1
|
Ancker JS, Edwards A, Nosal S, Hauser D, Mauer E, Kaushal R. Effects of workload, work complexity, and repeated alerts on alert fatigue in a clinical decision support system. BMC Med Inform Decis Mak 2017; 17:36. [PMID: 28395667 PMCID: PMC5387195 DOI: 10.1186/s12911-017-0430-8] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Although alert fatigue is blamed for high override rates in contemporary clinical decision support systems, the concept of alert fatigue is poorly defined. We tested hypotheses arising from two possible alert fatigue mechanisms: (A) cognitive overload associated with amount of work, complexity of work, and effort distinguishing informative from uninformative alerts, and (B) desensitization from repeated exposure to the same alert over time. METHODS Retrospective cohort study using electronic health record data (both drug alerts and clinical practice reminders) from January 2010 through June 2013 from 112 ambulatory primary care clinicians. The cognitive overload hypotheses were that alert acceptance would be lower with higher workload (number of encounters, number of patients), higher work complexity (patient comorbidity, alerts per encounter), and more alerts low in informational value (repeated alerts for the same patient in the same year). The desensitization hypothesis was that, for newly deployed alerts, acceptance rates would decline after an initial peak. RESULTS On average, one-quarter of drug alerts received by a primary care clinician, and one-third of clinical reminders, were repeats for the same patient within the same year. Alert acceptance was associated with work complexity and repeated alerts, but not with the amount of work. Likelihood of reminder acceptance dropped by 30% for each additional reminder received per encounter, and by 10% for each five percentage point increase in proportion of repeated reminders. The newly deployed reminders did not show a pattern of declining response rates over time, which would have been consistent with desensitization. Interestingly, nurse practitioners were 4 times as likely to accept drug alerts as physicians. CONCLUSIONS Clinicians became less likely to accept alerts as they received more of them, particularly more repeated alerts. There was no evidence of an effect of workload per se, or of desensitization over time for a newly deployed alert. Reducing within-patient repeats may be a promising target for reducing alert overrides and alert fatigue.
Collapse
|
research-article |
8 |
343 |
2
|
Abe KT, Li Z, Samson R, Samavarchi-Tehrani P, Valcourt EJ, Wood H, Budylowski P, Dupuis AP, Girardin RC, Rathod B, Wang JH, Barrios-Rodiles M, Colwill K, McGeer AJ, Mubareka S, Gommerman JL, Durocher Y, Ostrowski M, McDonough KA, Drebot MA, Drews SJ, Rini JM, Gingras AC. A simple protein-based surrogate neutralization assay for SARS-CoV-2. JCI Insight 2020; 5:142362. [PMID: 32870820 PMCID: PMC7566699 DOI: 10.1172/jci.insight.142362] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022] Open
Abstract
Most of the patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mount a humoral immune response to the virus within a few weeks of infection, but the duration of this response and how it correlates with clinical outcomes has not been completely characterized. Of particular importance is the identification of immune correlates of infection that would support public health decision-making on treatment approaches, vaccination strategies, and convalescent plasma therapy. While ELISA-based assays to detect and quantitate antibodies to SARS-CoV-2 in patient samples have been developed, the detection of neutralizing antibodies typically requires more demanding cell-based viral assays. Here, we present a safe and efficient protein-based assay for the detection of serum and plasma antibodies that block the interaction of the SARS-CoV-2 spike protein receptor binding domain (RBD) with its receptor, angiotensin-converting enzyme 2 (ACE2). The assay serves as a surrogate neutralization assay and is performed on the same platform and in parallel with an ELISA for the detection of antibodies against the RBD, enabling a direct comparison. The results obtained with our assay correlate with those of 2 viral-based assays, a plaque reduction neutralization test (PRNT) that uses live SARS-CoV-2 virus and a spike pseudotyped viral vector-based assay.
Collapse
|
research-article |
5 |
144 |
3
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
91 |
4
|
Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, Kedziora DJ, Chadderdon GL, Kerr CC, Neymotin SA, McDougal RA, Hines M, Shepherd GMG, Lytton WW. NetPyNE, a tool for data-driven multiscale modeling of brain circuits. eLife 2019; 8:e44494. [PMID: 31025934 PMCID: PMC6534378 DOI: 10.7554/elife.44494] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
87 |
5
|
Dumyati G, Stone ND, Nace DA, Crnich CJ, Jump RLP. Challenges and Strategies for Prevention of Multidrug-Resistant Organism Transmission in Nursing Homes. Curr Infect Dis Rep 2017; 19:18. [PMID: 28382547 PMCID: PMC5382184 DOI: 10.1007/s11908-017-0576-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Nursing home residents are at high risk for colonization and infection with bacterial pathogens that are multidrug-resistant organisms (MDROs). We discuss challenges and potential solutions to support implementing effective infection prevention and control practices in nursing homes. RECENT FINDINGS Challenges include a paucity of evidence that addresses MDRO transmission during the care of nursing home residents, limited staff resources in nursing homes, insufficient infection prevention education in nursing homes, and perceptions by nursing home staff that isolation and contact precautions negatively influence the well being of their residents. A small number of studies provide evidence that specifically address these challenges. Their outcomes support a paradigm shift that moves infection prevention and control practices away from a pathogen-specific approach and toward one that focuses on resident risk factors.
Collapse
|
Review |
8 |
66 |
6
|
Lee WT, Girardin RC, Dupuis AP, Kulas KE, Payne AF, Wong SJ, Arinsburg S, Nguyen FT, Mendu DR, Firpo-Betancourt A, Jhang J, Wajnberg A, Krammer F, Cordon-Cardo C, Amler S, Montecalvo M, Hutton B, Taylor J, McDonough KA. Neutralizing Antibody Responses in COVID-19 Convalescent Sera. J Infect Dis 2021; 223:47-55. [PMID: 33104179 PMCID: PMC7665673 DOI: 10.1093/infdis/jiaa673] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration's (FDA) guidelines for convalescent plasma initially recommended target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera from recovered COVID-19 patients using plaque reduction neutralization tests (PRNT) at moderate (PRNT50) and high (PRNT90) stringency thresholds. We found that neutralizing activity significantly increased with time post symptom onset (PSO), reaching a peak at 31-35 days PSO. At this point, the number of sera having neutralizing titers of at least 160 was approximately 93% (PRNT50) and approximately 54% (PRNT90). Sera with high SARS-CoV-2 antibody levels (>960 enzyme-linked immunosorbent assay titers) showed maximal activity, but not all high-titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency. These results underscore the value of serum characterization for neutralization activity.
Collapse
|
research-article |
4 |
62 |
7
|
Kramer LD, Ciota AT, Kilpatrick AM. Introduction, Spread, and Establishment of West Nile Virus in the Americas. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1448-1455. [PMID: 31549719 PMCID: PMC7182919 DOI: 10.1093/jme/tjz151] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 05/04/2023]
Abstract
The introduction of West Nile virus (WNV) to North America in 1999 and its subsequent rapid spread across the Americas demonstrated the potential impact of arboviral introductions to new regions, and this was reinforced by the subsequent introductions of chikungunya and Zika viruses. Extensive studies of host-pathogen-vector-environment interactions over the past two decades have illuminated many aspects of the ecology and evolution of WNV and other arboviruses, including the potential for pathogen adaptation to hosts and vectors, the influence of climate, land use and host immunity on transmission ecology, and the difficulty in preventing the establishment of a zoonotic pathogen with abundant wildlife reservoirs. Here, we focus on outstanding questions concerning the introduction, spread, and establishment of WNV in the Americas, and what it can teach us about the future of arboviral introductions. Key gaps in our knowledge include the following: viral adaptation and coevolution of hosts, vectors and the virus; the mechanisms and species involved in the large-scale spatial spread of WNV; how weather modulates WNV transmission; the drivers of large-scale variation in enzootic transmission; the ecology of WNV transmission in Latin America; and the relative roles of each component of host-virus-vector interactions in spatial and temporal variation in WNV transmission. Integrative studies that examine multiple factors and mechanisms simultaneously are needed to advance our knowledge of mechanisms driving transmission.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
57 |
8
|
Somerville TDD, Biffi G, Daßler-Plenker J, Hur SK, He XY, Vance KE, Miyabayashi K, Xu Y, Maia-Silva D, Klingbeil O, Demerdash OE, Preall JB, Hollingsworth MA, Egeblad M, Tuveson DA, Vakoc CR. Squamous trans-differentiation of pancreatic cancer cells promotes stromal inflammation. eLife 2020; 9:e53381. [PMID: 32329713 PMCID: PMC7200154 DOI: 10.7554/elife.53381] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
A highly aggressive subset of pancreatic ductal adenocarcinomas undergo trans-differentiation into the squamous lineage during disease progression. Here, we investigated whether squamous trans-differentiation of human and mouse pancreatic cancer cells can influence the phenotype of non-neoplastic cells in the tumor microenvironment. Conditioned media experiments revealed that squamous pancreatic cancer cells secrete factors that recruit neutrophils and convert pancreatic stellate cells into cancer-associated fibroblasts (CAFs) that express inflammatory cytokines at high levels. We use gain- and loss-of-function approaches to show that squamous-subtype pancreatic tumor models become enriched with neutrophils and inflammatory CAFs in a p63-dependent manner. These effects occur, at least in part, through p63-mediated activation of enhancers at pro-inflammatory cytokine loci, which includes IL1A and CXCL1 as key targets. Taken together, our findings reveal enhanced tissue inflammation as a consequence of squamous trans-differentiation in pancreatic cancer, thus highlighting an instructive role of tumor cell lineage in reprogramming the stromal microenvironment.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
55 |
9
|
Cohen I, Bar C, Ezhkova E. Activity of PRC1 and Histone H2AK119 Monoubiquitination: Revising Popular Misconceptions. Bioessays 2020; 42:e1900192. [PMID: 32196702 PMCID: PMC7585675 DOI: 10.1002/bies.201900192] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/12/2020] [Indexed: 12/21/2022]
Abstract
Polycomb group proteins are evolutionary conserved chromatin-modifying complexes, essential for the regulation of developmental and cell-identity genes. Polycomb-mediated transcriptional regulation is provided by two multi-protein complexes known as Polycomb repressive complex 1 (PRC1) and 2 (PRC2). Recent studies positioned PRC1 as a foremost executer of Polycomb-mediated transcriptional control. Mammalian PRC1 complexes can form multiple sub-complexes that vary in their core and accessory subunit composition, leading to fascinating and diverse transcriptional regulatory mechanisms employed by PRC1 complexes. These mechanisms include PRC1-catalytic activity toward monoubiquitination of histone H2AK119, a well-established hallmark of PRC1 complexes, whose importance has been long debated. In this review, the central roles that PRC1-catalytic activity plays in transcriptional repression are emphasized and the recent evidence supporting a role for PRC1 complexes in gene activation is discussed.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
37 |
10
|
Juárez-Morales JL, Schulte CJ, Pezoa SA, Vallejo GK, Hilinski WC, England SJ, de Jager S, Lewis KE. Evx1 and Evx2 specify excitatory neurotransmitter fates and suppress inhibitory fates through a Pax2-independent mechanism. Neural Dev 2016; 11:5. [PMID: 26896392 PMCID: PMC4759709 DOI: 10.1186/s13064-016-0059-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/04/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND For neurons to function correctly in neuronal circuitry they must utilize appropriate neurotransmitters. However, even though neurotransmitter specificity is one of the most important and defining properties of a neuron we still do not fully understand how neurotransmitter fates are specified during development. Most neuronal properties are determined by the transcription factors that neurons express as they start to differentiate. While we know a few transcription factors that specify the neurotransmitter fates of particular neurons, there are still many spinal neurons for which the transcription factors specifying this critical phenotype are unknown. Strikingly, all of the transcription factors that have been identified so far as specifying inhibitory fates in the spinal cord act through Pax2. Even Tlx1 and Tlx3, which specify the excitatory fates of dI3 and dI5 spinal neurons work at least in part by down-regulating Pax2. METHODS In this paper we use single and double mutant zebrafish embryos to identify the spinal cord functions of Evx1 and Evx2. RESULTS We demonstrate that Evx1 and Evx2 are expressed by spinal cord V0v cells and we show that these cells develop into excitatory (glutamatergic) Commissural Ascending (CoSA) interneurons. In the absence of both Evx1 and Evx2, V0v cells still form and develop a CoSA morphology. However, they lose their excitatory fate and instead express markers of a glycinergic fate. Interestingly, they do not express Pax2, suggesting that they are acquiring their inhibitory fate through a novel Pax2-independent mechanism. CONCLUSIONS Evx1 and Evx2 are required, partially redundantly, for spinal cord V0v cells to become excitatory (glutamatergic) interneurons. These results significantly increase our understanding of the mechanisms of neuronal specification and the genetic networks involved in these processes.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
28 |
11
|
Herrera SC, Bach EA. JNK signaling triggers spermatogonial dedifferentiation during chronic stress to maintain the germline stem cell pool in the Drosophila testis. eLife 2018; 7:e36095. [PMID: 29985130 PMCID: PMC6070334 DOI: 10.7554/elife.36095] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Exhaustion of stem cells is a hallmark of aging. In the Drosophila testis, dedifferentiated germline stem cells (GSCs) derived from spermatogonia increase during lifespan, leading to the model that dedifferentiation counteracts the decline of GSCs in aged males. To test this, we blocked dedifferentiation by mis-expressing the differentiation factor bag of marbles (bam) in spermatogonia while lineage-labeling these cells. Strikingly, blocking bam-lineage dedifferentiation under normal conditions in virgin males has no impact on the GSC pool. However, in mated males or challenging conditions, inhibiting bam-lineage dedifferentiation markedly reduces the number of GSCs and their ability to proliferate and differentiate. We find that bam-lineage derived GSCs have significantly higher proliferation rates than sibling GSCs in the same testis. We determined that Jun N-terminal kinase (JNK) activity is autonomously required for bam-lineage dedifferentiation. Overall, we show that dedifferentiation provides a mechanism to maintain the germline and ensure fertility under chronically stressful conditions.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
26 |
12
|
Chun N, Haddadin AS, Liu J, Hou Y, Wong KA, Lee D, Rushbrook JI, Gulaya K, Hines R, Hollis T, Nistal Nuno B, Mangi AA, Hashim S, Pekna M, Catalfamo A, Chin HY, Patel F, Rayala S, Shevde K, Heeger PS, Zhang M. Activation of complement factor B contributes to murine and human myocardial ischemia/reperfusion injury. PLoS One 2017; 12:e0179450. [PMID: 28662037 PMCID: PMC5491012 DOI: 10.1371/journal.pone.0179450] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/29/2017] [Indexed: 12/28/2022] Open
Abstract
The pathophysiology of myocardial injury that results from cardiac ischemia and reperfusion (I/R) is incompletely understood. Experimental evidence from murine models indicates that innate immune mechanisms including complement activation via the classical and lectin pathways are crucial. Whether factor B (fB), a component of the alternative complement pathway required for amplification of complement cascade activation, participates in the pathophysiology of myocardial I/R injury has not been addressed. We induced regional myocardial I/R injury by transient coronary ligation in WT C57BL/6 mice, a manipulation that resulted in marked myocardial necrosis associated with activation of fB protein and myocardial deposition of C3 activation products. In contrast, in fB-/- mice, the same procedure resulted in significantly reduced myocardial necrosis (% ventricular tissue necrotic; fB-/- mice, 20 ± 4%; WT mice, 45 ± 3%; P < 0.05) and diminished deposition of C3 activation products in the myocardial tissue (fB-/- mice, 0 ± 0%; WT mice, 31 ± 6%; P<0.05). Reconstitution of fB-/- mice with WT serum followed by cardiac I/R restored the myocardial necrosis and activated C3 deposition in the myocardium. In translational human studies we measured levels of activated fB (Bb) in intracoronary blood samples obtained during cardio-pulmonary bypass surgery before and after aortic cross clamping (AXCL), during which global heart ischemia was induced. Intracoronary Bb increased immediately after AXCL, and the levels were directly correlated with peripheral blood levels of cardiac troponin I, an established biomarker of myocardial necrosis (Spearman coefficient = 0.465, P < 0.01). Taken together, our results support the conclusion that circulating fB is a crucial pathophysiological amplifier of I/R-induced, complement-dependent myocardial necrosis and identify fB as a potential therapeutic target for prevention of human myocardial I/R injury.
Collapse
|
research-article |
8 |
22 |
13
|
Kann AP, Krauss RS. Multiplexed RNAscope and immunofluorescence on whole-mount skeletal myofibers and their associated stem cells. Development 2019; 146:dev179259. [PMID: 31519691 PMCID: PMC6826044 DOI: 10.1242/dev.179259] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022]
Abstract
Skeletal muscle myofibers are large syncytial cells comprising hundreds of myonuclei, and in situ hybridization experiments have reported a range of transcript localization patterns within them. Although some transcripts are uniformly distributed throughout myofibers, proximity to specialized regions can affect the programming of myonuclei and functional compartmentalization of transcripts. Established techniques are limited by a lack of both sensitivity and spatial resolution, restricting the ability to identify different patterns of gene expression. In this study, we adapted RNAscope fluorescent in situ hybridization technology for use on whole-mount mouse primary myofibers, a preparation that isolates single myofibers with their associated muscle stem cells remaining in their niche. This method can be combined with immunofluorescence, enabling an unparalleled ability to visualize and quantify transcripts and proteins across the length and depth of skeletal myofibers and their associated stem cells. Using this approach, we demonstrate a range of potential uses, including the visualization of specialized transcriptional programming within myofibers, tracking activation-induced transcriptional changes, quantification of stem cell heterogeneity and evaluation of stem cell niche factor transcription patterns.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
21 |
14
|
Racine-Brzostek SE, Yang HS, Jack GA, Chen Z, Chadburn A, Ketas TJ, Francomano E, Klasse PJ, Moore JP, McDonough KA, Girardin RC, Dupuis AP, Payne AF, Ma LX, Sweeney J, Zhong E, Yee J, Cushing MM, Zhao Z. Postconvalescent SARS-CoV-2 IgG and Neutralizing Antibodies are Elevated in Individuals with Poor Metabolic Health. J Clin Endocrinol Metab 2021; 106:e2025-e2034. [PMID: 33524125 PMCID: PMC7928889 DOI: 10.1210/clinem/dgab004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Comorbidities making up metabolic syndrome (MetS), such as obesity, type 2 diabetes, and chronic cardiovascular disease can lead to increased risk of coronavirus disease-2019 (COVID-19) with a higher morbidity and mortality. SARS-CoV-2 antibodies are higher in severely or critically ill COVID-19 patients, but studies have not focused on levels in convalescent patients with MetS, which this study aimed to assess. METHODS This retrospective study focused on adult convalescent outpatients with SARS-CoV-2 positive serology during the COVID-19 pandemic at NewYork Presbyterian/Weill Cornell. Data collected for descriptive and correlative analysis included SARS-COV-2 immunoglobin G (IgG) levels and history of MetS comorbidities from April 17, 2020 to May 20, 2020. Additional data, including SARS-CoV-2 IgG levels, body mass index (BMI), hemoglobin A1c (HbA1c) and lipid levels were collected and analyzed for a second cohort from May 21, 2020 to June 21, 2020. SARS-CoV-2 neutralizing antibodies were measured in a subset of the study cohort. RESULTS SARS-CoV-2 IgG levels were significantly higher in convalescent individuals with MetS comorbidities. When adjusted for age, sex, race, and time duration from symptom onset to testing, increased SARS-CoV-2 IgG levels remained significantly associated with obesity (P < 0.0001). SARS-CoV-2 IgG levels were significantly higher in patients with HbA1c ≥6.5% compared to those with HbA1c <5.7% (P = 0.0197) and remained significant on multivariable analysis (P = 0.0104). A positive correlation was noted between BMI and antibody levels [95% confidence interval: 0.37 (0.20-0.52) P < 0.0001]. Neutralizing antibody titers were higher in COVID-19 individuals with BMI ≥ 30 (P = 0.0055). CONCLUSION Postconvalescent SARS-CoV-2 IgG and neutralizing antibodies are elevated in obese patients, and a positive correlation exists between BMI and antibody levels.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
21 |
15
|
Grmai L, Hudry B, Miguel-Aliaga I, Bach EA. Chinmo prevents transformer alternative splicing to maintain male sex identity. PLoS Genet 2018; 14:e1007203. [PMID: 29389999 PMCID: PMC5811060 DOI: 10.1371/journal.pgen.1007203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/13/2018] [Accepted: 01/16/2018] [Indexed: 01/15/2023] Open
Abstract
Reproduction in sexually dimorphic animals relies on successful gamete production, executed by the germline and aided by somatic support cells. Somatic sex identity in Drosophila is instructed by sex-specific isoforms of the DMRT1 ortholog Doublesex (Dsx). Female-specific expression of Sex-lethal (Sxl) causes alternative splicing of transformer (tra) to the female isoform traF. In turn, TraF alternatively splices dsx to the female isoform dsxF. Loss of the transcriptional repressor Chinmo in male somatic stem cells (CySCs) of the testis causes them to "feminize", resembling female somatic stem cells in the ovary. This somatic sex transformation causes a collapse of germline differentiation and male infertility. We demonstrate this feminization occurs by transcriptional and post-transcriptional regulation of traF. We find that chinmo-deficient CySCs upregulate tra mRNA as well as transcripts encoding tra-splice factors Virilizer (Vir) and Female lethal (2)d (Fl(2)d). traF splicing in chinmo-deficient CySCs leads to the production of DsxF at the expense of the male isoform DsxM, and both TraF and DsxF are required for CySC sex transformation. Surprisingly, CySC feminization upon loss of chinmo does not require Sxl but does require Vir and Fl(2)d. Consistent with this, we show that both Vir and Fl(2)d are required for tra alternative splicing in the female somatic gonad. Our work reveals the need for transcriptional regulation of tra in adult male stem cells and highlights a previously unobserved Sxl-independent mechanism of traF production in vivo. In sum, transcriptional control of the sex determination hierarchy by Chinmo is critical for sex maintenance in sexually dimorphic tissues and is vital in the preservation of fertility.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
18 |
16
|
Londhe K, Lee CS, McDonough CA, Venkatesan AK. The Need for Testing Isomer Profiles of Perfluoroalkyl Substances to Evaluate Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15207-15219. [PMID: 36314557 PMCID: PMC9670843 DOI: 10.1021/acs.est.2c05518] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Many environmentally relevant poly-/perfluoroalkyl substances (PFASs) including perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) exist in different isomeric (branched and linear) forms in the natural environment. The isomeric distribution of PFASs in the environment and source waters is largely controlled by the source of contamination and varying physicochemical properties imparted by their structural differences. For example, branched isomers of PFOS are relatively more reactive and less sorptive compared to the linear analogue. As a result, the removal of branched and linear PFASs during water treatment can vary, and thus the isomeric distribution in source waters can influence the overall efficiency of the treatment process. In this paper, we highlight the need to consider the isomeric distribution of PFASs in contaminated matrices while designing appropriate remediation strategies. We additionally summarize the known occurrence and variation in the physicochemical properties of PFAS isomers influencing their detection, fate, toxicokinetics, and treatment efficiency.
Collapse
|
Review |
3 |
18 |
17
|
Bermudez-Hernandez K, Lu YL, Moretto J, Jain S, LaFrancois JJ, Duffy AM, Scharfman HE. Hilar granule cells of the mouse dentate gyrus: effects of age, septotemporal location, strain, and selective deletion of the proapoptotic gene BAX. Brain Struct Funct 2017; 222:3147-3161. [PMID: 28314928 PMCID: PMC5601016 DOI: 10.1007/s00429-017-1391-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022]
Abstract
The dentate gyrus (DG) principal cells are glutamatergic granule cells (GCs), and they are located in a compact cell layer. However, GCs are also present in the adjacent hilar region, but have been described in only a few studies. Therefore, we used the transcription factor prospero homeobox 1 (Prox1) to quantify GCs at postnatal day (PND) 16, 30, and 60 in a common mouse strain, C57BL/6J mice. At PND16, there was a large population of Prox1-immunoreactive (ir) hilar cells, with more in the septal than temporal hippocampus. At PND30 and 60, the size of the hilar Prox1-ir cell population was reduced. Similar numbers of hilar Prox1-expressing cells were observed in PND30 and 60 Swiss Webster mice. Prox1 is usually considered to be a marker of postmitotic GCs. However, many Prox1-ir hilar cells, especially at PND16, were not double-labeled with NeuN, a marker typically found in mature neurons. Most hilar Prox1-positive cells at PND16 co-expressed doublecortin (DCX) and calretinin, markers of immature GCs. Double-labeling with a marker of actively dividing cells, Ki67, was not detected. These results suggest that, surprisingly, a large population of cells in the hilus at PND16 are immature GCs (Type 2b and Type 3 cells). We also asked whether hilar Prox1-ir cell numbers are modifiable. To examine this issue, we conditionally deleted the proapoptotic gene BAX in Nestin-expressing cells at a time when there are numerous immature GCs in the hilus, PND2-8. When these mice were examined at PND60, the numbers of Prox1-ir hilar cells were significantly increased compared to control mice. However, deletion of BAX did not appear to change the proportion that co-expressed NeuN, suggesting that the size of the hilar Prox1-expressing population is modifiable. However, deleting BAX, a major developmental disruption, does not appear to change the proportion that ultimately becomes neurons.
Collapse
|
research-article |
8 |
16 |
18
|
Khadka N, Bikson M. Neurocapillary-Modulation. Neuromodulation 2022; 25:1299-1311. [PMID: 33340187 PMCID: PMC8213863 DOI: 10.1111/ner.13338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES We consider two consequences of brain capillary ultrastructure in neuromodulation. First, blood-brain barrier (BBB) polarization as a consequence of current crossing between interstitial space and the blood. Second, interstitial current flow distortion around capillaries impacting neuronal stimulation. MATERIALS AND METHODS We developed computational models of BBB ultrastructure morphologies to first assess electric field amplification at the BBB (principle 1) and neuron polarization amplification by the presence of capillaries (principle 2). We adapt neuron cable theory to develop an analytical solution for maximum BBB polarization sensitivity. RESULTS Electrical current crosses between the brain parenchyma (interstitial space) and capillaries, producing BBB electric fields (EBBB) that are >400x of the average parenchyma electric field (ĒBRAIN), which in turn modulates transport across the BBB. Specifically, for a BBB space constant (λBBB) and wall thickness (dth-BBB), the analytical solution for maximal BBB electric field (EABBB) is given as: (ĒBRAIN × λBBB)/dth-BBB. Electrical current in the brain parenchyma is distorted around brain capillaries, amplifying neuronal polarization. Specifically, capillary ultrastructure produces ∼50% modulation of the ĒBRAIN over the ∼40 μm inter-capillary distance. The divergence of EBRAIN (Activating function) is thus ∼100 kV/m2 per unit ĒBRAIN. CONCLUSIONS BBB stimulation by principle 1 suggests novel therapeutic strategies such as boosting metabolic capacity or interstitial fluid clearance. Whereas the spatial profile of EBRAIN is traditionally assumed to depend only on macroscopic anatomy, principle 2 suggests a central role for local capillary ultrastructure-which impact forms of neuromodulation including deep brain stimulation (DBS), spinal cord stimulation (SCS), transcranial magnetic stimulation (TMS), electroconvulsive therapy (ECT), and transcranial electrical stimulation (tES)/transcranial direct current stimulation (tDCS).
Collapse
|
research-article |
3 |
15 |
19
|
Larsen DA, Collins MB, Du Q, Hill D, Insaf TZ, Kilaru P, Kmush BL, Middleton F, Stamm A, Wilder ML, Zeng T, Green H. Coupling freedom from disease principles and early warning from wastewater surveillance to improve health security. PNAS NEXUS 2022; 1:pgac001. [PMID: 36712792 PMCID: PMC9802328 DOI: 10.1093/pnasnexus/pgac001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/02/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023]
Abstract
Infectious disease surveillance is vitally important to maintaining health security, but these efforts are challenged by the pace at which new pathogens emerge. Wastewater surveillance can rapidly obtain population-level estimates of disease transmission, and we leverage freedom from disease principles to make use of nondetection of SARS-CoV-2 in wastewater to estimate the probability that a community is free from SARS-CoV-2 transmission. From wastewater surveillance of 24 treatment plants across upstate New York from May through December of 2020, trends in the intensity of SARS-CoV-2 in wastewater correlate with trends in COVID-19 incidence and test positivity (⍴ > 0.5), with the greatest correlation observed for active cases and a 3-day lead time between wastewater sample date and clinical test date. No COVID-19 cases were reported 35% of the time the week of a nondetection of SARS-CoV-2 in wastewater. Compared to the United States Centers for Disease Control and Prevention levels of transmission risk, transmission risk was low (no community spared) 50% of the time following nondetection, and transmission risk was moderate or lower (low community spread) 92% of the time following nondetection. Wastewater surveillance can demonstrate the geographic extent of the transmission of emerging pathogens, confirming that transmission risk is either absent or low and alerting of an increase in transmission. If a statewide wastewater surveillance platform had been in place prior to the onset of the COVID-19 pandemic, policymakers would have been able to complement the representative nature of wastewater samples to individual testing, likely resulting in more precise public health interventions and policies.
Collapse
|
research-article |
3 |
13 |
20
|
Ding X, Fragoza R, Singh P, Zhang S, Yu H, Schimenti JC. Variants in RABL2A causing male infertility and ciliopathy. Hum Mol Genet 2020; 29:3402-3411. [PMID: 33075816 PMCID: PMC7749704 DOI: 10.1093/hmg/ddaa230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Approximately 7% of men worldwide suffer from infertility, with sperm abnormalities being the most common defect. Though genetic causes are thought to underlie a substantial fraction of idiopathic cases, the actual molecular bases are usually undetermined. Because the consequences of most genetic variants in populations are unknown, this complicates genetic diagnosis even after genome sequencing of patients. Some patients with ciliopathies, including primary ciliary dyskinesia and Bardet-Biedl syndrome, also suffer from infertility because cilia and sperm flagella share several characteristics. Here, we identified two deleterious alleles of RABL2A, a gene essential for normal function of cilia and flagella. Our in silico predictions and in vitro assays suggest that both alleles destabilize the protein. We constructed and analyzed mice homozygous for these two single-nucleotide polymorphisms, Rabl2L119F (rs80006029) and Rabl2V158F (rs200121688), and found that they exhibit ciliopathy-associated disorders including male infertility, early growth retardation, excessive weight gain in adulthood, heterotaxia, pre-axial polydactyly, neural tube defects and hydrocephalus. Our study provides a paradigm for triaging candidate infertility variants in the population for in vivo functional validation, using computational, in vitro and in vivo approaches.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
9 |
21
|
Li J, Yung J, Qiao B, Takemoto E, Goldfarb DG, Zeig-Owens R, Cone JE, Brackbill RM, Farfel MR, Kahn AR, Schymura MJ, Shapiro MZ, Dasaro CR, Todd AC, Kristjansson D, Prezant DJ, Boffetta P, Hall CB. Cancer Incidence in World Trade Center Rescue and Recovery Workers: 14 Years of Follow-Up. J Natl Cancer Inst 2022; 114:210-219. [PMID: 34498043 PMCID: PMC8826586 DOI: 10.1093/jnci/djab165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Statistically significantly increased cancer incidence has been reported from 3 cohorts of World Trade Center (WTC) disaster rescue and recovery workers. We pooled data across these cohorts to address ongoing public concerns regarding cancer risk 14 years after WTC exposure. METHODS From a combined deduplicated cohort of 69 102 WTC rescue and recovery workers, a sample of 57 402 workers enrolled before 2009 and followed through 2015 was studied. Invasive cancers diagnosed in 2002-2015 were identified from 13 state cancer registries. Standardized incidence ratios (SIRs) were used to assess cancer incidence. Adjusted hazard ratios (aHRs) were estimated from Cox regression to examine associations between WTC exposures and cancer risk. RESULTS Of the 3611 incident cancers identified, 3236 were reported as first-time primary (FP) cancers, with an accumulated 649 724 and 624 620 person-years of follow-up, respectively. Incidence for combined FP cancers was below expectation (SIR = 0.96, 95% confidence interval [CI] = 0.93 to 0.99). Statistically significantly elevated SIRs were observed for melanoma-skin (SIR = 1.43, 95% CI = 1.24 to 1.64), prostate (SIR = 1.19, 95% CI = 1.11 to 1.26), thyroid (SIR = 1.81, 95% CI = 1.57 to 2.09), and tonsil (SIR = 1.40, 95% CI = 1.00 to 1.91) cancer. Those arriving on September 11 had statistically significantly higher aHRs than those arriving after September 17, 2001, for prostate (aHR = 1.61, 95% CI = 1.33 to 1.95) and thyroid (aHR = 1.77, 95% CI = 1.11 to 2.81) cancers, with a statistically significant exposure-response trend for both. CONCLUSIONS In the largest cohort of 9/11 rescue and recovery workers ever studied, overall cancer incidence was lower than expected, and intensity of WTC exposure was associated with increased risk for specific cancer sites, demonstrating the value of long-term follow-up studies after environmental disasters.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
8 |
22
|
Szaflarski JP, Devinsky O, Lopez M, Park YD, Zentil PP, Patel AD, Thiele EA, Wechsler RT, Checketts D, Sahebkar F. Long-term efficacy and safety of cannabidiol in patients with treatment-resistant epilepsies: Four-year results from the expanded access program. Epilepsia 2023; 64:619-629. [PMID: 36537757 DOI: 10.1111/epi.17496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Cannabidiol (CBD) expanded access program, initiated in 2014, provided add-on CBD to patients with treatment-resistant epilepsies (TREs) at 35 US epilepsy centers. Prior publications reported results through December 2016; herein, we present efficacy and safety results through January 2019. METHODS Patients received plant-derived highly purified CBD (Epidiolex®; 100 mg/ml oral solution), increasing from 2 to 10 mg/kg/day to tolerance or maximum 25-50 mg/kg/day dose, depending on the study site. Efficacy endpoints included percentage change from baseline in median monthly convulsive and total seizure frequency and ≥50%, ≥75%, and 100% responder rates across 12-week visit windows for up to 192 weeks. Adverse events (AEs) were documented at each visit. RESULTS Of 892 patients in the safety analysis set, 322 (36%) withdrew; lack of efficacy (19%) and AEs (7%) were the most commonly reported primary reasons for withdrawal. Median (range) age was 11.8 years (range = 0-74.5), and patients were taking a median of three (range = 0-10) antiseizure medications (ASMs) at baseline; the most common ASMs were clobazam (47%), levetiracetam (34%), and valproate (28%). Median top CBD dose was 25 mg/kg/day; median exposure duration was 694 days. Median percentage reduction from baseline ranged 50%-67% for convulsive seizures and 46%-66% for total seizures. Convulsive seizure responder rates (≥50%, ≥75%, and 100% reduction) ranged 51%-59%, 33%-42%, and 11%-17% of patients across visit windows, respectively. AEs were reported in 88% of patients and serious AEs in 41%; 8% withdrew because of an AE. There were 20 deaths during the study deemed unrelated to treatment by the investigator. The most common AEs (≥20% of patients) were diarrhea (33%), seizure (24%), and somnolence (23%). SIGNIFICANCE Add-on CBD was associated with sustained seizure reduction up to 192 weeks with an acceptable safety profile and can be used for long-term treatment of TREs.
Collapse
|
|
2 |
8 |
23
|
Boehm R, Schwartz MB, Lowenfels A, Brissette I, Pattison MJ, Ren J. The Relationship between Written District Policies and School Practices among High-Need Districts in New York State. THE JOURNAL OF SCHOOL HEALTH 2020; 90:465-473. [PMID: 32220074 DOI: 10.1111/josh.12896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/13/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND This study tested the hypothesis that written district wellness policies are associated with higher rates of implementation of nutrition and physical activity practices. METHODS Written wellness policies and building level practices were assessed for schools (N = 295) within high-need districts (N = 70) in New York State. The relationship between policies and practices was measured using multi-level mixed-effects logistic regressions. RESULTS Overall, stronger written district policies significantly increase the likelihood of practice implementation in schools. This relationship is strongest for physical education and physical activity items, followed by nutrition standards for competitive foods in middle and high schools. Most elementary schools implemented nutrition practices with or without a policy and there were differences in implementation rates between elementary and middle/high schools. When examined separately, policies were for the most part not significantly associated with implementation of corresponding practices. CONCLUSIONS Strong and comprehensive written policies are associated with higher rates of practice implementation overall, but the consistency of this relationship varies by policy-practice domain. The newer policy topics areas of school wellness promotion and marketing were less frequently included in written policies. Future research should examine whether districts that strengthen their written policies achieve greater implementation over time.
Collapse
|
Comparative Study |
5 |
6 |
24
|
Chaturvedi S, Victor TR, Marathe A, Sidamonidze K, Crucillo KL, Chaturvedi V. Real-time PCR assay for detection and differentiation of Coccidioides immitis and Coccidioides posadasii from culture and clinical specimens. PLoS Negl Trop Dis 2021; 15:e0009765. [PMID: 34529679 PMCID: PMC8486383 DOI: 10.1371/journal.pntd.0009765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/01/2021] [Accepted: 08/25/2021] [Indexed: 11/19/2022] Open
Abstract
Coccidioidomycosis (Valley fever) is a pulmonary and systemic fungal disease with increasing incidence and expanding endemic areas. The differentiation of etiologic agents Coccidioides immitis and C. posadasii remains problematic in the clinical laboratories as conventional PCR and satellite typing schemes are not facile. Therefore, we developed Cy5- and FAM-labeled TaqMan-probes for duplex real-time PCR assay for rapid differentiation of C. immitis and C. posadasii from culture and clinical specimens. The RRA2 gene encoding proline-rich antigen 2, specific for Coccidioides genus, was the source for the first set of primers and probe. Coccidioides immitis contig 2.2 (GenBank: AAEC02000002.1) was used to design the second set of primers and probe. The second primers/probe did not amplify the corresponding C. posadasii DNA, because of an 86-bp deletion in the contig. The assay was highly sensitive with limit of detection of 0.1 pg gDNA/PCR reaction, which was equivalent to approximately ten genome copies of C. immitis or C. posadasii. The assay was highly specific with no cross-reactivity to the wide range of fungal and bacterial pathogens. Retrospective analysis of fungal isolates and primary specimens submitted from 1995 to 2020 confirmed 168 isolates and four primary specimens as C. posadasii and 30 isolates as C. immitis from human coccidioidomycosis cases, while all eight primary samples from two animals (rhesus monkey and rhinoceros) were confirmed as C. posadasii. A preliminary analysis of cerebrospinal fluid (CSF) and pleural fluid samples showed positive correlation between serology tests and real-time PCR for two of the 15 samples. The Coccidioides spp. duplex real-time PCR will allow rapid differentiation of C. immitis and C. posadasii from clinical specimens and further augment the treatment and surveillance of coccidioidomycosis.
Collapse
|
research-article |
4 |
6 |
25
|
Olmsted ZT, Stigliano C, Marzullo B, Cibelli J, Horner PJ, Paluh JL. Fully Characterized Mature Human iPS- and NMP-Derived Motor Neurons Thrive Without Neuroprotection in the Spinal Contusion Cavity. Front Cell Neurosci 2022; 15:725195. [PMID: 35046774 PMCID: PMC8762343 DOI: 10.3389/fncel.2021.725195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022] Open
Abstract
Neural cell interventions in spinal cord injury (SCI) have focused predominantly on transplanted multipotent neural stem/progenitor cells (NSPCs) for animal research and clinical use due to limited information on survival of spinal neurons. However, transplanted NSPC fate is unpredictable and largely governed by injury-derived matrix and cytokine factors that are often gliogenic and inflammatory. Here, using a rat cervical hemicontusion model, we evaluate the survival and integration of hiPSC-derived spinal motor neurons (SMNs) and oligodendrocyte progenitor cells (OPCs). SMNs and OPCs were differentiated in vitro through a neuromesodermal progenitor stage to mimic the natural origin of the spinal cord. We demonstrate robust survival and engraftment without additional injury site modifiers or neuroprotective biomaterials. Ex vivo differentiated neurons achieve cervical spinal cord matched transcriptomic and proteomic profiles, meeting functional electrophysiology parameters prior to transplantation. These data establish an approach for ex vivo developmentally accurate neuronal fate specification and subsequent transplantation for a more streamlined and predictable outcome in neural cell-based therapies of SCI.
Collapse
|
|
3 |
5 |