1
|
Bradley J, Stone W, Da DF, Morlais I, Dicko A, Cohuet A, Guelbeogo WM, Mahamar A, Nsango S, Soumaré HM, Diawara H, Lanke K, Graumans W, Siebelink-Stoter R, van de Vegte-Bolmer M, Chen I, Tiono A, Gonçalves BP, Gosling R, Sauerwein RW, Drakeley C, Churcher TS, Bousema T. Predicting the likelihood and intensity of mosquito infection from sex specific Plasmodium falciparum gametocyte density. eLife 2018; 7:e34463. [PMID: 29848446 PMCID: PMC6013255 DOI: 10.7554/elife.34463] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/26/2018] [Indexed: 12/02/2022] Open
Abstract
Understanding the importance of gametocyte density on human-to-mosquito transmission is of immediate relevance to malaria control. Previous work (Churcher et al., 2013) indicated a complex relationship between gametocyte density and mosquito infection. Here we use data from 148 feeding experiments on naturally infected gametocyte carriers to show that the relationship is much simpler and depends on both female and male parasite density. The proportion of mosquitoes infected is primarily determined by the density of female gametocytes though transmission from low gametocyte densities may be impeded by a lack of male parasites. Improved precision of gametocyte quantification simplifies the shape of the relationship with infection increasing rapidly before plateauing at higher densities. The mean number of oocysts per mosquito rises quickly with gametocyte density but continues to increase across densities examined. The work highlights the importance of measuring both female and male gametocyte density when estimating the human reservoir of infection.
Collapse
|
research-article |
7 |
76 |
2
|
Oyen D, Torres JL, Cottrell CA, Richter King C, Wilson IA, Ward AB. Cryo-EM structure of P. falciparum circumsporozoite protein with a vaccine-elicited antibody is stabilized by somatically mutated inter-Fab contacts. SCIENCE ADVANCES 2018; 4:eaau8529. [PMID: 30324137 PMCID: PMC6179375 DOI: 10.1126/sciadv.aau8529] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 05/29/2023]
Abstract
The circumsporozoite protein (CSP) on the surface of Plasmodium falciparum sporozoites is important for parasite development, motility, and host hepatocyte invasion. However, intrinsic disorder of the NANP repeat sequence in the central region of CSP has hindered its structural and functional characterization. Here, the cryo-electron microscopy structure at ~3.4-Å resolution of a recombinant shortened CSP construct with the variable domains (Fabs) of a highly protective monoclonal antibody reveals an extended spiral conformation of the central NANP repeat region surrounded by antibodies. This unusual structure appears to be stabilized and/or induced by interaction with an antibody where contacts between adjacent Fabs are somatically mutated and enhance the interaction. This maturation in non-antigen contact residues may be an effective mechanism for antibodies to target tandem repeat sequences and provide novel insights into malaria vaccine design.
Collapse
|
research-article |
7 |
63 |
3
|
Naughton CC, Roman FA, Alvarado AGF, Tariqi AQ, Deeming MA, Kadonsky KF, Bibby K, Bivins A, Medema G, Ahmed W, Katsivelis P, Allan V, Sinclair R, Rose JB. Show us the data: global COVID-19 wastewater monitoring efforts, equity, and gaps. FEMS MICROBES 2023; 4:xtad003. [PMID: 37333436 PMCID: PMC10117741 DOI: 10.1093/femsmc/xtad003] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 08/10/2023] Open
Abstract
A year since the declaration of the global coronavirus disease 2019 (COVID-19) pandemic, there were over 110 million cases and 2.5 million deaths. Learning from methods to track community spread of other viruses such as poliovirus, environmental virologists and those in the wastewater-based epidemiology (WBE) field quickly adapted their existing methods to detect SARS-CoV-2 RNA in wastewater. Unlike COVID-19 case and mortality data, there was not a global dashboard to track wastewater monitoring of SARS-CoV-2 RNA worldwide. This study provides a 1-year review of the "COVIDPoops19" global dashboard of universities, sites, and countries monitoring SARS-CoV-2 RNA in wastewater. Methods to assemble the dashboard combined standard literature review, Google Form submissions, and daily, social media keyword searches. Over 200 universities, 1400 sites, and 55 countries with 59 dashboards monitored wastewater for SARS-CoV-2 RNA. However, monitoring was primarily in high-income countries (65%) with less access to this valuable tool in low- and middle-income countries (35%). Data were not widely shared publicly or accessible to researchers to further inform public health actions, perform meta-analysis, better coordinate, and determine equitable distribution of monitoring sites. For WBE to be used to its full potential during COVID-19 and beyond, show us the data.
Collapse
|
research-article |
2 |
57 |
4
|
Reuling IJ, van de Schans LA, Coffeng LE, Lanke K, Meerstein-Kessel L, Graumans W, van Gemert GJ, Teelen K, Siebelink-Stoter R, van de Vegte-Bolmer M, de Mast Q, van der Ven AJ, Ivinson K, Hermsen CC, de Vlas S, Bradley J, Collins KA, Ockenhouse CF, McCarthy J, Sauerwein RW, Bousema T. A randomized feasibility trial comparing four antimalarial drug regimens to induce Plasmodium falciparum gametocytemia in the controlled human malaria infection model. eLife 2018; 7:e31549. [PMID: 29482720 PMCID: PMC5828662 DOI: 10.7554/elife.31549] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/14/2018] [Indexed: 12/16/2022] Open
Abstract
Background Malaria elimination strategies require a thorough understanding of parasite transmission from human to mosquito. A clinical model to induce gametocytes to understand their dynamics and evaluate transmission-blocking interventions (TBI) is currently unavailable. Here, we explore the use of the well-established Controlled Human Malaria Infection model (CHMI) to induce gametocyte carriage with different antimalarial drug regimens. Methods In a single centre, open-label randomised trial, healthy malaria-naive participants (aged 18–35 years) were infected with Plasmodium falciparum by bites of infected Anopheles mosquitoes. Participants were randomly allocated to four different treatment arms (n = 4 per arm) comprising low-dose (LD) piperaquine (PIP) or sulfadoxine-pyrimethamine (SP), followed by a curative regimen upon recrudescence. Male and female gametocyte densities were determined by molecular assays. Results Mature gametocytes were observed in all participants (16/16, 100%). Gametocytes appeared 8.5–12 days after the first detection of asexual parasites. Peak gametocyte densities and gametocyte burden was highest in the LD-PIP/SP arm, and associated with the preceding asexual parasite biomass (p=0.026). Male gametocytes had a mean estimated circulation time of 2.7 days (95% CI 1.5–3.9) compared to 5.1 days (95% CI 4.1–6.1) for female gametocytes. Exploratory mosquito feeding assays showed successful sporadic mosquito infections. There were no serious adverse events or significant differences in the occurrence and severity of adverse events between study arms (p=0.49 and p=0.28). Conclusions The early appearance of gametocytes indicates gametocyte commitment during the first wave of asexual parasites emerging from the liver. Treatment by LD-PIP followed by a curative SP regimen, results in the highest gametocyte densities and the largest number of gametocyte-positive days. This model can be used to evaluate the effect of drugs and vaccines on gametocyte dynamics, and lays the foundation for fulfilling the critical unmet need to evaluate transmission-blocking interventions against falciparum malaria for downstream selection and clinical development. Funding Funded by PATH Malaria Vaccine Initiative (MVI). Clinical trial number NCT02836002.
Collapse
|
Comparative Study |
7 |
46 |
5
|
Early AM, Daniels RF, Farrell TM, Grimsby J, Volkman SK, Wirth DF, MacInnis BL, Neafsey DE. Detection of low-density Plasmodium falciparum infections using amplicon deep sequencing. Malar J 2019; 18:219. [PMID: 31262308 PMCID: PMC6604269 DOI: 10.1186/s12936-019-2856-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deep sequencing of targeted genomic regions is becoming a common tool for understanding the dynamics and complexity of Plasmodium infections, but its lower limit of detection is currently unknown. Here, a new amplicon analysis tool, the Parallel Amplicon Sequencing Error Correction (PASEC) pipeline, is used to evaluate the performance of amplicon sequencing on low-density Plasmodium DNA samples. Illumina-based sequencing of two Plasmodium falciparum genomic regions (CSP and SERA2) was performed on two types of samples: in vitro DNA mixtures mimicking low-density infections (1-200 genomes/μl) and extracted blood spots from a combination of symptomatic and asymptomatic individuals (44-653,080 parasites/μl). Three additional analysis tools-DADA2, HaplotypR, and SeekDeep-were applied to both datasets and the precision and sensitivity of each tool were evaluated. RESULTS Amplicon sequencing can contend with low-density samples, showing reasonable detection accuracy down to a concentration of 5 Plasmodium genomes/μl. Due to increased stochasticity and background noise, however, all four tools showed reduced sensitivity and precision on samples with very low parasitaemia (< 5 copies/μl) or low read count (< 100 reads per amplicon). PASEC could distinguish major from minor haplotypes with an accuracy of 90% in samples with at least 30 Plasmodium genomes/μl, but only 61% at low Plasmodium concentrations (< 5 genomes/μl) and 46% at very low read counts (< 25 reads per amplicon). The four tools were additionally used on a panel of extracted parasite-positive blood spots from natural malaria infections. While all four identified concordant patterns of complexity of infection (COI) across four sub-Saharan African countries, COI values obtained for individual samples differed in some cases. CONCLUSIONS Amplicon deep sequencing can be used to determine the complexity and diversity of low-density Plasmodium infections. Despite differences in their approach, four state-of-the-art tools resolved known haplotype mixtures with similar sensitivity and precision. Researchers can therefore choose from multiple robust approaches for analysing amplicon data, however, error filtration approaches should not be uniformly applied across samples of varying parasitaemia. Samples with very low parasitaemia and very low read count have higher false positive rates and call for read count thresholds that are higher than current default recommendations.
Collapse
|
research-article |
6 |
37 |
6
|
Griffin P, Pasay C, Elliott S, Sekuloski S, Sikulu M, Hugo L, Khoury D, Cromer D, Davenport M, Sattabongkot J, Ivinson K, Ockenhouse C, McCarthy J. Safety and Reproducibility of a Clinical Trial System Using Induced Blood Stage Plasmodium vivax Infection and Its Potential as a Model to Evaluate Malaria Transmission. PLoS Negl Trop Dis 2016; 10:e0005139. [PMID: 27930652 PMCID: PMC5145139 DOI: 10.1371/journal.pntd.0005139] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Interventions to interrupt transmission of malaria from humans to mosquitoes represent an appealing approach to assist malaria elimination. A limitation has been the lack of systems to test the efficacy of such interventions before proceeding to efficacy trials in the field. We have previously demonstrated the feasibility of induced blood stage malaria (IBSM) infection with Plasmodium vivax. In this study, we report further validation of the IBSM model, and its evaluation for assessment of transmission of P. vivax to Anopheles stephensi mosquitoes. METHODS Six healthy subjects (three cohorts, n = 2 per cohort) were infected with P. vivax by inoculation with parasitized erythrocytes. Parasite growth was monitored by quantitative PCR, and gametocytemia by quantitative reverse transcriptase PCR (qRT-PCR) for the mRNA pvs25. Parasite multiplication rate (PMR) and size of inoculum were calculated by linear regression. Mosquito transmission studies were undertaken by direct and membrane feeding assays over 3 days prior to commencement of antimalarial treatment, and midguts of blood fed mosquitoes dissected and checked for presence of oocysts after 7-9 days. RESULTS The clinical course and parasitemia were consistent across cohorts, with all subjects developing mild to moderate symptoms of malaria. No serious adverse events were reported. Asymptomatic elevated liver function tests were detected in four of six subjects; these resolved without treatment. Direct feeding of mosquitoes was well tolerated. The estimated PMR was 9.9 fold per cycle. Low prevalence of mosquito infection was observed (1.8%; n = 32/1801) from both direct (4.5%; n = 20/411) and membrane (0.9%; n = 12/1360) feeds. CONCLUSION The P. vivax IBSM model proved safe and reliable. The clinical course and PMR were reproducible when compared with the previous study using this model. The IBSM model presented in this report shows promise as a system to test transmission-blocking interventions. Further work is required to validate transmission and increase its prevalence. TRIAL REGISTRATION Anzctr.org.au ACTRN12613001008718.
Collapse
|
Clinical Trial |
9 |
35 |
7
|
Nyiro JU, Sande CJ, Mutunga M, Kiyuka PK, Munywoki PK, Scott JAG, Nokes DJ. Absence of Association between Cord Specific Antibody Levels and Severe Respiratory Syncytial Virus (RSV) Disease in Early Infants: A Case Control Study from Coastal Kenya. PLoS One 2016; 11:e0166706. [PMID: 27851799 PMCID: PMC5113039 DOI: 10.1371/journal.pone.0166706] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
Background The target group for severe respiratory syncytial virus (RSV) disease prevention is infants under 6 months of age. Vaccine boosting of antibody titres in pregnant mothers could protect these young infants from severe respiratory syncytial virus (RSV) associated disease. Quantifying protective levels of RSV-specific maternal antibody at birth would inform vaccine development. Methods A case control study nested in a birth cohort (2002–07) was conducted in Kilifi, Kenya; where 30 hospitalised cases of RSV-associated severe disease were matched to 60 controls. Participants had a cord blood and 2 subsequent 3-monthly blood samples assayed for RSV-specific neutralising antibody by the plaque reduction neutralisation test (PRNT). Two sample paired t test and conditional logistic regression were used in analyses of log2PRNT titres. Results The mean RSV log2PRNT titre at birth for cases and controls were not significantly different (P = 0.4) and remained so on age-stratification. Cord blood PRNT titres showed considerable overlap between cases and controls. The odds of RSV disease decreased with increase in log2PRNT cord blood titre. There was a 30% reduction in RSV disease per unit increase in log2PRNT titre (<3months age group) but not significant (P = 0.3). Conclusions From this study, there is no strong evidence of protection by maternal RSV specific antibodies from severe RSV disease. Cord antibody levels show wide variation with considerable overlap between cases and controls. It is likely that, there are additional factors to specific PRNT antibody levels which determine susceptibility to severe RSV disease. In addition, higher levels of neutralizing antibody beyond the normal range may be required for protection; which it is hoped can be achieved by a maternal RSV vaccine.
Collapse
|
Journal Article |
9 |
23 |
8
|
Vallejo AF, Rubiano K, Amado A, Krystosik AR, Herrera S, Arévalo-Herrera M. Optimization of a Membrane Feeding Assay for Plasmodium vivax Infection in Anopheles albimanus. PLoS Negl Trop Dis 2016; 10:e0004807. [PMID: 27355210 PMCID: PMC4927173 DOI: 10.1371/journal.pntd.0004807] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/06/2016] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Individuals exposed to malaria infections for a long time develop immune responses capable of blocking Plasmodium transmission to mosquito vectors, potentially limiting parasite spreading in nature. Development of a malaria TB vaccine requires a better understanding of the mechanisms and main effectors responsible for transmission blocking (TB) responses. The lack of an in vitro culture system for Plasmodium vivax has been an important drawback for development of a standardized method to assess TB responses to this parasite. This study evaluated host, vector, and parasite factors that may influence Anopheles mosquito infection in order to develop an efficient and reliable assay to assess the TB immunity. METHODS/PRINCIPAL FINDINGS A total of 94 P. vivax infected patients were enrolled as parasite donors or subjects of direct mosquito feeding in two malaria endemic regions of Colombia (Tierralta, and Buenaventura). Parasite infectiousness was assessed by membrane feeding assay or direct feeding assay using laboratory reared Anopheles mosquitoes. Infection was measured by qPCR and by microscopically examining mosquito midguts at day 7 for the presence of oocysts. Best infectivity was attained in four day old mosquitoes fed at a density of 100 mosquitos/cage. Membrane feeding assays produced statistically significant better infections than direct feeding assays in parasite donors; cytokine profiles showed increased IFN-γ, TNF and IL-1 levels in non-infectious individuals. Mosquito infections and parasite maturation were more reliably assessed by PCR compared to microscopy. CONCLUSIONS We evaluated mosquito, parasite and host factors that may affect the outcome of parasite transmission as measured by artificial membrane feeding assays. Results have led us to conclude that: 1) optimal mosquito infectivity occurs with mosquitoes four days after emergence at a cage density of 100; 2) mosquito infectivity is best quantified by PCR as it may be underestimated by microscopy; 3) host cellular immune response did not appear to significantly affect mosquito infectivity; and 4) no statistically significant difference was observed in transmission between mosquitoes directly feeding on humans and artificial membrane feeding assays.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
22 |
9
|
Kovacs SD, van Eijk AM, Sevene E, Dellicour S, Weiss NS, Emerson S, Steketee R, ter Kuile FO, Stergachis A. The Safety of Artemisinin Derivatives for the Treatment of Malaria in the 2nd or 3rd Trimester of Pregnancy: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0164963. [PMID: 27824884 PMCID: PMC5100961 DOI: 10.1371/journal.pone.0164963] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/04/2016] [Indexed: 11/26/2022] Open
Abstract
Given the high morbidity for mother and fetus associated with malaria in pregnancy, safe and efficacious drugs are needed for treatment. Artemisinin derivatives are the most effective antimalarials, but are associated with teratogenic and embryotoxic effects in animal models when used in early pregnancy. However, several organ systems are still under development later in pregnancy. We conducted a systematic review and meta-analysis of the occurrence of adverse pregnancy outcomes among women treated with artemisinins monotherapy or as artemisinin-based combination therapy during the 2nd or 3rd trimesters relative to pregnant women who received non-artemisinin antimalarials or none at all. Pooled odds ratio (POR) were calculated using Mantel-Haenszel fixed effects model with a 0.5 continuity correction for zero events. Eligible studies were identified through Medline, Embase, and the Malaria in Pregnancy Consortium Library. Twenty studies (11 cohort studies and 9 randomized controlled trials) contributed to the analysis, with 3,707 women receiving an artemisinin, 1,951 a non-artemisinin antimalarial, and 13,714 no antimalarial. The PORs (95% confidence interval (CI)) for stillbirth, fetal loss, and congenital anomalies when comparing artemisinin versus quinine were 0.49 (95% CI 0.24-0.97, I2 = 0%, 3 studies); 0.58 (95% CI 0.31-1.16, I2 = 0%, 6 studies); and 1.00 (95% CI 0.27-3.75, I2 = 0%, 3 studies), respectively. The PORs comparing artemisinin users to pregnant women who received no antimalarial were 1.13 (95% CI 0.77-1.66, I2 = 86.7%, 3 studies); 1.10 (95% CI 0.79-1.54, I2 = 0%, 4 studies); and 0.79 (95% CI 0.37-1.67, I2 = 0%, 3 studies) for miscarriage, stillbirth and congenital anomalies respectively. Treatment with artemisinin in 2nd and 3rd trimester was not associated with increased risks of congenital malformations or miscarriage and may be was associated with a reduced risk of stillbirths compared to quinine. This study updates the reviews conducted by the WHO in 2002 and 2006 and supports the current WHO malaria treatment guidelines malaria in pregnancy.
Collapse
|
Meta-Analysis |
9 |
22 |
10
|
Campo JJ, Le TQ, Pablo JV, Hung C, Teng AA, Tettelin H, Tate A, Hanage WP, Alderson MR, Liang X, Malley R, Lipsitch M, Croucher NJ. Panproteome-wide analysis of antibody responses to whole cell pneumococcal vaccination. eLife 2018; 7:e37015. [PMID: 30592459 PMCID: PMC6344088 DOI: 10.7554/elife.37015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/25/2018] [Indexed: 11/13/2022] Open
Abstract
Pneumococcal whole cell vaccines (WCVs) could cost-effectively protect against a greater strain diversity than current capsule-based vaccines. Immunoglobulin G (IgG) responses to a WCV were characterised by applying longitudinally-sampled sera, available from 35 adult placebo-controlled phase I trial participants, to a panproteome microarray. Despite individuals maintaining distinctive antibody 'fingerprints', responses were consistent across vaccinated cohorts. Seventy-two functionally distinct proteins were associated with WCV-induced increases in IgG binding. These shared characteristics with naturally immunogenic proteins, being enriched for transporters and cell wall metabolism enzymes, likely unusually exposed on the unencapsulated WCV's surface. Vaccine-induced responses were specific to variants of the diverse PclA, PspC and ZmpB proteins, whereas PspA- and ZmpA-induced antibodies recognised a broader set of alleles. Temporal variation in IgG levels suggested a mixture of anamnestic and novel responses. These reproducible increases in IgG binding to a limited, but functionally diverse, set of conserved proteins indicate WCV could provide species-wide immunity. Clinical trial registration: The trial was registered with ClinicalTrials.gov with Identifier NCT01537185; the results are available from https://clinicaltrials.gov/ct2/show/results/NCT01537185.
Collapse
|
Clinical Trial, Phase I |
7 |
22 |
11
|
Hendrix N, Bar-Zeev N, Atherly D, Chikafa J, Mvula H, Wachepa R, Crampin AC, Mhango T, Mwansambo C, Heyderman RS, French N, Cunliffe NA, Pecenka C. The economic impact of childhood acute gastroenteritis on Malawian families and the healthcare system. BMJ Open 2017; 7:e017347. [PMID: 28871025 PMCID: PMC5589001 DOI: 10.1136/bmjopen-2017-017347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/26/2017] [Accepted: 07/17/2017] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES This prospective cohort study sought to estimate health system and household costs for episodes of diarrhoeal illness in Malawi. SETTING Data were collected in two Malawian settings: a rural health centre in Chilumba and an urban tertiary care hospital in Blantyre. PARTICIPANTS Children under 5 years of age presenting with diarrhoeal disease between 1 January 2013 and 21 November 2014 were eligible for inclusion. Illnesses attributed to other underlying causes were excluded, as were illnesses commencing more than 2 weeks prior to presentation. Complete data were collected on 514 cases at both the time of the initial visit to the participating healthcare facility and 6 weeks after discharge. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome measure was the total cost of an episode of illness. Costs to the health system were gathered from chart review (drugs and diagnostics) and actual hospital expenditure (staff and facility costs). Household costs, including lost income, were obtained by interview with the parents/guardians of patients. RESULTS Total costs in 2014 US$ for rural inpatient, rural outpatient, urban inpatient and urban outpatient were $65.33, $8.89, $60.23 and $14.51, respectively (excluding lost income). Mean household contributions to these costs were 15.8%, 9.8%, 21.3% and 50.6%. CONCLUSION This study found significant financial burden from childhood diarrhoeal disease to the healthcare system and to households. The latter face the risk of consequent impoverishment, as the study demonstrates how the costs of seeking treatment bring the income of the majority of families in all income strata below the national poverty line in the month of illness.
Collapse
|
Multicenter Study |
8 |
19 |
12
|
Sandeu MM, Bayibéki AN, Tchioffo MT, Abate L, Gimonneau G, Awono-Ambéné PH, Nsango SE, Diallo D, Berry A, Texier G, Morlais I. Do the venous blood samples replicate malaria parasite densities found in capillary blood? A field study performed in naturally-infected asymptomatic children in Cameroon. Malar J 2017; 16:345. [PMID: 28818084 PMCID: PMC5561596 DOI: 10.1186/s12936-017-1978-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 08/07/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The measure of new drug- or vaccine-based approaches for malaria control is based on direct membrane feeding assays (DMFAs) where gametocyte-infected blood samples are offered to mosquitoes through an artificial feeder system. Gametocyte donors are identified by the microscopic detection and quantification of malaria blood stages on blood films prepared using either capillary or venous blood. However, parasites are known to sequester in the microvasculature and this phenomenon may alter accurate detection of parasites in blood films. The blood source may then impact the success of mosquito feeding experiments and investigations are needed for the implementation of DMFAs under natural conditions. METHODS Thick blood smears were prepared from blood obtained from asymptomatic children attending primary schools in the vicinity of Mfou (Cameroon) over four transmission seasons. Parasite densities were determined microscopically from capillary and venous blood for 137 naturally-infected gametocyte carriers. The effect of the blood source on gametocyte and asexual stage densities was then assessed by fitting cumulative link mixed models (CLMM). DMFAs were performed to compare the infectiousness of gametocytes from the different blood sources to mosquitoes. RESULTS Prevalence of Plasmodium falciparum asexual stages among asymptomatic children aged from 4 to 15 years was 51.8% (2116/4087). The overall prevalence of P. falciparum gametocyte carriage was 8.9% and varied from one school to another. No difference in the density of gametocyte and asexual stages was found between capillary and venous blood. Attempts to perform DMFAs with capillary blood failed. CONCLUSIONS Plasmodium falciparum malaria parasite densities do not differ between capillary and venous blood in asymptomatic subjects for both gametocyte and trophozoite stages. This finding suggests that the blood source should not interfere with transmission efficiency in DMFAs.
Collapse
|
research-article |
8 |
18 |
13
|
Hu Y, Miller M, Zhang B, Nguyen TT, Nielsen MK, Aroian RV. In vivo and in vitro studies of Cry5B and nicotinic acetylcholine receptor agonist anthelmintics reveal a powerful and unique combination therapy against intestinal nematode parasites. PLoS Negl Trop Dis 2018; 12:e0006506. [PMID: 29775454 PMCID: PMC5979042 DOI: 10.1371/journal.pntd.0006506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/31/2018] [Accepted: 05/08/2018] [Indexed: 01/21/2023] Open
Abstract
Background The soil-transmitted nematodes (STNs) or helminths (hookworms, whipworms, large roundworms) infect the intestines of ~1.5 billion of the poorest peoples and are leading causes of morbidity worldwide. Only one class of anthelmintic or anti-nematode drugs, the benzimidazoles, is currently used in mass drug administrations, which is a dangerous situation. New anti-nematode drugs are urgently needed. Bacillus thuringiensis crystal protein Cry5B is a powerful, promising new candidate. Drug combinations, when properly made, are ideal for treating infectious diseases. Although there are some clinical trials using drug combinations against STNs, little quantitative and systemic work has been performed to define the characteristics of these combinations in vivo. Methodology/Principal findings Working with the hookworm Ancylostoma ceylanicum-hamster infection system, we establish a laboratory paradigm for studying anti-nematode combinations in vivo using Cry5B and the nicotinic acetylcholine receptor (nAChR) agonists tribendimidine and pyrantel pamoate. We demonstrate that Cry5B strongly synergizes in vivo with both tribendimidine and pyrantel at specific dose ratios against hookworm infections. For example, whereas 1 mg/kg Cry5B and 1 mg/kg tribendimidine individually resulted in only a 0%-6% reduction in hookworm burdens, the combination of the two resulted in a 41% reduction (P = 0.020). Furthermore, when mixed at synergistic ratios, these combinations eradicate hookworm infections at doses where the individual doses do not. Using cyathostomin nematode parasites of horses, we find based on inhibitory concentration 50% values that a strongylid parasite population doubly resistant to nAChR agonists and benzimidazoles is more susceptible or “hypersusceptible” to Cry5B than a cyathostomin population not resistant to nAChR agonists, consistent with previous Caenhorhabditis elegans results. Conclusions/Significance Our study provides a powerful means by which anthelmintic combination therapies can be examined in vivo in the laboratory. In addition, we demonstrate that Cry5B and nAChR agonists have excellent combinatorial properties—Cry5B combined with nAChR agonists gives rise to potent cures that are predicted to be recalcitrant to the development of parasite resistance. These drug combinations highlight bright spots in new anthelmintic development for human and veterinary animal intestinal nematode infections. Intestinal nematodes are roundworm parasites of humans and animals, causing significant morbidity in both. In humans, these parasites are leading causes of morbidity in children, e.g., causing growth stunting, cognitive impairment, and malnutrition. Few drugs are used to treat these parasites in humans and animals and there is increasing evidence that the drugs are losing efficacy and/or have low efficacy. Infectious diseases are best treated with drug combinations and not single drugs. However, there has been little work to characterize in detail how various anti-nematode drugs combine. Here we establish a new laboratory model to study anti-nematode drug combinations using the human hookworm Ancylostoma ceylanicum infection in hamsters. We show that two classes of anti-nematode drugs, Cry5B and the nicotinic acetylcholine receptor agonists tribendimidine and pyrantel, combine (synergize) in a way that is more powerful at specific drug ratios than predicted from their individual impacts. Furthermore, when combined at these ratios, these combinations completely eliminated parasites at doses where normally neither drug has that effect. Horse parasites resistant to pyrantel also appear to be hypersensitive (more sensitive than wild-type parasites) to Cry5B. These characteristics predict that combinations of Cry5B with tribendimidine or pyrantel will be extremely effective therapeutically and relatively recalcitrant to the development of parasite resistance.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
18 |
14
|
Quaife M, Eakle R, Cabrera M, Vickerman P, Tsepe M, Cianci F, Delany-Moretlwe S, Terris-Prestholt F. Preferences for ARV-based HIV prevention methods among men and women, adolescent girls and female sex workers in Gauteng Province, South Africa: a protocol for a discrete choice experiment. BMJ Open 2016; 6:e010682. [PMID: 27354071 PMCID: PMC4932295 DOI: 10.1136/bmjopen-2015-010682] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION For the past few decades, condoms have been the main method of HIV prevention. Recent advances in antiretroviral (ARV)-based prevention products have substantially changed the prevention landscape, yet little is known about how popular these products will be among potential users, or whether new methods might be used in conjunction with, or instead of, condoms. This study will use a discrete choice experiment (DCE) to (1) explore potential users' preferences regarding HIV prevention products, (2) quantify the importance of product attributes and (3) predict the uptake of products to inform estimates of their potential impact on the HIV epidemic in South Africa. We consider preferences for oral pre-exposure prophylaxis; a vaginal microbicide gel; a long-acting vaginal ring; a SILCS diaphragm used in concert with gel; and a long-acting ARV-based injectable. METHODS AND ANALYSIS This study will gather data from 4 populations: 200 women, 200 men, 200 adolescent girls (aged 16-17 years) and 200 female sex workers. The DCE attributes and design will be developed through a literature review, supplemented by a thematic analysis of qualitative focus group discussions. Extensive piloting will be carried out in each population through semistructured interviews. The final survey will be conducted using computer tablets via a household sample (for women, men and adolescents) and respondent-driven sampling (for female sex workers), and DCE data analysed using a range of multinomial logit models. ETHICS AND DISSEMINATION This study has been approved by the University of the Witwatersrand Human Research Ethics Committee and the Research Ethics Committee at the London School of Hygiene and Tropical Medicine. Findings will be presented to international conferences and peer-reviewed journals. Meetings will be held with opinion leaders in South Africa, while results will be disseminated to participants in Ekurhuleni through a public meeting or newsletter.
Collapse
|
protocol |
9 |
18 |
15
|
Gelli A, Margolies A, Santacroce M, Sproule K, Theis S, Roschnik N, Twalibu A, Chidalengwa G, Cooper A, Moorhead T, Gladstone M, Kariger P, Kutundu M. Improving child nutrition and development through community-based childcare centres in Malawi - The NEEP-IE study: study protocol for a randomised controlled trial. Trials 2017; 18:284. [PMID: 28629471 PMCID: PMC5477384 DOI: 10.1186/s13063-017-2003-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/20/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The Nutrition Embedded Evaluation Programme Impact Evaluation (NEEP-IE) study is a cluster randomised controlled trial designed to evaluate the impact of a childcare centre-based integrated nutritional and agricultural intervention on the diets, nutrition and development of young children in Malawi. The intervention includes activities to improve nutritious food production and training/behaviour-change communication to improve food intake, care and hygiene practices. This paper presents the rationale and study design for this randomised control trial. METHODS Sixty community-based childcare centres (CBCCs) in rural communities around Zomba district, Malawi, were randomised to either (1) a control group where children were attending CBCCs supported by Save the Children's Early Childhood Health and Development (ECD) programme, or (2) an intervention group where nutritional and agricultural support activities were provided alongside the routine provision of the Save the Children's ECD programme. Primary outcomes at child level include dietary intake (measured through 24-h recall), whilst secondary outcomes include child development (Malawi Development Assessment Tool (MDAT)) and nutritional status (anthropometric measurements). At household level, primary outcomes include smallholder farmer production output and crop-mix (recall of last production season). Intermediate outcomes along theorised agricultural and nutritional pathways were measured. During this trial, we will follow a mixed-methods approach and undertake child-, household-, CBCC- and market-level surveys and assessments as well as in-depth interviews and focus group discussions with project stakeholders. DISCUSSION Assessing the simultaneous impact of preschool meals on diets, nutrition, child development and agriculture is a complex undertaking. This study is the first to explicitly examine, from a food systems perspective, the impact of a preschool meals programme on dietary choices, alongside outcomes in the nutritional, child development and agricultural domains. The findings of this evaluation will provide evidence to support policymakers in the scale-up of national programmes. TRIAL REGISTRATION ISRCTN registry, ID: ISRCTN96497560 . Registered on 21 September 2016.
Collapse
|
Multicenter Study |
8 |
14 |
16
|
Hogan AB, Winskill P, Ghani AC. Estimated impact of RTS,S/AS01 malaria vaccine allocation strategies in sub-Saharan Africa: A modelling study. PLoS Med 2020; 17:e1003377. [PMID: 33253211 PMCID: PMC7703928 DOI: 10.1371/journal.pmed.1003377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The RTS,S/AS01 vaccine against Plasmodium falciparum malaria infection completed phase III trials in 2014 and demonstrated efficacy against clinical malaria of approximately 36% over 4 years for a 4-dose schedule in children aged 5-17 months. Pilot vaccine implementation has recently begun in 3 African countries. If the pilots demonstrate both a positive health impact and resolve remaining safety concerns, wider roll-out could be recommended from 2021 onwards. Vaccine demand may, however, outstrip initial supply. We sought to identify where vaccine introduction should be prioritised to maximise public health impact under a range of supply constraints using mathematical modelling. METHODS AND FINDINGS Using a mathematical model of P. falciparum malaria transmission and RTS,S vaccine impact, we estimated the clinical cases and deaths averted in children aged 0-5 years in sub-Saharan Africa under 2 scenarios for vaccine coverage (100% and realistic) and 2 scenarios for other interventions (current coverage and World Health Organization [WHO] Global Technical Strategy targets). We used a prioritisation algorithm to identify potential allocative efficiency gains from prioritising vaccine allocation among countries or administrative units to maximise cases or deaths averted. If malaria burden at introduction is similar to current levels-assuming realistic vaccine coverage and country-level prioritisation in areas with parasite prevalence >10%-we estimate that 4.3 million malaria cases (95% credible interval [CrI] 2.8-6.8 million) and 22,000 deaths (95% CrI 11,000-35,000) in children younger than 5 years could be averted annually at a dose constraint of 30 million. This decreases to 3.0 million cases (95% CrI 2.0-4.7 million) and 14,000 deaths (95% CrI 7,000-23,000) at a dose constraint of 20 million, and increases to 6.6 million cases (95% CrI 4.2-10.8 million) and 38,000 deaths (95% CrI 18,000-61,000) at a dose constraint of 60 million. At 100% vaccine coverage, these impact estimates increase to 5.2 million cases (95% CrI 3.5-8.2 million) and 27,000 deaths (95% CrI 14,000-43,000), 3.9 million cases (95% CrI 2.7-6.0 million) and 19,000 deaths (95% CrI 10,000-30,000), and 10.0 million cases (95% CrI 6.7-15.7 million) and 51,000 deaths (95% CrI 25,000-82,000), respectively. Under realistic vaccine coverage, if the vaccine is prioritised sub-nationally, 5.3 million cases (95% CrI 3.5-8.2 million) and 24,000 deaths (95% CrI 12,000-38,000) could be averted at a dose constraint of 30 million. Furthermore, sub-national prioritisation would allow introduction in almost double the number of countries compared to national prioritisation (21 versus 11). If vaccine introduction is prioritised in the 3 pilot countries (Ghana, Kenya, and Malawi), health impact would be reduced, but this effect becomes less substantial (change of <5%) if 50 million or more doses are available. We did not account for within-country variation in vaccine coverage, and the optimisation was based on a single outcome measure, therefore this study should be used to understand overall trends rather than guide country-specific allocation. CONCLUSIONS These results suggest that the impact of constraints in vaccine supply on the public health impact of the RTS,S malaria vaccine could be reduced by introducing the vaccine at the sub-national level and prioritising countries with the highest malaria incidence.
Collapse
|
research-article |
5 |
14 |
17
|
Wahid R, Mercer L, Macadam A, Carlyle S, Stephens L, Martin J, Chumakov K, Laassri M, Petrovskaya S, Smits SL, Stittelaar KJ, Gast C, Weldon WC, Konopka-Anstadt JL, Steven Oberste M, Van Damme P, De Coster I, Rüttimann R, Bandyopadhyay A, Konz J. Assessment of genetic changes and neurovirulence of shed Sabin and novel type 2 oral polio vaccine viruses. NPJ Vaccines 2021; 6:94. [PMID: 34326330 PMCID: PMC8322168 DOI: 10.1038/s41541-021-00355-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Abstract
Sabin-strain oral polio vaccines (OPV) can, in rare instances, cause disease in recipients and susceptible contacts or evolve to become circulating vaccine-derived strains with the potential to cause outbreaks. Two novel type 2 OPV (nOPV2) candidates were designed to stabilize the genome against the rapid reversion that is observed following vaccination with Sabin OPV type 2 (mOPV2). Next-generation sequencing and a modified transgenic mouse neurovirulence test were applied to shed nOPV2 viruses from phase 1 and 2 studies and shed mOPV2 from a phase 4 study. The shed mOPV2 rapidly reverted in the primary attenuation site (domain V) and increased in virulence. In contrast, the shed nOPV2 viruses showed no evidence of reversion in domain V and limited or no increase in neurovirulence in mice. Based on these results and prior published data on safety, immunogenicity, and shedding, the nOPV2 viruses are promising alternatives to mOPV2 for outbreak responses.
Collapse
|
research-article |
4 |
13 |
18
|
Wetzel D, Chan JA, Suckow M, Barbian A, Weniger M, Jenzelewski V, Reiling L, Richards JS, Anderson DA, Kouskousis B, Palmer C, Hanssen E, Schembecker G, Merz J, Beeson JG, Piontek M. Display of malaria transmission-blocking antigens on chimeric duck hepatitis B virus-derived virus-like particles produced in Hansenula polymorpha. PLoS One 2019; 14:e0221394. [PMID: 31483818 PMCID: PMC6726142 DOI: 10.1371/journal.pone.0221394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum is one of the major threats to human health globally. Despite huge efforts in malaria control and eradication, highly effective vaccines are urgently needed, including vaccines that can block malaria transmission. Chimeric virus-like particles (VLP) have emerged as a promising strategy to develop new malaria vaccine candidates. METHODS We developed yeast cell lines and processes for the expression of malaria transmission-blocking vaccine candidates Pfs25 and Pfs230 as VLP and VLP were analyzed for purity, size, protein incorporation rate and expression of malaria antigens. RESULTS In this study, a novel platform for the display of Plasmodium falciparum antigens on chimeric VLP is presented. Leading transmission-blocking vaccine candidates Pfs25 and Pfs230 were genetically fused to the small surface protein (dS) of the duck hepatitis B virus (DHBV). The resulting fusion proteins were co-expressed in recombinant Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) strains along with the wild-type dS as the VLP scaffold protein. Through this strategy, chimeric VLP containing Pfs25 or the Pfs230-derived fragments Pfs230c or Pfs230D1M were purified. Up to 100 mg chimeric VLP were isolated from 100 g dry cell weight with a maximum protein purity of 90% on the protein level. Expression of the Pfs230D1M construct was more efficient than Pfs230c and enabled VLP with higher purity. VLP showed reactivity with transmission-blocking antibodies and supported the surface display of the malaria antigens on the native VLP. CONCLUSION The incorporation of leading Plasmodium falciparum transmission-blocking antigens into the dS-based VLP scaffold is a promising novel strategy for their display on nano-scaled particles. Competitive processes for efficient production and purification were established in this study.
Collapse
|
research-article |
6 |
11 |
19
|
Yaesoubi R, Trotter C, Colijn C, Yaesoubi M, Colombini A, Resch S, Kristiansen PA, LaForce FM, Cohen T. The cost-effectiveness of alternative vaccination strategies for polyvalent meningococcal vaccines in Burkina Faso: A transmission dynamic modeling study. PLoS Med 2018; 15:e1002495. [PMID: 29364884 PMCID: PMC5783340 DOI: 10.1371/journal.pmed.1002495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The introduction of a conjugate vaccine for serogroup A Neisseria meningitidis has dramatically reduced disease in the African meningitis belt. In this context, important questions remain about the performance of different vaccine policies that target remaining serogroups. Here, we estimate the health impact and cost associated with several alternative vaccination policies in Burkina Faso. METHODS AND FINDINGS We developed and calibrated a mathematical model of meningococcal transmission to project the disability-adjusted life years (DALYs) averted and costs associated with the current Base policy (serogroup A conjugate vaccination at 9 months, as part of the Expanded Program on Immunization [EPI], plus district-specific reactive vaccination campaigns using polyvalent meningococcal polysaccharide [PMP] vaccine in response to outbreaks) and three alternative policies: (1) Base Prime: novel polyvalent meningococcal conjugate (PMC) vaccine replaces the serogroup A conjugate in EPI and is also used in reactive campaigns; (2) Prevention 1: PMC used in EPI and in a nationwide catch-up campaign for 1-18-year-olds; and (3) Prevention 2: Prevention 1, except the nationwide campaign includes individuals up to 29 years old. Over a 30-year simulation period, Prevention 2 would avert 78% of the meningococcal cases (95% prediction interval: 63%-90%) expected under the Base policy if serogroup A is not replaced by remaining serogroups after elimination, and would avert 87% (77%-93%) of meningococcal cases if complete strain replacement occurs. Compared to the Base policy and at the PMC vaccine price of US$4 per dose, strategies that use PMC vaccine (i.e., Base Prime and Preventions 1 and 2) are expected to be cost saving if strain replacement occurs, and would cost US$51 (-US$236, US$490), US$188 (-US$97, US$626), and US$246 (-US$53, US$703) per DALY averted, respectively, if strain replacement does not occur. An important potential limitation of our study is the simplifying assumption that all circulating meningococcal serogroups can be aggregated into a single group; while this assumption is critical for model tractability, it would compromise the insights derived from our model if the effectiveness of the vaccine differs markedly between serogroups or if there are complex between-serogroup interactions that influence the frequency and magnitude of future meningitis epidemics. CONCLUSIONS Our results suggest that a vaccination strategy that includes a catch-up nationwide immunization campaign in young adults with a PMC vaccine and the addition of this new vaccine into EPI is cost-effective and would avert a substantial portion of meningococcal cases expected under the current World Health Organization-recommended strategy of reactive vaccination. This analysis is limited to Burkina Faso and assumes that polyvalent vaccines offer equal protection against all meningococcal serogroups; further studies are needed to evaluate the robustness of this assumption and applicability for other countries in the meningitis belt.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
11 |
20
|
Chakraborty S, Connor S, Velagic M. Development of a simple, rapid, and sensitive diagnostic assay for enterotoxigenic E. coli and Shigella spp applicable to endemic countries. PLoS Negl Trop Dis 2022; 16:e0010180. [PMID: 35089927 PMCID: PMC8827434 DOI: 10.1371/journal.pntd.0010180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/09/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic E. coli (ETEC) and Shigella spp (Shigella) are complex pathogens. The diagnostic assays currently used to detect these pathogens are elaborate or complicated, which make them difficult to apply in resource poor settings where these diseases are endemic. The culture methods used to detect Shigella are not sensitive, and the methods used to detect ETEC are only available in a few research labs. To address this gap, we developed a rapid and simple diagnostic assay–"Rapid LAMP based Diagnostic Test (RLDT)." The six minutes sample preparation method directly from the fecal samples with lyophilized reaction strips and using established Loop-mediated Isothermal Amplification (LAMP) platform, ETEC [heat labile toxin (LT) and heat stable toxins (STh, and STp) genes] and Shigella (ipaH gene) detection was made simple, rapid (<50 minutes), and inexpensive. This assay is cold chain and electricity free. Moreover, RLDT requires minimal equipment. To avoid any end user’s bias, a battery-operated, handheld reader was used to read the RLDT results. The results can be read as positive/negative or as real time amplification depending on the end user’s need. The performance specifications of the RLDT assay, including analytical sensitivity and specificity, were evaluated using fecal samples spiked with ETEC and Shigella strains. The limit of detection was ~105 CFU/gm of stool for LT, STh, and STp and ~104 CFU/gm of stool for the ipaH gene, which corresponds to about 23 CFU and 1 CFU respectively for ETEC and Shigella per 25uL reaction within 40 minutes. The RLDT assay from stool collection to result is simple, and rapid and at the same time sufficiently sensitive. RLDT has the potential to be applied in resource poor endemic settings for the rapid diagnosis of ETEC and Shigella. Enterotoxigenic E. coli and Shigella are the leading causes of moderate to severe diarrhea in the low-and middle-income countries (LMICs). A critical constraint to determine the ETEC and Shigella disease burden at the country or sub-national level, is the complex diagnostic methods currently required for detecting these pathogens. These methods are neither sufficiently sensitive nor standardized and are not feasible in the resource poor settings where these infections occur most commonly. We developed a simple and rapid diagnostic assay called "Rapid Loop-mediated isothermal amplification based Diagnostic Test (RLDT)" for the detection of these pathogens in low-resource settings. Using RLDT, ETEC and Shigella were detected directly from the stool, in less than 1 hour with minimal hands-on time. The assay does not require maintaining a cold chain and is electricity-free. Being rapid, simple, and sensitive, RLDT can be scaled up and is appropriate to apply in the LMICs where ETEC and Shigella diarrhea are endemic.
Collapse
|
|
3 |
11 |
21
|
Connor S, Velagic M, Zhang X, Johura FT, Chowdhury G, Mukhopadhyay AK, Dutta S, Alam M, Sack DA, Wierzba TF, Chakraborty S. Evaluation of a simple, rapid and field-adapted diagnostic assay for enterotoxigenic E. coli and Shigella. PLoS Negl Trop Dis 2022; 16:e0010192. [PMID: 35130310 PMCID: PMC8853640 DOI: 10.1371/journal.pntd.0010192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/17/2022] [Accepted: 01/21/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the global burden of enterotoxigenic E. coli (ETEC) and Shigella diarrhea as well as estimating the cost effectiveness of vaccines to control these two significant pathogens have been hindered by the lack of a diagnostic test that is rapid, simple, sensitive, and can be applied to the endemic countries. We previously developed a simple and rapid assay, Rapid Loop mediated isothermal amplification based Diagnostic Test (RLDT) for the detection of ETEC and Shigella spp. (Shigella). In this study, the RLDT assay was evaluated in comparison with quantitative PCR (qPCR), culture and conventional PCR for the detection of ETEC and Shigella. This validation was performed using previously collected stool samples from endemic countries, from the travelers to the endemic countries, as well as samples from a controlled human infection model study of ETEC. The performance of RLDT from dried stool spots was also validated. RLDT resulted in excellent sensitivity and specificity compared to qPCR (99% and 99.2% respectively) ranging from 92.3 to 100% for the individual toxin genes of ETEC and 100% for Shigella. Culture was less sensitive compared to RLDT. No significant differences were noted in the performance of RLDT using samples from various sources or stool samples from moderate to severe diarrhea or asymptomatic infections. RLDT performed equally well in detection of ETEC and Shigella from the dried stool samples on filter papers. This study established that RLDT is sufficiently sensitive and specific to be used as a simple and rapid diagnostic assay to detect ETEC and Shigella in endemic countries to determine disease burden of these pathogens in the national and subnational levels. This information will be important to guide public health and policy makers to prioritize resources for accelerating the development and introduction of effective preventative and/or treatment interventions against these enteric infections. Enterotoxigenic E. coli (ETEC) and Shigella spp (Shigella) causes significant global morbidity and mortality, especially in low-and middle-income countries (LMICs). Since culture methods to detect Shigella are not sensitive, and the methods used to detect ETEC have not been feasible outside of specialized, well-equipped laboratories, the true burden of these pathogens at national and sub-national levels are mostly not available. Morbidity and mortality estimates, for these two pathogens are crucial to assess their relative public health importance in LMICs. We developed a simple and rapid diagnostic assay called the RLDT (Rapid Loop-mediated isothermal amplification based Diagnostic Test) for detection of ETEC and Shigella. In this study we evaluated RLDT compared to other currently available assays using previously collected stool samples. Our data showed that the RLDT assay exhibited high sensitivity and specificity for detection of ETEC and Shigella, with its result available within 50 minutes. The sensitivity of RLDT was higher than culture for these pathogens. We conclude that RLDT could be used as a rapid and simple diagnostic test to determine the burden of ETEC and Shigella in LMICs as well as in clinical vaccine trials of these pathogens.
Collapse
|
|
3 |
10 |
22
|
Kantele A, Riekkinen M, Jokiranta TS, Pakkanen SH, Pietilä JP, Patjas A, Eriksson M, Khawaja T, Klemets P, Marttinen K, Siikamäki H, Lundgren A, Holmgren J, Lissmats A, Carlin N, Svennerholm AM. Safety and immunogenicity of ETVAX®, an oral inactivated vaccine against enterotoxigenic Escherichia coli diarrhoea: a double-blinded, randomized, placebo-controlled trial amongst Finnish travellers to Benin, West Africa. J Travel Med 2023; 30:taad045. [PMID: 37099803 PMCID: PMC10658657 DOI: 10.1093/jtm/taad045] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND No licensed human vaccines are available against enterotoxigenic Escherichia coli (ETEC), a major diarrhoeal pathogen affecting children in low- and middle-income countries and foreign travellers alike. ETVAX®, a multivalent oral whole-cell vaccine containing four inactivated ETEC strains and the heat-labile enterotoxin B subunit (LTB), has proved promising in Phase 1 and Phase 1/ 2 studies. METHODS We conducted a Phase 2b double-blinded, randomized, placebo-controlled trial amongst Finnish travellers to Benin, West Africa. This report presents study design and safety and immunogenicity data. Volunteers aged 18-65 years were randomized 1:1 to receive ETVAX® or placebo. They visited Benin for 12 days, provided stool and blood samples and completed adverse event (AE) forms. IgA and IgG antibodies to LTB and O78 lipopolysaccharide (LPS) were measured by electrochemiluminescence. RESULTS The AEs did not differ significantly between vaccine (n = 374) and placebo (n = 375) recipients. Of the solicited AEs, loose stools/diarrhoea (26.7/25.9%) and stomach ache (23.0/20.0%) were reported most commonly. Of all possibly/probably vaccine-related AEs, the most frequent were gastrointestinal symptoms (54.0/48.8%) and nervous system disorders (20.3/25.1%). Serious AEs were recorded for 4.3/5.6%, all unlikely to be vaccine related. Amongst the ETVAX® recipients, LTB-specific IgA antibodies increased 22-fold. For the 370/372 vaccine/placebo recipients, the frequency of ≥2-fold increases against LTB was 81/2.4%, and against O78 LPS 69/2.7%. The majority of ETVAX® recipients (93%) responded to either LTB or O78. CONCLUSIONS This Phase 2b trial is the largest on ETVAX® undertaken amongst travellers to date. ETVAX® showed an excellent safety profile and proved strongly immunogenic, which encourages the further development of this vaccine.
Collapse
|
Randomized Controlled Trial |
2 |
9 |
23
|
Matyushenko V, Isakova-Sivak I, Smolonogina T, Dubrovina I, Tretiak T, Rudenko L. Genotyping assay for differentiation of wild-type and vaccine viruses in subjects immunized with live attenuated influenza vaccine. PLoS One 2017; 12:e0180497. [PMID: 28686625 PMCID: PMC5501548 DOI: 10.1371/journal.pone.0180497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/11/2017] [Indexed: 01/03/2023] Open
Abstract
Live attenuated influenza vaccines (LAIVs) are considered as safe and effective tool to control influenza in different age groups, especially in young children. An important part of the LAIV safety evaluation is the detection of vaccine virus replication in the nasopharynx of the vaccinees, with special attention to a potential virus transmission to the unvaccinated close contacts. Conducting LAIV clinical trials in some geographical regions with year-round circulation of influenza viruses warrants the development of robust and reliable tools for differentiating vaccine viruses from wild-type influenza viruses in nasal pharyngeal wash (NPW) specimens of vaccinated subjects. Here we report the development of genotyping assay for the detection of wild-type and vaccine-type influenza virus genes in NPW specimens of young children immunized with Russian-backbone seasonal trivalent LAIV using Sanger sequencing from newly designed universal primers. The new primer set allowed amplification and sequencing of short fragments of viral genes in NPW specimens and appeared to be more sensitive than conventional real-time RT-PCR protocols routinely used for the detection and typing/subtyping of influenza virus in humans. Furthermore, the new assay is capable of defining the origin of wild-type influenza virus through BLAST search with the generated sequences of viral genes fragments.
Collapse
|
research-article |
8 |
9 |
24
|
Kamau A, Paton RS, Akech S, Mpimbaza A, Khazenzi C, Ogero M, Mumo E, Alegana VA, Agweyu A, Mturi N, Mohammed S, Bigogo G, Audi A, Kapisi J, Sserwanga A, Namuganga JF, Kariuki S, Otieno NA, Nyawanda BO, Olotu A, Salim N, Athuman T, Abdulla S, Mohamed AF, Mtove G, Reyburn H, Gupta S, Lourenço J, Bejon P, Snow RW. Malaria hospitalisation in East Africa: age, phenotype and transmission intensity. BMC Med 2022; 20:28. [PMID: 35081974 PMCID: PMC8793189 DOI: 10.1186/s12916-021-02224-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Understanding the age patterns of disease is necessary to target interventions to maximise cost-effective impact. New malaria chemoprevention and vaccine initiatives target young children attending routine immunisation services. Here we explore the relationships between age and severity of malaria hospitalisation versus malaria transmission intensity. METHODS Clinical data from 21 surveillance hospitals in East Africa were reviewed. Malaria admissions aged 1 month to 14 years from discrete administrative areas since 2006 were identified. Each site-time period was matched to a model estimated community-based age-corrected parasite prevalence to provide predictions of prevalence in childhood (PfPR2-10). Admission with all-cause malaria, severe malaria anaemia (SMA), respiratory distress (RD) and cerebral malaria (CM) were analysed as means and predicted probabilities from Bayesian generalised mixed models. RESULTS 52,684 malaria admissions aged 1 month to 14 years were described at 21 hospitals from 49 site-time locations where PfPR2-10 varied from < 1 to 48.7%. Twelve site-time periods were described as low transmission (PfPR2-10 < 5%), five low-moderate transmission (PfPR2-10 5-9%), 20 moderate transmission (PfPR2-10 10-29%) and 12 high transmission (PfPR2-10 ≥ 30%). The majority of malaria admissions were below 5 years of age (69-85%) and rare among children aged 10-14 years (0.7-5.4%) across all transmission settings. The mean age of all-cause malaria hospitalisation was 49.5 months (95% CI 45.1, 55.4) under low transmission compared with 34.1 months (95% CI 30.4, 38.3) at high transmission, with similar trends for each severe malaria phenotype. CM presented among older children at a mean of 48.7 months compared with 39.0 months and 33.7 months for SMA and RD, respectively. In moderate and high transmission settings, 34% and 42% of the children were aged between 2 and 23 months and so within the age range targeted by chemoprevention or vaccines. CONCLUSIONS Targeting chemoprevention or vaccination programmes to areas where community-based parasite prevalence is ≥10% is likely to match the age ranges covered by interventions (e.g. intermittent presumptive treatment in infancy to children aged 2-23 months and current vaccine age eligibility and duration of efficacy) and the age ranges of highest disease burden.
Collapse
|
research-article |
3 |
8 |
25
|
Hogan AB, Winskill P, Verity R, Griffin JT, Ghani AC. Modelling population-level impact to inform target product profiles for childhood malaria vaccines. BMC Med 2018; 16:109. [PMID: 30001708 PMCID: PMC6044028 DOI: 10.1186/s12916-018-1095-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/05/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The RTS,S/AS01 vaccine for Plasmodium falciparum malaria demonstrated moderate efficacy in 5-17-month-old children in phase 3 trials, and from 2018, the vaccine will be evaluated through a large-scale pilot implementation program. Work is ongoing to optimise this vaccine, with higher efficacy for a different schedule demonstrated in a phase 2a challenge study. The objective of our study was to investigate the population-level impact of a modified RTS,S/AS01 schedule and dose amount in order to inform the target product profile for a second-generation malaria vaccine. METHODS We used a mathematical modelling approach as the basis for our study. We simulated the changing anti-circumsporozoite antibody titre following vaccination and related the titre to vaccine efficacy. We then implemented this efficacy profile within an individual-based model of malaria transmission. We compared initial efficacy, duration and dose timing, and evaluated the potential public health impact of a modified vaccine in children aged 5-17 months, measuring clinical cases averted in children younger than 5 years. RESULTS In the first decade of delivery, initial efficacy was associated with a higher reduction in childhood clinical cases compared to vaccine duration. This effect was more pronounced in high transmission settings and was due to the efficacy benefit occurring in younger ages where disease burden is highest. However, the low initial efficacy and long duration schedule averted more cases across all age cohorts if a longer time horizon was considered. We observed an age-shifting effect due to the changing immunological profile in higher transmission settings, in scenarios where initial efficacy was higher, and the fourth dose administered earlier. CONCLUSIONS Our findings indicate that, for an imperfect childhood malaria vaccine with suboptimal efficacy, it may be advantageous to prioritise initial efficacy over duration. We predict that a modified vaccine could outperform the current RTS,S/AS01, although fourth dose timing will affect the age group that derives the greatest benefit. Further, the outcome measure and timeframe over which a vaccine is assessed are important when prioritising vaccine elements. This study provides insight into the most important characteristics of a malaria vaccine for at-risk groups and shows how distinct vaccine properties translate to public health outcomes. These findings may be used to prioritise target product profile elements for second-generation childhood malaria vaccines.
Collapse
|
research-article |
7 |
8 |