recherche Scientifique, Université Paul Sabatier, the Agence Nationale de Recherche sur le Sida et les hépatites virales (ANRS)
- ECTZ101971 The Centre National de la Recherche Scientifique, Université Paul Sabatier, the Agence Nationale de Recherche sur le Sida et les hépatites virales (ANRS)
- ANR-20-CE14-0028 The French ANR JCJC-Epic-SCENITH
- MAT-PI-17493-A-04 CoPoC Inserm-transfert
Collapse
|
research-article |
1 |
|
17
|
Wifvat K, Camacho ET, Kawski M, Léveillard T, Wirkus S. Optimal Control with RdCVFL for Degenerating Photoreceptors. Bull Math Biol 2024; 86:29. [PMID: 38345678 PMCID: PMC10861398 DOI: 10.1007/s11538-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024]
Abstract
Both the rod and cone photoreceptors, along with the retinal pigment epithelium have been experimentally and mathematically shown to work interdependently to maintain vision. Further, the theoredoxin-like rod-derived cone viability factor (RdCVF) and its long form (RdCVFL) have proven to increase photoreceptor survival in experimental results. Aerobic glycolysis is the primary source of energy production for photoreceptors and RdCVF accelerates the intake of glucose into the cones. RdCVFL helps mitigate the negative effects of reactive oxidative species and has shown promise in slowing the death of cones in mouse studies. However, this potential treatment and its effects have never been studied in mathematical models. In this work, we examine an optimal control with the treatment of RdCVFL. We mathematically illustrate the potential this treatment might have for treating degenerative retinal diseases such as retinitis pigmentosa, as well as compare this to the results of an updated control model with RdCVF.
Collapse
|
research-article |
1 |
|
18
|
Boutanquoi PM, Pommerolle L, Dondaine L, Tanguy J, Bellaye PS, Biziorek L, Gautier-Isola M, Mari B, Masnikov D, Rocchi P, Finetti P, Korczak P, Vialet B, Barthelemy P, Garrido C, Bonniaud P, Burgy O, Goirand F. An antisense oligonucleotide targeting the heat-shock protein HSPB5 as an innovative therapeutic approach in pulmonary fibrosis. Br J Pharmacol 2025; 182:2713-2729. [PMID: 40033950 DOI: 10.1111/bph.17470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND AND PURPOSE Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by fibroblast activation and abnormal accumulation of extracellular matrix in the lungs. We previously demonstrated the importance of the heat shock protein αB-crystallin (HSPB5) in TGF-β1 profibrotic signalling, which suggests that HSPB5 could be a new therapeutic target for the treatment of IPF. The purpose of this study was thus to develop antisense oligonucleotides targeting HSPB5 and to study their effects on the development of experimental pulmonary fibrosis. EXPERIMENTAL APPROACH Specific antisense oligonucleotides (ASO) were designed and screened in vitro, based on their ability to inhibit human and murine HSPB5 expression. The selected ASO22 was characterized in vitro in human fibroblast CCD-19Lu cells and A549 epithelial pulmonary cells, as well as in vivo using a mouse model of bleomycin-induced pulmonary fibrosis. KEY RESULTS ASO22 was selected for its capacity to inhibit TGF-β1-induced expression of HSPB5 and additional key markers of fibrosis such as plasminogen activator inhibitor-1, collagen, fibronectin and α-smooth muscle actin in fibroblastic human CCD-19Lu cells as well as plasminogen activator inhibitor-1 and α-smooth muscle actin in pulmonary epithelial A549 cells. Intra-tracheal or intravenous administration of ASO22 in bleomycin-induced pulmonary fibrotic mice decreased HSPB5 expression and reduced fibrosis, as demonstrated by decreased pulmonary remodelling, collagen accumulation and Acta2 and Col1a1 expression. CONCLUSION AND IMPLICATIONS Our results suggest that an antisense oligonucleotide strategy targeting HSPB5 could be of interest for the treatment of IPF.
Collapse
|
|
1 |
|
19
|
Desroys du Roure P, David T, Mallavialle A, Laurent-Matha V, Roger P, Guiu S, Chardès T, Liaudet-Coopman E. Antibodies against the multifaceted cathepsin D protein open new avenues for TNBC immunotherapy. J Immunother Cancer 2025; 13:e009548. [PMID: 39800383 PMCID: PMC11748927 DOI: 10.1136/jitc-2024-009548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype characterized by aggressive clinical behavior and poor prognosis. The immune landscape associated with TNBC often reveals high immunogenicity. Therefore, immunotherapy, which has demonstrated its efficacy in different cancer types, could be a promising strategy for TNBC, given the limited therapeutic options currently available besides conventional chemotherapy. The aspartic protease cathepsin D (cath-D) is a tumor cell-associated extracellular protein with protumor activity, a marker of poor prognosis, and a target for antibody-based therapy in TNBC. This commentary provides a synopsis/narrative summary of the development of anti-cath-D antibodies in different formats, their key roles in restoring the antitumor immunity, particularly via activation of tumor-infiltrating natural killer cells, and their dual antitumor effects on cancer cells and stromal cancer-associated fibroblasts, suggesting their interest for clinical use in the light of the current clinical knowledge on TNBC.
Collapse
|
Review |
1 |
|
20
|
Bouhassira D, Jazat-Poindessous F, Farnes N, Franchisseur C, Stubhaug A, Bismuth J, Lefaucheur JP, Hansson P, Attal N. Comparison of the analgesic effects of "superficial" and "deep" repetitive transcranial magnetic stimulation in patients with central neuropathic pain: a randomized sham-controlled multicenter international crossover study. Pain 2024; 165:884-892. [PMID: 37851075 PMCID: PMC10949217 DOI: 10.1097/j.pain.0000000000003082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT We directly compared the analgesic effects of "superficial" and 'deep" repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex in patients with central neuropathic pain. Fifty-nine consecutive patients were randomly assigned to active or sham "superficial" (using a figure-of-8 [F8]-coil) or "deep" (using a Hesed [H]-coil) stimulation according to a double-blind crossover design. Each treatment period consisted of 5 daily stimulation sessions and 2 follow-up visits at 1 and 3 weeks after the last stimulation session. The primary outcome was the comparison of the mean change in average pain intensity over the course of the treatment (group × time interaction). Secondary outcomes included neuropathic symptoms (NPSI), pain interference, patient global impression of change (PGIC), anxiety, depression, and catastrophizing. In total, 51 patients participated in at least one session of both treatments. There was a significant interaction between "treatment" and "time" (F = 2.7; P = 0.0024), indicating that both figure-8 (F8-coil) and H-coil active stimulation induced significantly higher analgesic effects than sham stimulation. The analgesic effects of both types of coils had a similar magnitude but were only moderately correlated ( r = 0.39, P = 0.02). The effects of F8-coil stimulation appeared earlier, whereas the effects of H-coil stimulation were delayed, but tended to last longer (up to 3 weeks) as regards to several secondary outcomes (PGIC and total NPSI score). In conclusion, "deep" and "superficial" rTMS induced analgesic effects of similar magnitude in patients with central pain, which may involve different mechanisms of action.
Collapse
|
Randomized Controlled Trial |
1 |
|
21
|
Gonnelli A, Gerbé de Thoré M, Ermini ML, Frusca V, Zamborlin A, Signolle N, Bawa O, Clémenson C, Meziani L, Bergeron P, El-Azrak I, Sarogni P, Mugnaioli E, Giannini N, Drava G, Deutsch E, Paiar F, Mondini M, Voliani V. Nonpersistent Nanoarchitectures Enhance Concurrent Chemoradiotherapy in an Immunocompetent Orthotopic Model of HPV+ Head/Neck Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400949. [PMID: 38761135 DOI: 10.1002/adma.202400949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Cisplatin chemoradiotherapy (CRT) is the established standard of care for managing locally advanced human papillomavirus-positive head/neck carcinoma. The typically young patients may suffer serious and long-time side effects caused by the treatment, such as dysphagia, and hearing loss. Thus, ensuring a satisfactory post-treatment quality of life is paramount. One potential replacing approach to the classical CRT involves the combination of standard-dose radiotherapy and radiosensitizers such as noble metal nanoparticles (NPs). However, several concerns about size, shape, and biocompatibility limit the translation of metal nanomaterials to the clinical practice. Here, it is demonstrated that a new model of nonpersistent gold nanoarchitectures containing cisplatin (NAs-Cluster-CisPt) generates, in combination with radiotherapy, a significant in vivo tumor-reducing effect compared to the standard CRT, achieving a complete tumor clearance in 25% of the immunocompetent models that persist for 60 days. These findings, together with the negligible amount of metals recognized in the excretory organs, highlight that the concurrent administration of NAs-Cluster-CisPt and radiotherapy has the potential to overcome some clinical limitations associated to NP-based approaches while enhancing the treatment outcome with respect to standard CRT. Overall, despite further mechanistic investigations being essential, these data support the exploiting of nonpersistent metal-nanomaterial-mediated approaches for oral cancer management.
Collapse
|
|
1 |
|
22
|
Kim K, Schwarz JM, Ben Amar M. A two-dimensional vertex model for curvy cell-cell interfaces at the subcellular scale. J R Soc Interface 2024; 21:20240193. [PMID: 39192725 PMCID: PMC11407580 DOI: 10.1098/rsif.2024.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/26/2024] [Accepted: 06/24/2024] [Indexed: 08/29/2024] Open
Abstract
Cross-sections of cell shapes in a tissue monolayer typically resemble a tiling of convex polygons. Yet, examples exist where the polygons are not convex with curved cell-cell interfaces, as seen in the adaxial epidermis. To date, two-dimensional vertex models predicting the structure and mechanics of cell monolayers have been mostly limited to convex polygons. To overcome this limitation, we introduce a framework to study curvy cell-cell interfaces at the subcellular scale within vertex models by using a parametrized curve between vertices that is expanded in a Fourier series and whose coefficients represent additional degrees of freedom. This extension to non-convex polygons allows for cells with the same shape index, or dimensionless perimeter, to be, for example, either elongated or globular with lobes. In the presence of applied, anisotropic stresses, we find that local, subcellular curvature or buckling can be energetically more favourable than larger scale deformations involving groups of cells. Inspired by recent experiments, we also find that local, subcellular curvature at cell-cell interfaces emerges in a group of cells in response to the swelling of additional cells surrounding the group. Our framework, therefore, can account for a wider array of multicellular responses to constraints in the tissue environment.
Collapse
|
research-article |
1 |
|
23
|
David T, du Roure PD, Mallavialle A, Laurent-Matha V, Roger P, Guiu S, Chardès T, Liaudet-Coopman E. Cathepsins: Novel opportunities for antibody therapeutics in cancer. Br J Pharmacol 2025; 182:1671-1682. [PMID: 39834229 DOI: 10.1111/bph.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/22/2025] Open
Abstract
Cathepsins, the most abundant lysosomal proteases, have key functions in cell maintenance and homeostasis. They are overexpressed and hypersecreted in cancer and associated with poor prognosis. Secreted cathepsins display pro-tumour activities in the tumour microenvironment and thus represent interesting molecular targets in oncology. Recently, several antibody-based cancer therapies have targeted the pro-tumour activity of the extracellular cathepsin pool, altering several cancer hallmarks, but not the intracellular cathepsin levels that are often crucial for cell homeostasis. In this mini-review, we describe advances in antibodies against extracellular cathepsins in cancer, and their effect on the proteolytic cascade, matrix remodelling, proliferation, and modulation of the anti-cancer immune response. We also discuss the add-on value of combination strategies (anti-cathepsin antibodies with chemotherapy and/or biologics) that make anti-cathepsin antibodies a new opportunity for disease management.
Collapse
|
Review |
1 |
|
24
|
Huybrechts I, Jacobs I, Biessy C, Aglago EK, Jenab M, Claeys L, Zavadil J, Casagrande C, Nicolas G, Scelo G, Altieri A, Fervers B, Oswald IP, Vignard J, Chimera B, de Magistris MS, Masala G, Palli D, Padroni L, Castilla J, Jiménez-Zabala A, Frenoy P, Mancini FR, Ren X, Sonestedt E, Vineis P, Heath A, Werner M, Molina-Montes E, Dahm CC, Langmann F, Huerta JM, Brustad M, Skeie G, Schulze MB, Agudo A, Sieri S, Korenjak M, Gunter MJ, De Saeger S, De Boevre M. Associations between dietary mycotoxins exposures and risk of hepatocellular carcinoma in a European cohort. PLoS One 2024; 19:e0315561. [PMID: 39680546 PMCID: PMC11649147 DOI: 10.1371/journal.pone.0315561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Mycotoxins have been hypothesized to contribute to a diversity of adverse health effects in humans, even at low concentrations. Certain mycotoxins are established human carcinogens, whereas for others research suggests potential carcinogenic effects. The aim of this study was to determine the association between dietary exposure to mycotoxins and hepatobiliary cancers in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. EPIC questionnaire data were matched to mycotoxin food occurrence data compiled by the European Food Safety Authority to assess long-term dietary mycotoxin exposure (expressed as μg/kg body weight/day) and then relate them to the risk of hepatocellular carcinoma (HCC) (n = 255) and biliary tract cancers (n = 273). Analyses were conducted using multivariable Cox proportional hazards regression models to compute hazard ratios (HR) and 95% confidence intervals (95% CI). Key food groups contributing to mycotoxin exposure were cereals and cereal-based products, vegetables, non-alcoholic beverages (including fruit juices) and fruits. Estimated intake of deoxynivalenol (DON) and its derivatives was positively associated with HCC risk (HRT3vsT1: 1.90, 95% CI: 1.18-3.05, p-trend <0.01). No statistically significant associations were found for the other mycotoxins. Further research to confirm our observations and investigate potential underlying mechanisms of these compounds is warranted. These data may provide evidence of HCC risks associated with higher dietary intake levels of DON, which has not yet been classified as a human carcinogen.
Collapse
|
research-article |
1 |
|
25
|
Sergent F, Vaiman D, Raia‐Barjat T, Younes H, Marquette C, Desseux M, Nahed RA, Kieu T, Dung NV, Keck M, Hoffmann P, Murthi P, Benharouga M, Alfaidy N. Antagonisation of Prokineticin Receptor-2 Attenuates Preeclampsia Symptoms. J Cell Mol Med 2025; 29:e70346. [PMID: 39817714 PMCID: PMC11736873 DOI: 10.1111/jcmm.70346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
Preeclampsia (PE) is the most threatening pathology of human pregnancy. Placenta from PE patients releases harmful factors that contribute to the exacerbation of the disease. Among these factors is the prokineticin1 (PROK1) and its receptor, PROKR2 that we identified as a mediators of PE. Here we tested the effects of PKRA, an antagonist of PROKR2, on the attenuation of PE symptoms. We used the genetic PE mouse model, STOX1 that overexpresses Stox1 gene in a heterozygosis manner in the placenta. This model allowed exploiting two genotypes of the offspring, those that overexpress the Stox1 gene, and the WT that grow in a PE environment (STE). We characterised the effect PKRA (1 μM) on the attenuation of PE symptoms and compared its effects on STOX1 and STE placentas. We also used STOX1 overexpressing trophoblast cells to decipher the PROK1-underlying mechanism. We demonstrated that (i) antagonisation of PROKR2 attenuated PE-mediated hypertension and proteinuria, (ii) STE placentas and foetuses exhibited better outcomes in response to PKRA, (iii) the secretome of STOX1-trophoblasts impacted the integrity of the fetal vasculature that was attenuated by PKRA treatment. This study demonstrates the direct involvement of the PROK1 in PE and identifies PKRA as a promising therapy for PE.
Collapse
|
research-article |
1 |
|