Khazamipour N, Oo HZ, Al-Nakouzi N, Marzban M, Khazamipour N, Roberts ME, Farivar N, Moskalev I, Lo J, Ghaidi F, Nelepcu I, Moeen A, Truong S, Dagil R, Choudhary S, Gustavsson T, Zhai B, Heitzender S, Salanti A, Sorensen PH, Daugaard M. Transient CAR T cells with specificity to oncofetal glycosaminoglycans in solid tumors.
EMBO Mol Med 2024;
16:2775-2794. [PMID:
39406935 PMCID:
PMC11554890 DOI:
10.1038/s44321-024-00153-8]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 11/13/2024] Open
Abstract
Glycosaminoglycans are often deprioritized as targets for synthetic immunotherapy due to the complexity of glyco-epitopes and limited options for obtaining specific subtype binding. Solid tumors express proteoglycans that are modified with oncofetal chondroitin sulfate (CS), a modification normally restricted to the placenta. Here, we report the design and functionality of transient chimeric antigen receptor (CAR) T cells with selectivity to oncofetal CS. Following expression in T cells, the CAR could be "armed" with recombinant VAR2CSA lectins (rVAR2) to target tumor cells expressing oncofetal CS. While unarmed CAR T cells remained inactive in the presence of target cells, VAR2-armed CAR T cells displayed robust activation and the ability to eliminate diverse tumor cell types in vitro. Cytotoxicity of the CAR T cells was proportional to the concentration of rVAR2 available to the CAR, offering a potential molecular handle to finetune CAR T cell activity. In vivo, armed CAR T cells rapidly targeted bladder tumors and increased the survival of tumor-bearing mice. Thus, our work indicates that cancer-restricted glycosaminoglycans may be exploited as potential targets for CAR T cell therapy.
Collapse