1
|
Liu L, Pang J, Qin D, Li R, Zou D, Chi K, Wu W, Rui H, Yu H, Zhu W, Liu K, Wu X, Wang J, Xu P, Song X, Cao Y, Wang J, Xu F, Xue L, Chen Y. Deubiquitinase OTUD5 as a Novel Protector against 4-HNE-Triggered Ferroptosis in Myocardial Ischemia/Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301852. [PMID: 37552043 PMCID: PMC10558642 DOI: 10.1002/advs.202301852] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Despite the development of advanced technologies for interventional coronary reperfusion after myocardial infarction, a substantial number of patients experience high mortality due to myocardial ischemia-reperfusion (MI/R) injury. An in-depth understanding of the mechanisms underlying MI/R injury can provide crucial strategies for mitigating myocardial damage and improving patient survival. Here, it is discovered that the 4-hydroxy-2-nonenal (4-HNE) accumulates during MI/R, accompanied by high rates of myocardial ferroptosis. The loss-of-function of aldehyde dehydrogenase 2 (ALDH2), which dissipates 4-HNE, aggravates myocardial ferroptosis, whereas the activation of ALDH2 mitigates ferroptosis. Mechanistically, 4-HNE targets glutathione peroxidase 4 (GPX4) for K48-linked polyubiquitin-related degradation, which 4-HNE-GPX4 axis commits to myocyte ferroptosis and forms a positive feedback circuit. 4-HNE blocks the interaction between GPX4 and ovarian tumor (OTU) deubiquitinase 5 (OTUD5) by directly carbonylating their cysteine residues at C93 of GPX4 and C247 of OTUD5, identifying OTUD5 as the novel deubiquitinase for GPX4. Consequently, the elevation of OTUD5 deubiquitinates and stabilizes GPX4 to reverse 4-HNE-induced ferroptosis and alleviate MI/R injury. The data unravel the mechanism of 4-HNE in GPX4-dependent ferroptosis and identify OTUD5 as a novel therapeutic target for the treatment of MI/R injury.
Collapse
|
research-article |
2 |
35 |
2
|
Feng Y, Jin C, Lv S, Zhang H, Ren F, Wang J. Molecular Mechanisms and Applications of Polyphenol-Protein Complexes with Antioxidant Properties: A Review. Antioxidants (Basel) 2023; 12:1577. [PMID: 37627572 PMCID: PMC10451665 DOI: 10.3390/antiox12081577] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins have been extensively studied for their outstanding functional properties, while polyphenols have been shown to possess biological activities such as antioxidant properties. There is increasing clarity about the enhanced functional properties as well as the potential application prospects for the polyphenol-protein complexes with antioxidant properties. It is both a means of protein modification to provide enhanced antioxidant capacity and a way to deliver or protect polyphenols from degradation. This review shows that polyphenol-protein complexes could be formed via non-covalent or covalent interactions. The methods to assess the complex's antioxidant capacity, including scavenging free radicals and preventing lipid peroxidation, are summarized. The combination mode, the type of protein or polyphenol, and the external conditions will be the factors affecting the antioxidant properties of the complexes. There are several food systems that can benefit from the enhanced antioxidant properties of polyphenol-protein complexes, including emulsions, gels, packaging films, and bioactive substance delivery systems. Further validation of the cellular and in vivo safety of the complexes and further expansion of the types and sources of proteins and polyphenols for forming complexes are urgently needed to be addressed. The review will provide effective information for expanding applications of proteins and polyphenols in the food industry.
Collapse
|
Review |
2 |
29 |
3
|
Liu Y, Zhang J, Li Q, Wang Z, Cui Z, Su T, Lu X, Qi Q, Hou J. Engineering Yarrowia lipolytica for the sustainable production of β-farnesene from waste oil feedstock. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:101. [PMID: 36192797 PMCID: PMC9528160 DOI: 10.1186/s13068-022-02201-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND β-Farnesene is a sesquiterpene with versatile industrial applications. The production of β-farnesene from waste lipid feedstock is an attractive method for sustainable production and recycling waste oil. Yarrowia lipolytica is an unconventional oleaginous yeast, which can use lipid feedstock and has great potential to synthesize acetyl-CoA-derived chemicals. RESULTS In this study, we engineered Y. lipolytica to produce β-farnesene from lipid feedstock. To direct the flux of acetyl-CoA, which is generated from lipid β-oxidation, to β-farnesene synthesis, the mevalonate synthesis pathway was compartmentalized into peroxisomes. β-Farnesene production was then engineered by the protein engineering of β-farnesene synthase and pathway engineering. The regulation of lipid metabolism by enhancing β-oxidation and eliminating intracellular lipid synthesis was further performed to improve the β-farnesene synthesis. As a result, the final β-farnesene production with bio-engineering reached 35.2 g/L and 31.9 g/L using oleic acid and waste cooking oil, respectively, which are the highest β-farnesene titers reported in Y. lipolytica. CONCLUSIONS This study demonstrates that engineered Y. lipolytica could realize the sustainable production of value-added acetyl-CoA-derived chemicals from waste lipid feedstock.
Collapse
|
research-article |
3 |
29 |
4
|
Pu W, Chen J, Zhou Y, Qiu H, Shi T, Zhou W, Guo X, Cai N, Tan Z, Liu J, Feng J, Wang Y, Zheng P, Sun J. Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:31. [PMID: 36829220 PMCID: PMC9951541 DOI: 10.1186/s13068-023-02280-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA) is a promising biostimulant, feed nutrient, and photodynamic drug with wide applications in modern agriculture and therapy. Although microbial production of 5-ALA has been improved realized by using metabolic engineering strategies during the past few years, there is still a gap between the present production level and the requirement of industrialization. RESULTS In this study, pathway, protein, and cellular engineering strategies were systematically employed to construct an industrially competitive 5-ALA producing Escherichia coli. Pathways involved in precursor supply and product degradation were regulated by gene overexpression and synthetic sRNA-based repression to channel metabolic flux to 5-ALA biosynthesis. 5-ALA synthase was rationally engineered to release the inhibition of heme and improve the catalytic activity. 5-ALA transport and antioxidant defense systems were targeted to enhance cellular tolerance to intra- and extra-cellular 5-ALA. The final engineered strain produced 30.7 g/L of 5-ALA in bioreactors with a productivity of 1.02 g/L/h and a yield of 0.532 mol/mol glucose, represent a new record of 5-ALA bioproduction. CONCLUSIONS An industrially competitive 5-ALA producing E. coli strain was constructed with the metabolic engineering strategies at multiple layers (protein, pathway, and cellular engineering), and the strategies here can be useful for developing industrial-strength strains for biomanufacturing.
Collapse
|
research-article |
2 |
14 |
5
|
Wei W, Zhang Y, Song Q, Zhang Q, Zhang X, Liu X, Wu Z, Xu X, Xu Y, Yan Y, Zhao C, Yang J. Transmissible ER stress between macrophages and tumor cells configures tumor microenvironment. Cell Mol Life Sci 2022; 79:403. [PMID: 35799071 PMCID: PMC11073001 DOI: 10.1007/s00018-022-04413-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Endoplasmic reticulum (ER) stress initiates the unfolded protein response (UPR) and is decisive for tumor cell growth and tumor microenvironment (TME) maintenance. Tumor cells persistently undergo ER stress and could transmit it to the neighboring macrophages and surroundings. Tumor infiltrating macrophages can also adapt to the microenvironment variations to fulfill their highly energy-demanding and biological functions via ER stress. However, whether the different macrophage populations differentially sense ER stress and transmit ER stress to surrounding tumor cells has not yet been elucidated. Here, we aimed to investigate the role of transmissible ER stress, a novel regulator of intercellular communication in the TME. Murine bone marrow-derived macrophage (BMDM) can be polarized toward distinct functional endpoints termed classical (M1) and alternative (M2) activation, and their polarization status has been shown to be tightly correlated with their functional significance. We showed that tumor cells could receive the transmissible ER stress from two differentially polarized macrophage populations with different extent of ER stress activation. The proinflammatory M1-like macrophages respond to ER stress with less extent, however they could transmit more ER stress to tumor cells. Moreover, by analyzing the secreted components of two ER-stressed macrophage populations, we identified certain damage-associated molecular patterns (DAMPs), including S100A8 and S100A9, which are dominantly secreted by M1-like macrophages could lead to significant recipient tumor cells death in synergy with transferred ER stress.
Collapse
|
research-article |
3 |
13 |
6
|
Zhou T, Xu Y, Zhen Y, Wu K, Ding H, Wang L, Tai X, Cai X, Zhang X, Xia T, Zhu J, Chu W, Ni Y, Xie Y, Wu C. Layered Inorganic Silicate Aerogel Pillared by Nanoclusters for High Temperature Thermal Insulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306135. [PMID: 37776317 DOI: 10.1002/adma.202306135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Layered inorganic material, with large-area interlayer surface and interface, provides an essential material platform for constructing new configuration of functional materials. Herein, a layered material pillared with nanoclusters realizing high temperature thermal insulation performance is demonstrated for the first time. Specifically, systematic synchrotron radiation spectroscopy and finite element calculation analysis show that ZrOx nanoclusters served as "pillars" to effectively produce porous structures with enough boundary defect while maintaining the layered structure, thereby significantly reducing solid state thermal conductivity (≈0.32 W m-1 K-1 , 298-573 K). Moreover, the layered inorganic silicate material assembled aerogel also exhibits superior thermal insulation performance from room temperature (0.034 W m-1 K-1 , 298 K, air conditions) to high temperature (0.187 W m-1 K-1 , 1073 K, air conditions) and largely enhanced compressive strength (42 kPa at 80% compression), which is the best layered material-based aerogel that has achieved synergistic improvement in thermal and mechanical performance so far. Layered inorganic silicate aerogel pillared by nanoclusters will pave a new avenue for the design of advanced thermal insulation materials under extreme conditions.
Collapse
|
|
2 |
6 |
7
|
Liu Y, Wang Y, Fornasiero P, Tian G, Strasser P, Yang XY. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems. Angew Chem Int Ed Engl 2024; 63:e202412087. [PMID: 39205621 DOI: 10.1002/anie.202412087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Direct electrochemical seawater splitting is a renewable, scalable, and potentially economic approach for green hydrogen production in environments where ultra-pure water is not readily available. However, issues related to low durability caused by complex ions in seawater pose great challenges for its industrialization. In this review, a mechanistic analysis of durability issues of electrolytic seawater splitting is discussed. We critically analyze the development of seawater electrolysis and identify the durability challenges at both the anode and cathode. Particular emphasis is given to elucidating rational strategies for designing electrocatalysts/electrodes/interfaces with long lifetimes in realistic seawater including inducing passivating anion layers, preferential OH-adsorption, employing anti-corrosion materials, fabricating protective layers, immobilizing Cl- on the surface of electrocatalysts, tailoring Cl- adsorption sites, inhibition of OH- binding to Mg2+ and Ca2+, inhibition of Mg and Ca hydroxide precipitation adherence, and co-electrosynthesis of nano-sized Mg hydroxides. Synthesis methods of electrocatalysts/electrodes and innovations in electrolyzer are also discussed. Furthermore, the prospects for developing seawater splitting technologies for clean hydrogen generation are summarized. We found that researchers have rethought the role of Cl- ions, as well as more attention to cathodic reaction and electrolyzers, which is conducive to accelerate the commercialization of seawater electrolysis.
Collapse
|
Review |
1 |
4 |
8
|
Sun H, Du Y, Yao M, Wang Q, Ji K, Du L, Xu C, He N, Wang J, Zhang M, Liu Y, Wang Y, Wen K, Liu Q. cIAP1/2 are involved in the radiosensitizing effect of birinapant on NSCLC cell line in vitro. J Cell Mol Med 2021; 25:6125-6136. [PMID: 33939305 PMCID: PMC8366455 DOI: 10.1111/jcmm.16526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Tumour radioresistance is a major problem for cancer radiation therapy. To identify the underlying mechanisms of this resistance, we used human non-small cell lung cancer (NSCLC) cell lines and focused on the Inhibitor of Apoptosis Protein (IAP) family, which contributes to tumourigenesis and chemoresistance. We investigated the possible correlation between radioresistance in six NSCLC cell lines and IAP protein levels and tested the radiosensitizing effect of birinapant in vitro, a molecule that mimics the second mitochondria-derived activator of caspase. We found that birinapant-induced apoptosis and inhibited the proliferation of NSCLC cells after exposure to radiation. These effects were induced by birinapant downregulation of cIAP protein levels and changes of cIAP gene expression. Overall, birinapant can inhibit tumour growth of NSCLC cell lines to ironizing radiation and act as a promising strategy to overcome radioresistance in NSCLC.
Collapse
|
research-article |
4 |
2 |
9
|
He C, Zhang H, Chen X, Diao R, Sun J, Mao X. Novel reaction systems for catalytic synthesis of structured phospholipids. Appl Microbiol Biotechnol 2024; 108:1. [PMID: 38153551 DOI: 10.1007/s00253-023-12913-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 12/29/2023]
Abstract
Phospholipids are distinctive, adaptable molecules that are crucial to numerous biological systems. Additionally, their various architectures and amphiphilic characteristics support their unrivaled crucial functions in scientific and industrial applications. Due to their enormous potential for use in the fields of medicine, food, cosmetics, and health, structured phospholipids, which are modified phospholipids, have garnered increased attention. Traditional extraction methods, however, are pricy, resource-intensive, and low-yielding. The process of enzyme-catalyzed conversion is effective for producing several types of structured phospholipase. However, most frequently employed catalytic procedures involve biphasic systems with organic solvents, which have a relatively large mass transfer resistance and are susceptible to solvent residues and environmental effects due to the hydrophobic nature of phospholipids. Therefore, the adoption of innovative, successful, and environmentally friendly enzyme-catalyzed conversion systems provides a new development route in the field of structured phospholipids processing. Several innovative catalytic reaction systems are discussed in this mini-review, including aqueous-solid system, mixed micelle system, water-in-oil microemulsion system, Pickering emulsion system, novel solvent system, three-liquid-phase system, and supercritical carbon dioxide solvent system. However, there is still a glaring need for a thorough examination of these systems for the enzymatic synthesis of structural phospholipids. In terms of the materials utilized, applicability, benefits and drawbacks, and comparative effectiveness of each system, this research establishes further conditions for the system's selection. To create more effective biocatalytic processes, it is still important to build green biocatalytic processes with improved performance. KEY POINTS: • The latest catalytic systems of phospholipase D are thoroughly summarized. • The various systems are contrasted, and their traits are enumerated. • Different catalytic systems' areas of applicability and limitations are discussed.
Collapse
|
Review |
1 |
2 |
10
|
Zhao X, Zheng W, Ma Y, Hou Y, Zhu Y, Zheng J, Wang Q, Pan C, Zhang J, Wang C, Bian Y, Liu R, Cheng K, Ma J, Ong MEH, Xu F, Chen Y. Epidemiology, Process of Care, and Associated Outcomes of Pediatric Out-of-Hospital Cardiac Arrest in China: Results From a Prospective, Multicenter, Population-Based Registry. Crit Care Med 2024; 52:e604-e615. [PMID: 39637269 DOI: 10.1097/ccm.0000000000006436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
OBJECTIVES To comprehensively describe the incidence, process of care, outcomes, and variation among different age groups of pediatric out-of-hospital cardiac arrest (OHCA) in China. DESIGN The Baseline Investigation of Out-of-Hospital Cardiac Arrest (BASIC-OHCA) is a prospective, multicenter, population-based registry of emergency medical services (EMS)-assessed OHCA in China. SETTING A total of 25 monitoring sites of all seven geographical regions were included, covering a pediatric population (age ≤ 19) of around 22.3 million in China. PATIENTS Pediatric patients enrolled in BASIC-OHCA from August 2019 to December 2020 were included. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A total of 1493 pediatric patients with EMS-assessed OHCA were enrolled, and resuscitation was attempted in 651 cases (43.6%). The crude incidence of EMS-assessed and EMS-treated OHCA was 5.5 (95% CI, 5.2-5.9) and 2.4 (95% CI, 2.2-2.6) per 100,000 pediatric population. Among 651 EMS-treated OHCA cases, 434 patients (66.7%) were male, and 353 (54.2%) had nonmedical causes (trauma, asphyxia, and drowning being the most common). There were 396 patients (60.8%) who collapsed at home, and the proportion of cases that occurred in public places such as streets and schools increased with age. There were 26 patients (4.0%) who had an initial shockable rhythm. For 626 non-EMS-witnessed patients, 152 patients (24.3%) received bystander cardiopulmonary resuscitation (CPR), 68 (10.9%) received dispatcher-assisted CPR, and 3 (0.5%) had automated external defibrillator applied. The survival to discharge or 30 days was 3.5% (23/651), and the favorable neurologic prognosis was 3.1% (20/651), with no differences among age groups. CONCLUSIONS This study provides the first national exploration of pediatric OHCA in China. The high proportion of nonmedical causes underscores the importance of preventing accidents in children. Gaps in the chain of survival and patient outcomes provide a focus for improving the treatment of pediatric OHCA in China and other developing countries.
Collapse
|
Multicenter Study |
1 |
2 |
11
|
Wang X, Li L, Sun B, Hou X, Song S, Shi C, Chen W. Piezo1-ERK1/2-YAP Signaling Cascade Regulates the Proliferation of Urine-derived Stem Cells on Collagen Gels. Curr Stem Cell Res Ther 2024; 19:103-115. [PMID: 36999714 DOI: 10.2174/1574888x18666230331123540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Urine-derived stem cells (USCs) were considered to be an ideal source of stem cells for repairing urological diseases. However, the proliferative ability of USCs significantly decreased when cultured on plastic dishes, which limited their clinical application. It was found that collagen gels could promote the proliferation of USCs, but the underlying molecular mechanisms were unclear. OBJECTIVE The study aims to investigate the role of the mechanically activated cation channel Piezo1 and the transcriptional coactivator YAP in the regulation of proliferation of USCs on collagen gels. METHODS USCs were cultured on collagen gels (group COL), or plastic dishes (group NON). MTT assay, Scratch assay, EDU staining, and immunofluorescence (IF) of Ki67 were performed to evaluate the proliferation of USCs; IF of YAP was conducted to observe its nuclear localization; calcium imaging experiment was executed to evaluate the function of Piezo1; western blot was used to compare changes in protein expression of YAP, LATS1, ERK1/2, and p-ERK1/2. In addition, the regulatory effect of YAP on the proliferative capacity of USCs was confirmed by intervening YAP with its inhibitor verteporfin (VP); and the inhibitor or activator of Piezo1, GsMTx4 or Yoda1 was used to explore the effect of Piezo1 on the nuclear localization of YAP, the proliferation of USCs and the regeneration of injured bladder. RESULTS The results showed that cell proliferation was significantly enhanced in USCs in the COL group with the nuclear accumulation of YAP compared with the NON group and VP attenuated these effects. The expression and function of Piezo1 were higher in the COL group compared with the NON group. Blockage of Piezo1 by GsMTx4 decreased nuclear localization of YAP, the proliferation of USCs, and caused the failure of bladder reconstruction. Activation of Piezo1 by Yoda1 increased the nuclear expression of YAP, and the proliferation of USCs, which further improved the regeneration of the injured bladder. Finally, the ERK1/2 rather than LATS1 was revealed to participate in the Piezo1/YAP signal cascades of USCs proliferation. CONCLUSION Taken together, Piezo1-ERK1/2-YAP signal cascades were involved in regulating the proliferation ability of USCs in collagen gels which would be beneficial for the regeneration of the bladder.
Collapse
|
|
1 |
1 |
12
|
Gong M, Liu L, Li F, Chen J. Grape Seed Proanthocyanidin Extract Improves Growth Performance and Protects Against Hydrogen Peroxide-Induced Oxidative Stress to the Liver and Intestine in Weaned Hyla Rabbits. Animals (Basel) 2025; 15:327. [PMID: 39943097 PMCID: PMC11816076 DOI: 10.3390/ani15030327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Three experiments were conducted to investigate the effects of grape seed proanthocyanidin extract (GSPE) on the growth performance of weaned Hyla rabbits and explore its protective effects against oxidative stress in the liver and intestine by establishing a hydrogen peroxide (H2O2)-induced oxidative stress model. In Exp.1, ninety-six weaned rabbits were used to evaluate the effects of dietary GSPE level on growth performance, and the results showed that a 400 mg/kg GSPE addition increased the feed conversion ratio and liver coefficient and promoted cholesterol metabolism. Exp.2 was conducted to explore the H2O2 concentration required to establish an oxidative stress model, indicating that the model could be established by an intraperitoneal injection of 10% H2O2 at a dosage of 1 mL/kg body weight. In Exp.3, seventy-two weaned rabbits were used to investigate the protective effects against H2O2-induced oxidative stress in the liver and intestine. Our findings showed that 400 mg/kg GSPE supplementation could alleviate the adverse effects of H2O2 injection on the antioxidant capacity in the liver and intestine as well as liver morphology. Therefore, an addition of 400 mg/kg GSPE could improve growth performance and alleviate H2O2-induced adverse effects on the liver and small intestine by enhancing the antioxidative capacity in weaned Hyla rabbits.
Collapse
|
research-article |
1 |
1 |
13
|
Chen Z, Shi Y, Wang D, Liu X, Jiao X, Gao X, Jiang K. Structural insight into Bacillus thuringiensis Sip1Ab reveals its similarity to ETX_MTX2 family beta-pore-forming toxin. PEST MANAGEMENT SCIENCE 2023; 79:4264-4273. [PMID: 37341620 DOI: 10.1002/ps.7622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Microbially derived, protein-based biopesticides are an important approach for sustainable pest management. The secreted insecticidal proteins (Sips) produced by the bacterium Bacillus thuringiensis exhibit potent insecticidal activity against coleopteran pests and are, therefore, attractive as candidate biopesticides. However, the modes-of-action of Sips are unclear as comprehensive structural information for these proteins is lacking. RESULTS Using X-ray crystallography, we elucidated the structure of monomeric Sip1Ab at 2.28 Å resolution. Structural analyses revealed that Sip1Ab has the three domains and conserved fold characteristic of other aerolysin-like beta-pore-forming toxins (β-PFTs). Based on the sequence and structural similarities between Sip1Ab and other ETX_MTX2 subfamily toxins, we suggested the mechanism of these proteins and proposed that it is common to them all. CONCLUSION The atomic-level structural data for Sip1Ab generated by the present study could facilitate future structural and mechanistic research on Sips as well as their application in sustainable insect pest management. © 2023 Society of Chemical Industry.
Collapse
|
|
2 |
|
14
|
Zheng J, Zhang W, Xu Y, Cui A, Jiang Y, Wang B. Insulin-like growth factor binding protein-3 (igfbp-3) and igfbp-5 in yellowtail kingfish (Seriola lalandi): molecular characterization and expression levels under different nutritional status and stocking density. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1621-1633. [PMID: 38758504 DOI: 10.1007/s10695-024-01359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) play important roles in regulating growth and development by binding to IGF, where IGFBP-3 and IGFBP-5 are the main binding carriers of IGF in the circulation system. In the present study, the gene sequences of igfbp-3, igfbp-5a, and igfbp-5b were cloned from the liver of yellowtail kingfish (Seriola lalandi). The ORF sequences of igfbp-3, igfbp-5a, and igfbp-5b were 888, 801, and 804 bp in length, which encoded 295, 266, and 267 amino acids, respectively. The above three genes were widely expressed in yellowtail kingfish tissues, with igfbp-3 being the most highly expressed in the heart, brain, and gonads, while igfbp-5a and igfbp-5b were both most highly expressed in the liver and kidney. The expression levels of igfbp-3, igfbp-5a, and igfbp-5b were detected throughout the embryonic and larval stages, suggesting their roles in early development and growth regulation of yellowtail kingfish. Besides, igfbp-3 and igfbp-5a were significantly up-regulated in the liver under food deprivation and high-density rearing conditions, which was exactly opposite to the growth performance of yellowtail kingfish, implying that they may serve as biomarkers of adverse culture conditions. Overall, the above results initially identified the molecular characteristics of igfbp-3/-5a/-5b in yellowtail kingfish and implied that they might play important roles in the growth and development, providing a basis for further research on underlying regulatory mechanisms.
Collapse
|
|
1 |
|
15
|
Li J, Shao M, Liu H, Guo P, Liu F, Ma M, Li Q. Lithium Coupled with C6-Carboxyl Improves the Efficacy of Oligoguluronate in DSS-Induced Ulcerative Colitis in C57BL/6J Mice. Mar Drugs 2024; 22:573. [PMID: 39728147 DOI: 10.3390/md22120573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Oligoguluronate lithium (OGLi) was prepared for the purpose of enhancing the anti-ulcerative colitis (UC) activities of OG, in which lithium (Li+) is coupled with the C6-carboxyl of G residue. The therapeutic effects of OGLi on dextran sulfate (DSS)-induced UC mice were investigated, and oligoguluronate sodium (OGNa) and lithium carbonate (LC) were used as contrasts. The effects of OGLi, OGNa and LC on the treatment of UC mice were studied by monitoring body weight change and evaluating colon length, the disease activity index (DAI), histopathological examination and gut microbiota regulation. The results showed that compared with OGNa and LC, OGLi significantly reduced the clinical symptoms and histopathological changes associated with UC in the acute model. It was worth noting that OGLi significantly changed the gut microbiota characteristics of the DSS-treated mice and corrected the typical dysbacteriosis of DSS-induced UC. This intervention resulted in increasing the abundance of norank_f_Muribaculaceae and Ileibacterium spp. while reducing the levels of Escherichia-Shigella spp. and Romboutsia spp. The OGLi could significantly increase the diversity of intestinal microorganisms in the short term. All of these discoveries demonstrate that lithium collaboratively enhances the anti-UC efficacy of OG, which will help to create OG-based drugs for the treatment of UC.
Collapse
|
|
1 |
|
16
|
Zeng S, Kong Q, Wu X, Ma T, Wang L, Xu L, Kou G, Zhang M, Yang X, Zuo X, Li Y, Li Y. Artificial Intelligence-Generated Patient Education Materials for Helicobacter pylori Infection: A Comparative Analysis. Helicobacter 2024; 29:e13115. [PMID: 39097925 DOI: 10.1111/hel.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Patient education contributes to improve public awareness of Helicobacter pylori. Large language models (LLMs) offer opportunities to revolutionize patient education transformatively. This study aimed to assess the quality of patient educational materials (PEMs) generated by LLMs and compared with physician sourced. MATERIALS AND METHODS Unified instruction about composing a PEM about H. pylori at a sixth-grade reading level in both English and Chinese were given to physician and five LLMs (Bing Copilot, Claude 3 Opus, Gemini Pro, ChatGPT-4, and ERNIE Bot 4.0). The assessments of the completeness and comprehensibility of the Chinese PEMs were conducted by five gastroenterologists and 50 patients according to three-point Likert scale. Gastroenterologists were asked to evaluate both English and Chinese PEMs and determine the accuracy and safety. The accuracy was assessed by six-point Likert scale. The minimum acceptable scores were 4, 2, and 2 for accuracy, completeness, and comprehensibility, respectively. The Flesch-Kincaid and Simple Measure of Gobbledygook scoring systems were employed as readability assessment tools. RESULTS Accuracy and comprehensibility were acceptable for English PEMs of all sources, while completence was not satisfactory. Physician-sourced PEM had the highest accuracy mean score of 5.60 and LLM-generated English PEMs ranged from 4.00 to 5.40. The completeness score was comparable between physician-sourced PEM and LLM-generated PEMs in English. Chinese PEMs from LLMs proned to have lower score in accuracy and completeness assessment than English PEMs. The mean score for completeness of five LLM-generated Chinese PEMs was 1.82-2.70 in patients' perspective, which was higher than gastroenterologists' assessment. Comprehensibility was satisfactory for all PEMs. No PEM met the recommended sixth-grade reading level. CONCLUSION LLMs have potential in assisting patient education. The accuracy and comprehensibility of LLM-generated PEMs were acceptable, but further optimization on improving completeness and accounting for a variety of linguistic contexts are essential for enhancing the feasibility.
Collapse
|
Comparative Study |
1 |
|
17
|
Wang F, Miao H, Zhang S, Hu X, Li C, Yang W, Chen J. Identification of a New Major Oil Content QTL Overlapped with FAD2B in Cultivated Peanut ( Arachis hypogaea L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:615. [PMID: 40006875 PMCID: PMC11859173 DOI: 10.3390/plants14040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
High oil content in peanut seeds is a key breeding objective for peanut (Arachis hypogaea L.) quality improvement. In order to explore the genetic basis of oil content in peanuts, a recombinant inbred line (RIL) population consisting of 256 lines was phenotyped across six environments. Continuous distribution and transgressive segregation for both oil content and oleic acid content were demonstrated across all environments. Quantitative trait locus (QTL) analysis yielded 15 additive QTLs explaining 4.34 to 23.10% of phenotypic variations. A novel stable and major QTL region conditioning oil content (qOCB09.1) was mapped to chromosome B09, spanning a 1.99 Mb genomic region with 153 putative genes, including the oleic acid gene FAD2B, which may influence the oil content. Candidate genes were identified and diagnostic markers for this region were developed for further investigation. Additionally, 18 pairs of epistatic interactions involving 35 loci were identified to affect the oil content, explaining 1.25 to 1.84% of phenotypic variations. These findings provide valuable insights for further map-based cloning of favorable alleles for oil content in peanuts.
Collapse
|
research-article |
1 |
|
18
|
Lu J, Ji S, Ma L, Wang Y, Wang Y, Yue J, Han R. Iron Level in Pregnant Rats is Associated with Caries Susceptibility in Offsprings. Biol Trace Elem Res 2025; 203:2752-2759. [PMID: 39331325 DOI: 10.1007/s12011-024-04375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Iron deficiency anemia (IDA) is a prevalent issue in pregnant women and children. However, the causal relationship between IDA in pregnancy and caries susceptivity in offspring remains unclear. This study aimed to explore the role of iron level during pregnancy on caries susceptivity of offsprings. Here, low-iron (LI) and high-iron (HI) models were established in maternal rats, and iron-related characteristics were examined in maternal rats and their offsprings. After induction of caries in rat offsprings, the carious lesions were evaluated by the Keyes scores, and microstructural damages in molars were observed by scanning electron microscopy. The results showed that LI in maternal rats induced IDA in rat offsprings, and HI only increased serum ferritin in offsprings. LI and HI in maternal rats had no effect on the morphological structure of salivary glands in rat offsprings. After inducing caries, rat offsprings in the LI group exhibited significant increase in enamel lesions at the smooth surface, and on enamel, slight dentinal, and moderate dentinal lesions at the sulcal surface. Only enamel lesions at the sulcal surface were significantly weakened in the HI group. Additionally, visible enamel damages were observed in the LI group. To sum up, iron deficiency during pregnancy enhances caries susceptibility in rat offsprings.
Collapse
|
|
1 |
|
19
|
Wang J, Sun H, Peng Z, Wang SQ, Yan YQ, Luo WC, Yang RG, Bei WC, Sun LH, Yang JC. Hydroxy-Selenomethionine Supplementation During Gestation and Lactation Improve Reproduction of Sows by Enhancing the Antioxidant Capacity and Immunity Under Heat Stress Conditions. Antioxidants (Basel) 2025; 14:525. [PMID: 40427408 PMCID: PMC12108442 DOI: 10.3390/antiox14050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/05/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
The objective of this study was to determine whether hydroxy-selenomethionine (OH-SeMet) exerts better protective effects on sows against heat stress than sodium selenite (SeNa) or seleno-yeast (SeY). A total of 60 sows (Landrace × Yorkshire) were randomly allocated into the three groups and fed a base diet supplemented with SeNa, SeY, or OH-SeMet at 0.3 mg Se/kg under a heat stress condition for a reproductive cycle. Compared to SeNa or SeY, OH-SeMet could more effectively sustain offspring growth performance, as evidenced by an increased number of live-born piglets, higher litter weight at day 21, and greater litter body weight gain from days 1 to 21. OH-SeMet was more effective in supporting endogenous redox systems, as shown by enhanced levels of TXNRD and GSH and reduced levels of GSSG in the serum of sows, improved T-AOC, TXNRD, and GSH alongside decreased MDA and GSSG in the serum of piglets, and heightened T-AOC in the jejunum of piglets. Furthermore, among the two tested organic Se sources, OH-SeMet was more effective than SeY in regulating immune responses compared to SeNa. OH-SeMet reduced inflammation-related markers CRP, HP, MAP, LPS, IL-1β, IL-6, and TNF-α, some or all of which were reduced in the serum of sows and their offspring. In addition, OH-SeMet also showed reduced glucose, TG, and NEFA levels, along with elevated insulin levels in the serum of sows. Correspondingly, among the two organic forms of Se, particularly those sows fed OH-SeMet showed better gut protection for the sows' offspring, as indicated by a reduced crypt depth and increased villus height/crypt depth ratio in the duodenum, jejunum, and ileum than those fed SeNa. Specifically, compared to SeNa or SeY, OH-SeMet upregulated the expression of selenoproteins (GPX6, TXNRD3, GPX4, and SELENON), the tight junction protein (ZO-1), and host defense peptide gene (pBD1, pBD2, pBD3, NPG3, NPG4), along with downregulating levels of inflammation factor (IL-1β, IL-6 and TNF-α) and pro-apoptotic factor (P53) in the jejunum of piglets. Taken together, OH-SeMet more effectively mitigated the adverse effects induced by heat stress in sows and their offspring.
Collapse
|
research-article |
1 |
|
20
|
Xu J, Jiang X, Yin X, Zhao X, Chen N, Pan L, Fu C, Jiao Y, Ma J, Yuan M, Chi X. Genome-wide association analysis in peanut accessions uncovers the genetic basis regulating oil and fatty acid variation. BMC PLANT BIOLOGY 2025; 25:651. [PMID: 40380082 PMCID: PMC12082984 DOI: 10.1186/s12870-025-06690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND The cultivated peanut, Arachis hypogaea L., is a critical oil and food crop worldwide. Improving seed oil quality in peanut has long been an aim of breeders. However, our knowledge of the genetic basis of selecting for seed nutritional traits is limited. Based on AhFAD2A and AhFAD2B, scientists have now developed higher oleic acid (80-84%) in peanut. Decoding the genetic makeup behind natural variation in kernel oil and fatty acid concentrations is crucial for molecular breeding-based nutrient quantity and quality manipulation. RESULTS Herein, we recognized 87 quantitative trait loci (QTLs) in 45 genomic regions for the concentrations of oil, oleic acid, and linoleic acid, as well as the oleic acid to linoleic acid (O/L) ratio via a genome-wide association study (GWAS) involving 499 peanut accessions. Eight QTLs explained more than 15% of the phenotypic variation in peanut accessions. Among the 45 potential genes significantly related to the four traits, only three genes displayed annotation to the fatty acid pathway. Furthermore, on the basis of pleiotropism or linkage data belonging to the identified singular QTLs, we generated a trait-locus axis to better elucidate the genetic background behind the observed oil and fatty acid concentration association. Expression analysis indicated that arahy.AV6GAN and arahy.NNA8KD have higher expressions in the seeds. CONCLUSION This natural population consisting of 499 peanut accessions combined with high-density SNPs will provide a better choice for identifying peanut QTLs/genes in the future. Together, our results provide strong evidence for the genetic mechanism behind oil biosynthesis in peanut, facilitating future advances in multiple fatty acid component generation via pyramiding of desirable QTLs.
Collapse
Grants
- ZR2021QC172, ZR2023QC146 Natural Science Foundation of Shangdong Province
- ZR2021QC172, ZR2023QC146 Natural Science Foundation of Shangdong Province
- 2024LZGC035 Key R&D Program of Shandong Province
- KF2024007 Open Project of Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, P. R. China
- CXGC2023F20, CXGC2024F20, CXGC2024G20 the innovation Project of SAAS
- CXGC2023F20, CXGC2024F20, CXGC2024G20 the innovation Project of SAAS
- tstp20240523, tsqn202312292 Taishan Scholars Program
- tstp20240523, tsqn202312292 Taishan Scholars Program
- 2022E10012 Open Project of Key Laboratory of Digital Upland Crops of Zhejiang Province
- 2018GNC110036, 2022TZXD0031 Key research and development plan of Shandong Province
- 2018GNC110036, 2022TZXD0031 Key research and development plan of Shandong Province
- 2022A02008-3 Major scientific and technological project in Xinjiang
- CARS-13 China Agriculture Research System of MOF and MARA
- Key R&D Program of Shandong Province
Collapse
|
research-article |
1 |
|
21
|
Meng X, Song Y, Chen S, Li D, Sun L, Gong Y. Double-Angling-Subspace Enabled Laser-Induced Fluorescence Method for Determining the Types and Mass Ratio of Marine Microplastics. SMALL METHODS 2025; 9:e2401587. [PMID: 40066474 DOI: 10.1002/smtd.202401587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/18/2025] [Indexed: 05/26/2025]
Abstract
Currently, the laser-induced fluorescence method faces challenges in reliably determining the types and mass ratios of marine microplastics due to overlapped fluorescence spectra of different microplastics. To address this issue, this paper proposes a double-angling-subspace (DAS) method to differentiate the overlapped fluorescence spectra. The key idea is to span subspaces with vectors converted by known fluorescence spectra, followed by calculating the angle between vectors and subspaces. Specifically, it is found that the angle between the vectors converted from fluorescence spectra of unknown microplastics and their projections on the subspaces, as well as the angle between these vectors and the vectors spanning the subspaces, is indicative of microplastic types. The vector of an unknown microplastic belongs to the subspace spanned by the vectors converted by the known microplastics, and the mass ratios of unknown samples can be determined by analyzing the linear correlation between the vectors of both unknown and known microplastics. The reliability of the proposed DAS method is validated with real marine microplastic samples.
Collapse
|
|
1 |
|
22
|
Zhang W, Jiang Z, Chi J, Sun H, Li H, Liu W, Han B. A Novel Porous Butyryl Chitin-Animal Derived Hydroxyapatite Composite Scaffold for Cranial Bone Defect Repair. Int J Mol Sci 2023; 24:ijms24108519. [PMID: 37239867 DOI: 10.3390/ijms24108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Bone defects, a common orthopedic problem in clinical practice, are a serious threat to human health. As alternative materials to autologous bone grafts, synthetic cell-free functionalized scaffolds have been the focus of recent research in designing scaffolds for bone tissue engineering. Butyryl chitin (BC) is a derivative of chitin (CT) with improved solubility. It has good biocompatibility, but few studies have investigated its use in bone repair. In this study, BC was successfully synthesized with a degree of substitution of 2.1. BC films were prepared using the cast film method and showed strong tensile strength (47.8 ± 4.54 N) and hydrophobicity (86.4 ± 2.46°), which was favorable for mineral deposition. An in vitro cytological assay confirmed the excellent cell attachment and cytocompatibility of the BC film; meanwhile, in vivo degradation indicated the good biocompatibility of BC. Hydroxyapatite (HA), extracted from bovine cancellous bone, had good cytocompatibility and osteogenic induction activity for the mouse osteoblast cell line MC3T3-E1. With the aim of combining the advantages of BC and HA, a BC-HA composite scaffold, with a good pore structure and mechanical strength, was prepared by physical mixing. Administered into skull defects of rats, the scaffolds showed perfect bone-binding performance and effective structural support, and significantly promoted the regeneration of new bone. These results prove that the BC-HA porous scaffold is a successful bone tissue engineering scaffold and has strong potential to be further developed as a substitute for bone transplantation.
Collapse
|
|
2 |
|
23
|
Zhang Z, Li F, Zhang Z, Muhmood A, Li S, Liu M, Zhou S, Du Z, Ruan C, Sun J. Microcapsule Techniques to Emphasize Functional Plant Oil Quality and Their Applications in the Food Industry: A Review. Foods 2025; 14:677. [PMID: 40002120 PMCID: PMC11854101 DOI: 10.3390/foods14040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Natural functional plant oils (FPOs) have been widely exploited due to their abundant biological activities. However, when exposed to oxygen, light, moisture, and heat, some limitations such as oxidative deterioration, impaired flavor, loss of nutritional value and volatile compounds, and decreased shelf life hinder the widespread application of FPOs in the food industry. Notably, the microencapsulation technique is one of the advanced technologies, which has been used to maintain the biological and physicochemical properties of FPOs. The present review provided a comprehensive overview of the nutrient compositions and functionality of FPOs, preparation techniques for microcapsules, and applications of microencapsulated FPOs (MFPOs) in the food industry. FPOs obtained from a wide range of sources were abundant in bioactive compounds and possessed disease risk mitigation and improved human health properties. The preparation methods of microencapsulation technology included physical, chemical, and physicochemical methods, which had the ability to enhance oxidative stability, functional, shelf life, and thermostability properties of FPOs. In this context, MFPOs had been applied as a fortification in sausage, meat, bakery, and flour products. Overall, this work will provide information for academic fields and industries the further exploration of food and nutriment products.
Collapse
|
Review |
1 |
|
24
|
Liu Z, Chen C, Zhang Y, Ji F, Liu H, Du H, Guo Y, Dong X, Yang Z, Han M, Tang C, Yang K, Zhang J, Zhao K, Chen Y, Jiang X, Xu F. Legumain In Situ Engineering Promotes Efferocytosis of CAR Macrophage to Treat Cardiac Fibrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417831. [PMID: 40223483 DOI: 10.1002/adma.202417831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/13/2025] [Indexed: 04/15/2025]
Abstract
Uncontrolled and excessive cardiac fibrosis after myocardial infarction (MI) is a primary contributor to mortality by heart failure. Chimeric antigen receptor macrophage (CAR-MΦ) therapy shows great promise in cardiac fibrosis, however, the overwhelming apoptotic cells after MI results in an overburdened efferocytosis in CAR-MΦ, which compromises their antifibrotic potency. This work here reports an in situ engineered legumain (Lgmn) to elevate the cargo degradation of phagolysosome for promoting the efferocytosis of CAR-MΦs, restoring their antifibrotic capability. Specifically, with the in-house customized macrophages-targeting lipid nanoparticles, this work first creates an efferocytosis-boosted fibrosis-specific CAR-MΦs by introducing dual mRNAs that encode Lgmn, an endolysosomal cysteine protease, along with an anti-fibroblast activation protein (FAP) CAR, respectively. This data demonstrate these CAR-MΦs displayed a significantly increased phagocytic capacity as well as improved efferocytosis and enhanced antifibrotic capability. Treatment with the in situ reprogrammed CAR-MΦs in MI mice obviously reduced the infarct size and mitigated cardiac fibrosis, leading to significant restoration of cardiac function. In sum, these findings establish that promoting efferocytosis through Lgmn engineering effectively relieved the overburdened efferocytosis of CAR-MΦs, and enhanced their treatment efficacy of cardiac fibrosis with broad application in other fibrotic diseases.
Collapse
|
|
1 |
|
25
|
Hao J, Xie Y, Wei H, Yang Z, Zhang R, Ma Z, Zhang M, Du X, Yin X, Liu J, Bao B, Bi H, Guo D. Electroacupuncture Slows Experimental Myopia Progression by Improving Retinal Mitochondrial Function: A Study Based on Single-Cell RNA Sequencing. Adv Biol (Weinh) 2024; 8:e2400269. [PMID: 39404059 DOI: 10.1002/adbi.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Indexed: 12/14/2024]
Abstract
This study aimed to establish a complete atlas of retinal cells in lens-induced myopia (LIM) and electroacupuncture (EA) intervention by single-cell RNA sequencing (scRNA-seq) and to explore the potential mechanism of EA in improving experimental myopia progression in guinea pigs. scRNA-seq is used to assess changes in individual cellular gene levels in the retina of LIM- and EA-treated guinea pigs. In addition, the role of EA in slowing myopia progression by improving retinal mitochondrial function is further investigated. scRNA-seq identified ten cell clusters in the retina of LIM and EA guinea pigs and mitochondrial respiratory chain-related genes in Cones and Muller-glia cells-Cytochrome oxidase subunit III (COX3), NADH dehydrogenase subunit 4 (ND4), and NADH dehydrogenase subunit 2 (ND2) are closely related to lens-induced myopia. A comprehensive atlas in the retina of LIM and EA guinea pigs at a single-cell level is established, and the positive role of EA in improving retinal mitochondrial function to slow the experimental myopia progression in guinea pigs is revealed.
Collapse
|
|
1 |
|