1
|
Chen Z, Ge J, Song W, Tong X, Liu H, Yu X, Li J, Shi J, Xie L, Han C, Liu Q, Ge Z. 20.2% Efficiency Organic Photovoltaics Employing a π-Extension Quinoxaline-Based Acceptor with Ordered Arrangement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406690. [PMID: 38899582 DOI: 10.1002/adma.202406690] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Organic solar cells, as a cutting-edge sustainable renewable energy technology, possess a myriad of potential applications, while the bottleneck problem of less than 20% efficiency limits the further development. Simultaneously achieving an ordered molecular arrangement, appropriate crystalline domain size, and reduced nonradiative recombination poses a significant challenge and is pivotal for overcoming efficiency limitations. This study employs a dual strategy involving the development of a novel acceptor and ternary blending to address this challenge. A novel non-fullerene acceptor, SMA, characterized by a highly ordered arrangement and high lowest unoccupied molecular orbital energy level, is synthesized. By incorporating SMA as a guest acceptor in the PM6:BTP-eC9 system, it is observed that SMA staggered the liquid-solid transition of donor and acceptor, facilitating acceptor crystallization and ordering while maintaining a suitable domain size. Furthermore, SMA optimized the vertical morphology and reduced bimolecular recombination. As a result, the ternary device achieved a champion efficiency of 20.22%, accompanied by increased voltage, short-circuit current density, and fill factor. Notably, a stabilized efficiency of 18.42% is attained for flexible devices. This study underscores the significant potential of a synergistic approach integrating acceptor material innovation and ternary blending techniques for optimizing bulk heterojunction morphology and photovoltaic performance.
Collapse
|
|
1 |
44 |
2
|
Cheng W, Kang K, Zhao A, Wu Y. Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer. J Hematol Oncol 2024; 17:54. [PMID: 39068460 PMCID: PMC11283714 DOI: 10.1186/s13045-024-01581-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer immunotherapies, represented by immune checkpoint inhibitors (ICIs), have reshaped the treatment paradigm for both advanced non-small cell lung cancer and small cell lung cancer. Programmed death receptor-1/programmed death receptor ligand-1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are some of the most common and promising targets in ICIs. Compared to ICI monotherapy, which occasionally demonstrates treatment resistance and limited efficacy, the dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 operates at different stages of T cell activation with synergistically enhancing immune responses against cancer cells. This emerging dual therapy heralds a new direction for cancer immunotherapy, which, however, may increase the risk of drug-related adverse reactions while improving efficacy. Previous clinical trials have explored combination therapy strategy of anti-PD-1/PD-L1 and anti-CTLA-4 agents in lung cancer, yet its efficacy remains to be unclear with the inevitable incidence of immune-related adverse events. The recent advent of bispecific antibodies has made this sort of dual targeting more feasible, aiming to alleviate toxicity without compromising efficacy. Thus, this review highlights the role of dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in treating lung cancer, and further elucidates its pre-clinical mechanisms and current advancements in clinical trials. Besides, we also provide novel insights into the potential combinations of dual blockade therapies with other strategies to optimize the future treatment mode for lung cancer.
Collapse
|
Review |
1 |
33 |
3
|
Tariq A, Graciano C, Sardans J, Zeng F, Hughes AC, Ahmed Z, Ullah A, Ali S, Gao Y, Peñuelas J. Plant root mechanisms and their effects on carbon and nutrient accumulation in desert ecosystems under changes in land use and climate. THE NEW PHYTOLOGIST 2024; 242:916-934. [PMID: 38482544 DOI: 10.1111/nph.19676] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
Deserts represent key carbon reservoirs, yet as these systems are threatened this has implications for biodiversity and climate change. This review focuses on how these changes affect desert ecosystems, particularly plant root systems and their impact on carbon and mineral nutrient stocks. Desert plants have diverse root architectures shaped by water acquisition strategies, affecting plant biomass and overall carbon and nutrient stocks. Climate change can disrupt desert plant communities, with droughts impacting both shallow and deep-rooted plants as groundwater levels fluctuate. Vegetation management practices, like grazing, significantly influence plant communities, soil composition, root microorganisms, biomass, and nutrient stocks. Shallow-rooted plants are particularly susceptible to climate change and human interference. To safeguard desert ecosystems, understanding root architecture and deep soil layers is crucial. Implementing strategic management practices such as reducing grazing pressure, maintaining moderate harvesting levels, and adopting moderate fertilization can help preserve plant-soil systems. Employing socio-ecological approaches for community restoration enhances carbon and nutrient retention, limits desert expansion, and reduces CO2 emissions. This review underscores the importance of investigating belowground plant processes and their role in shaping desert landscapes, emphasizing the urgent need for a comprehensive understanding of desert ecosystems.
Collapse
|
Review |
1 |
17 |
4
|
Li W, Liang H, Wang W, Liu J, Liu X, Lao S, Liang W, He J. Global cancer statistics for adolescents and young adults: population based study. J Hematol Oncol 2024; 17:99. [PMID: 39434099 PMCID: PMC11492650 DOI: 10.1186/s13045-024-01623-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Accurate and up-to-date estimates of the global cancer burden in adolescents and young adults (AYA) are scarce. This study aims to assess the global burden and trends of AYA cancer, with a focus on socioeconomic disparities, to inform global cancer control strategies. METHODS AYA cancer, defined as cancer occurring in individuals aged 15-39, was analyzed using data from the Global Burden of Disease (GBD) 2021 study and the Global Cancer Observatory (GLOBOCAN) 2022 project. We examined the global burden by age, sex, geographic location, and Human Development Index (HDI), as well as its temporal trends. Primary outcomes included age-standardized incidence and mortality rates (ASIR, ASMR) and the average annual percent change (AAPC). RESULTS In 2022, an estimated 1,300,196 incidental cases and 377,621 cancer-related deaths occurred among AYAs worldwide, with an ASIR of 40.3 per 100,000 and an ASMR of 11.8 per 100,000. The most common cancers were breast, thyroid, and cervical, while the leading causes of death were breast, cervical, and leukemia. The incidence and mortality were disproportionately higher among females (ASIR: 52.9 for females vs. 28.3 for males; ASMR: 13.1 for females vs. 10.6 for males). Countries with higher HDI experienced a higher incidence of AYA cancers (ASIR: 32.0 [low HDI] vs. 54.8 [very high HDI]), while countries with lower HDI faced a disproportionately higher mortality burden (ASMR: 17.2 [low HDI] vs. 8.4 [very high HDI]) despite their relatively low incidence. Disproportionality and regression measures highlighted significant HDI-related inequalities. AYA cancer incidence was stable from 2000 to 2011 (AAPC: - 0.04) but increased from 2012 to 2021 (AAPC: 0.53), driven by growing gonadal and colorectal cancers. Mortality decreased substantially from 2000 to 2011 (AAPC: - 1.64), but the decline slowed from 2012 (AAPC: - 0.32) probably due to increased deaths from gonadal cancers. These trends varied by sex, cancer type, geography, and HDI. CONCLUSION AYA cancers present a significant and growing global burden, with marked disparities across sex, geographic locations, and HDI levels. Policymakers should prioritize equitable resource allocation and implement targeted interventions to reduce these inequalities, particularly in low-HDI regions and with regard to gonadal cancers.
Collapse
|
research-article |
1 |
14 |
5
|
Li Y, Zheng Y, Huang J, Nie RC, Wu QN, Zuo Z, Yuan S, Yu K, Liang CC, Pan YQ, Zhao BW, Xu Y, Zhang Q, Zheng Y, Chen J, Zeng ZL, Wei W, Liu ZX, Xu RH, Luo HY. CAF-macrophage crosstalk in tumour microenvironments governs the response to immune checkpoint blockade in gastric cancer peritoneal metastases. Gut 2025; 74:350-363. [PMID: 39537239 PMCID: PMC11874311 DOI: 10.1136/gutjnl-2024-333617] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Peritoneal metastasis is the most common metastasis pattern of gastric cancer. Patients with gastric cancer peritoneal metastasis (GCPM) have a poor prognosis and respond poorly to conventional treatments. Recently, immune checkpoint blockade (ICB) has demonstrated favourable efficacy in the treatment of GCPM. Stratification of best responders and elucidation of resistance mechanisms of ICB therapies are highly important and remain major clinical challenges. DESIGN We performed a phase II trial involving patients with GCPM treated with ICB (sintilimab) combined with chemotherapy. The samples of primary tumours, GCPMs and peripheral blood from patients were collected for single-cell sequencing to comprehensively interpret the tumour microenvironment of GCPM and its impacts on immunotherapy efficacy. RESULTS The GCPM ecosystem coordinates a unique immunosuppressive pattern distinct from that of primary GC, which is dominated by a stroma-myeloid niche composed of SPP1+tumour-associated macrophages (TAMs) and Thrombospondin 2 (THBS2)+matrix cancer-associated fibroblasts (mCAFs). Consequently, this stroma-myeloid crosstalk is the major mediator of ICB resistance in patients with GCPM. Mechanistically, the accumulated THBS2+mCAFs facilitate the recruitment of peritoneum-specific tissue-resident macrophages and their transformation into SPP1+TAMs via the complement C3 and its receptor C3a receptor 1 (C3AR1), thereby forming a protumoral stroma-myeloid niche. Blocking the C3-C3AR1 axis disrupts the stroma-myeloid crosstalk and thereby significantly improves the benefits of ICB in in vivo models. CONCLUSION Our findings provide a new molecular portrait of cell compositions associated with ICB resistance in patients with GCPM and aid in the prioritisation of therapeutic candidates to potentiate immunotherapy.
Collapse
|
Clinical Trial, Phase II |
1 |
12 |
6
|
Xie Z, Liu D, Zhao Z, Gao C, Wang P, Jiang C, Liu X, Zhang X, Ren Z, Yan S, Hu W, Dong H. High Mobility Emissive Excimer Organic Semiconductor Towards Color-Tunable Light-Emitting Transistors. Angew Chem Int Ed Engl 2024; 63:e202319380. [PMID: 38246876 DOI: 10.1002/anie.202319380] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Organic light-emitting transistors (OLETs) are highly integrated and minimized optoelectronic devices with significant potential superiority in smart displays and optical communications. To realize these various applications, it is urgently needed for color-tunable emission in OLETs, but remains a great challenge as a result of the difficulty for designing organic semiconductors simultaneously integrating high carrier mobility, strong solid-state emission, and the ability for potential tunable colors. Herein, a high mobility emissive excimer organic semiconductor, 2,7-di(2-anthryl)-9H-fluorene (2,7-DAF) was reasonably designed by introducing a rotatable carbon-carbon single bond connecting two anthracene groups at the 2,7-sites of fluorene, and the small torsion angles simultaneously guarantee effective conjugation and suppress fluorescence quenching. Indeed, the unique stable dimer arrangement and herringbone packing mode of 2,7-DAF single crystal enables its superior integrated optoelectronic properties with high carrier mobility of 2.16 cm2 ⋅ V-1 ⋅ s-1 , and strong excimer emission with absolute photoluminescence quantum yield (PLQY) of 47.4 %. Furthermore, the voltage-dependent electrically induced color-tunable emission from orange to blue was also demonstrated for an individual 2,7-DAF single crystal based OLETs for the first time. This work opens the door for a new class of high mobility emissive excimer organic semiconductors, and provides a good platform for the study of color-tunable OLETs.
Collapse
Grants
- 2022YFB3603800, 2018YFA0703200 Ministry of Science and Technology
- 52233010, 52103245, 61890943, 22021002, 51725304 and 22305252 Innovative Research Group Project of the National Natural Science Foundation of China
- YSBR-053 Training Program for Excellent Young Innovators of Changsha
- 2023YFB3609000, 2022YFB3603800, 2018YFA0703200 Ministry of Science and Technology of China
- 52233010, 52103245, 22021002, and 22305252 Natural Science Foundation of China
- YSBR-053 CAS Project for Young Scientists in Basic Research
- BNLMS-CXXM-202012 Beijing National Laboratory for Molecular Sciences
- 2023M733555 China Postdoctoral Science Foundation
- GZB20230771 Postdoctoral Fellowship Program of CPSF
Collapse
|
|
1 |
10 |
7
|
Yuan L, Jiang H, Jia Y, Liao Y, Shao C, Zhou Y, Li J, Liao Y, Huang H, Pan Y, Wen W, Zhao X, Chen L, Jing X, Pan C, Wang W, Yao S, Zhang C. Fatty Acid Oxidation Supports Lymph Node Metastasis of Cervical Cancer via Acetyl-CoA-Mediated Stemness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308422. [PMID: 38520724 DOI: 10.1002/advs.202308422] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/18/2024] [Indexed: 03/25/2024]
Abstract
Accumulating evidence indicates that metabolic reprogramming of cancer cells supports the energy and metabolic demands during tumor metastasis. However, the metabolic alterations underlying lymph node metastasis (LNM) of cervical cancer (CCa) have not been well recognized. In the present study, it is found that lymphatic metastatic CCa cells have reduced dependency on glucose and glycolysis but increased fatty acid oxidation (FAO). Inhibition of carnitine palmitoyl transferase 1A (CPT1A) significantly compromises palmitate-induced cell stemness. Mechanistically, FAO-derived acetyl-CoA enhances H3K27 acetylation (H3K27Ac) modification level in the promoter of stemness genes, increasing stemness and nodal metastasis in the lipid-rich nodal environment. Genetic and pharmacological loss of CPT1A function markedly suppresses the metastatic colonization of CCa cells in tumor-draining lymph nodes. Together, these findings propose an effective method of cancer therapy by targeting FAO in patients with CCa and lymph node metastasis.
Collapse
|
|
1 |
10 |
8
|
Zhao C, Lou H, Liu Q, Pei S, Liao Q, Li Z. Efficient and transformation-free genome editing in pepper enabled by RNA virus-mediated delivery of CRISPR/Cas9. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2079-2082. [PMID: 38984692 DOI: 10.1111/jipb.13741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Tomato spotted wilt virus-mediated delivery of CRISPR/Cas9 bypasses the need for stable transformation and permits efficient, DNA-free genome editing in pepper. Remarkably, up to 77.9% of regenerated pepper plants contained heritable edits. This method has been validated with two pepper varieties and is compatible with existing tissue culture protocols.
Collapse
|
|
1 |
7 |
9
|
Liang H, Xu C, Guo D, Peng F, Chen N, Song H, Ji X. Dismantlable Coronated Nanoparticles for Coupling the Induction and Perception of Immunogenic Cell Death. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313097. [PMID: 38643386 DOI: 10.1002/adma.202313097] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Therapy-induced immunogenic cell death (ICD) can initiate both innate and adaptive immune responses for amplified anti-tumor efficacy. However, dying cell-released ICD signals are prone to being sequestered by the TIM-3 receptors on dendritic cell (DC) surfaces, preventing immune surveillance. Herein, dismantlable coronated nanoparticles (NPs) are fabricated as a type of spatiotemporally controlled nanocarriers for coupling tumor cell-mediated ICD induction to DC-mediated immune sensing. These NPs are loaded with an ICD inducer, mitoxantrone (MTO), and wrapped by a redox-labile anti-TIM-3 (αTIM-3) antibody corona, forming a separable core-shell structure. The antibody corona disintegrates under high levels of extracellular reactive oxygen species in the tumor microenvironment, exposing the MTO-loaded NP core for ICD induction and releasing functional αTIM-3 molecules for DC sensitization. Systemic administration of the coronated NPs augments DC maturation, promotes cytotoxic T cell recruitment, enhances tumor susceptibility to immune checkpoint blockade, and prevents the side effects of MTO. This study develops a promising nanoplatform to unleash the potential of host immunity in cancer therapy.
Collapse
|
|
1 |
6 |
10
|
Hou B, Ye J, Huang L, Cheng W, Chen F, Zhou H, Pan J, Gao J, Lai Y, Zhao Y, Huang W, Yu H, Xu Z. Tumor-specific delivery of clickable inhibitor for PD-L1 degradation and mitigating resistance of radioimmunotherapy. SCIENCE ADVANCES 2024; 10:eadq3940. [PMID: 39546592 PMCID: PMC11567003 DOI: 10.1126/sciadv.adq3940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Achieving selective and durable inhibition of programmed death ligand 1 (PD-L1) in tumors for T cell activation remains a major challenge in immune checkpoint blockade therapy. We herein presented a set of clickable inhibitors for spatially confined PD-L1 degradation and radioimmunotherapy of cancer. Using metabolic glycan engineering click bioorthogonal chemistry, PD-L1 expressed on tumor cell membranes was labeled with highly active azide groups. This enables covalently binding of the clickable inhibitor with PD-L1 and subsequent PD-L1 degradation. A pH-activatable nanoparticle responding to extracellular acidic pH of tumor was subsequently used to deliver the clickable PD-L1 inhibitor into extracellular tumor microenvironment for depleting PD-L1 on the surface of tumor cell and macrophage membranes in vivo. We further demonstrated that a combination of the clickable PD-L1 inhibitor with radiotherapy (RT) eradicated the established tumor by inhibiting RT-up-regulated PD-L1 in the tumor tissue. Therefore, selective PD-L1 blockade in tumors via the clickable PD-L1 inhibitor offers a versatile approach to promote cancer immunotherapy.
Collapse
|
research-article |
1 |
4 |
11
|
Han Y, Ren X, Wu T, Lei Li Y, Ma H, Ru Z, Jia Y, Feng Gao Z, Du Y, Wu D, Wei Q. Effective Enrichment of Free Radicals through Nanoconfinement Boosts Electrochemiluminescence of Carbon Dots Derived from Luminol. Angew Chem Int Ed Engl 2025; 64:e202414073. [PMID: 39248641 DOI: 10.1002/anie.202414073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/10/2024]
Abstract
Local enrichment of free radicals at the electrode interface may open new opportunities for the development of electrochemiluminescence (ECL) applications. The sensing platform was constructed by assembling ECL-emitting luminol derived carbon dots (Lu CDs) onto the heterojunction Tungsten disulfide/Covalent organic frameworks (WS2@COF) for the first time, establishing a nanoconfinement-reactor with significantly heightened ECL intensity and stability compared to the Lu CDs-H2O2 system. This enhanced performance is credited to the COF domain's restricted pore environment, where WS2@COF exhibits a more negative adsorption energy for H2O2, effectively enriching H2O2 in the catalytic edge sites of WS2. Furthermore, the internal electric field at the WS2 and COF interface accelerates electron flow, boosting WS2's catalytic activity and achieving domain-limited catalytic enhancement of ECL. Self-designed DNA nanomachines combined with cascading molecular keypad locking mechanisms are integrated into the biosensors, effectively guaranteeing the accuracy of the sensing process while providing crucial safeguards for molecular diagnostics and information security applications. In essence, this innovative approach represents the first system to enhance local free radical concentrations by enriching co-reactants on the electrode surface through nanoconfinement catalysis, yielding heightened ECL intensity. The potential impact of this novel strategy and sensing mechanism on real-bioanalysis applications is promising.
Collapse
|
|
1 |
4 |
12
|
Li Q, Huang Y, Zhu H, Zhu Y, Yi Y, Li X, Chen H, Li B, Li D, Chang Y. NIR-I Activated Orthogonal NIR-IIb/c Emissions in a Lanthanide-Doped Nanoparticle for Fluorescence Imaging and Information Encryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408097. [PMID: 39348236 PMCID: PMC11600275 DOI: 10.1002/advs.202408097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Indexed: 10/02/2024]
Abstract
Applying the orthogonal principle for distinguishable second near-infrared (NIR-II) emissions has brought new dimensions for ratio fluorescence imaging (RFI) detection and information encryption, deepening the tissue detection depth and improving signal-to-noise ratio and information security. However, the orthogonal NIR-II emissions underlying these advanced optical applications have been reported only in heterogeneous structures and mixtures, limiting their practicality and potential impact. Herein, NIR-I-activated orthogonal NIR-IIb/c (1530/1825 nm) emissions nanoparticles (ONNPs) are developed by spatially separated doping of Tm3+ and Er3+ emitter upon switching 808 and 980 nm excitations. RFI techniques and orthogonal NIR-II emission ONNPs are used to demonstrate vessel depth detection based on wavelength-dependent optical attenuation properties in tissue. The superiority of the optical coding and encoding process in a 4 × 1 binary matrix is demonstrated for anticounterfeiting and decryption imaging of quick-response (QR) code for information storage. The research progress of this NIR-II orthogonal emissions probe will drive the development of biomedical sensing, imaging safety, and future biophotonics technologies.
Collapse
|
research-article |
1 |
3 |
13
|
Fu R, Zhu Y, Liu Y, Yang Z, Lu R, Qiu Y, Lascoux M, Li P, Chen J. Shared xerophytic genes and their re-use in local adaptation to aridity in the desert plant Gymnocarpos przewalskii. Mol Ecol 2024; 33:e17380. [PMID: 38745400 DOI: 10.1111/mec.17380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
In order to thrive and survive, plant species need to combine stability in the long term and rapid response to environmental challenges in the short term. The former would be reflected by parallel or convergent adaptation across species, and the latter by pronounced local adaptation among populations of the same species. In the present study, we generated a high-quality genome and re-sequenced 177 individuals for Gymnocarpos przewalskii, an important desert plant species from North-West China, to detect local adaptation. We first focus on ancient adaptation to aridity at the molecular level by comparing the genomic data of 15 species that vary in their ability to withstand aridity. We found that a total of 118 genes were shared across xerophytic species but absent from non-xerophytic species. Of the 65 found in G. przewalskii, 63 were under purifying selection and two under positive selection. We then focused on local adaptation. Up to 20% of the G. przewalskii genome showed signatures of local adaptation to aridity during population divergence. Thirteen of the selected shared xerophytic genes were reused in local adaptation after population differentiation. Hence, only about 20% of the genes shared and specific to xerophytic species and associated with adaptation to aridity were later recruited for local adaptation in G. przewalskii.
Collapse
|
|
1 |
2 |
14
|
Gao L, Yang K, Xing C, Lin B, Zhao C, Dou X, Feng C. Simultaneous Fabrication of P and M Helices in One-Component Chiral System by Methanol-Water Mediated Dual Assembly Pathway. Angew Chem Int Ed Engl 2025; 64:e202417876. [PMID: 39558875 DOI: 10.1002/anie.202417876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
The synergetic evolution of multiple chiral structures stemmed from same building units is ubiquitous in nature and vital to living systems, but achieving it in artificial systems remains a challenge. Herein, we report a methanol-water mediated dual assembly pathway strategy for simultaneous construction of P and M helices in one-component chiral system. The conformation of l-phenylaniline derivates (LBpyF) is controlled to folded state in CH3OH due to the hydrogen bonds as well as C-H⋅⋅⋅π interaction between LBpyF and CH3OH. Addition of H2O into above CH3OH solution of LBpyF results in the simultaneous occurrence of two self-assembly pathways and double networks of P and M helices were therefore formed, due to the synchronous process of 1) self-assembly of folded LBpyF into M-helices and 2) H2O induced unfolding of folded LBpyF molecules followed by self-assembly of them into P-helices. The bipyridine core, phenyl ring, amide unit all adapted into different stacking modes in M-helices and P-helices, and energy analysis indicated that the minority M-helices were more thermodynamically favored products. This study provides an approach to explore synergetic evolution of multiple chiral structures by manipulating the multiple assembly pathway.
Collapse
|
|
1 |
2 |
15
|
Long S, Li M, Chen J, Zhong L, Dai G, Pan D, Liu W, Yi F, Ruan Y, Zou B, Chen X, Fu K, Li W. Transfer learning radiomic model predicts intratumoral tertiary lymphoid structures in hepatocellular carcinoma: a multicenter study. J Immunother Cancer 2025; 13:e011126. [PMID: 40037925 PMCID: PMC11881188 DOI: 10.1136/jitc-2024-011126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/16/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Intratumoral tertiary lymphoid structures (iTLS) in hepatocellular carcinoma (HCC) are associated with improved survival and may influence treatment decisions. However, their non-invasive detection remains challenging in HCC. We aim to develop a non-invasive model using baseline contrast-enhanced MRI to predict the iTLS status. METHODS A total of 660 patients with HCC who underwent surgery were retrospectively recruited from four centers between October 2015 and January 2023 and divided into training, internal test, and external validation sets. After features dimensionality and selection, corresponding features were used to construct transfer learning radiomic (TLR) models for diagnosing iTLS, and model interpretability was explored with pathway analysis in The Cancer Genome Atlas-Liver HCC. The performances of models were assessed using the area under the receiver operating characteristic curve (AUC). The log-rank test was used to evaluate the prognostic value of the TLR model. The combination therapy set of 101 patients with advanced HCC treated with first-line anti-programmed death 1 or ligand 1 plus antiangiogenic treatment between January 2021 and January 2024 was used to investigate the value of the TLR model for evaluating the treatment response. RESULTS The presence of iTLS was identified in 46.0% (n=308) patients. The TLR model demonstrated excellent performance in predicting the presence of iTLS in training (AUC=0.91, 95% CI: 0.87, 0.94), internal test (AUC=0.85, 95% CI: 0.77, 0.93) and external validation set (AUC=0.85, 95% CI: 0.81, 0.90). The TLR model-predicted iTLS group has favorable overall survival (HR=0.66; 95% CI: 0.48, 0.90; p=0.007) and relapse-free survival (HR=0.64; 95% CI: 0.48, 0.85; p=0.001) in the external validation set. The model-predicted iTLS status was associated with inflammatory response and specific tumor-associated signaling activation (all p<0.001). The proportion of treatment responders was significantly higher in the model-predicted group with iTLS than in the group without iTLS (36% vs 13.73%, p=0.009). CONCLUSION The TLR model has indicated accurate prediction of iTLS status, which may assist in the risk stratification for patients with HCC in clinical practice.
Collapse
|
Multicenter Study |
1 |
2 |
16
|
Zhang F, Zhang Z, Yang W, Peng Z, Sun J, Li G, Wei Y, Wang X, Zhao L, Xie W. Engineering Autologous Cell-Derived Exosomes to Boost Melanoma-Targeted Radio-Immunotherapy by Cascade cGAS-STING Pathway Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408769. [PMID: 39604223 DOI: 10.1002/smll.202408769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Radio-immunotherapy has offered emerging opportunities to treat invasive melanoma due to its immunostimulatory performances to activate antitumor immune responses. However, the immunosuppressive microenvironment and insufficient response rate significantly limit the practical efficacy. This study presents an autologous cell-derived exosomes (Exo)-engineered nanoagonist (MnExo@cGAMP) containing with metalloimmunotherapeutic agent (Mn2+ ions) and nucleotidyltransferase (2',3'-cGAMP, a STING agonist) for boosting melanoma-targeted radio-immunotherapy by cascade cGAS-STING pathway activation. The MnExo@cGAMP can efficiently accumulate in tumor cells due to the autologous targeting performance. Once internalized by tumor cells, the released Mn2+ ions will enhance stimulator of interferon gene (STING) binding and sensitize cyclic GMP-AMP (cGAS) to radiotherapy-induced double-straned DNA (dsNDA), resulting in amplification of cGAS-STING pathway activation together with X-ray irradiation. Meanwhile, loaded 2',3'-cGAMP can directly augment pathway activity acting as a secondary messenger. These cascade activations of cGAS-STING pathway trigger the overexpression of type I interferon, promote dendritic cells (DCs) maturation, antigen presentation, and increase CD8+ T cell activation, resulting effective radio-immunotherapeutic outcome by overcoming immune-suppression in melanoma. This study demonstrates a targeted therapeutic modality involving metalloimmunotherapy and agonist for efficient melanoma radio-immunotherapy by cascade cGAS-STING pathway activation.
Collapse
|
|
1 |
1 |
17
|
Tian X, Kan H, Yang L, Wang Z, Zhang T, Zhang K, Mao A, Wen X, Zhou T, Wang X, Zhang X, Feng L, Geng L. Investigating the Role of TRPV4 and GPR35 Interaction in Endothelial Dysfunction in Aging Mice. Aging Cell 2025; 24:e14469. [PMID: 39744893 PMCID: PMC12074021 DOI: 10.1111/acel.14469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 05/15/2025] Open
Abstract
Endothelial dysfunction, characterized by a decline in endothelial physiological functions, is a significant aspect of cardiovascular aging, contributing notably to arterial stiffness, atherosclerosis, and hypertension. Transient receptor potential channel V4 (TRPV4), a key member of Ca2+-permeable channels, plays a crucial role in maintaining vascular functions. However, the role and mechanisms of TRPV4 in aging-related endothelial dysfunction remain incompletely understood. Here, we demonstrated a marked reduction in endothelial TRPV4 function without alterations in its expression, leading to abnormal endothelial Ca2+ signaling and impaired vasodilation in aging mesenteric arteries. Employing transcriptome sequencing, co-IP, and PLA assays, we characterized G protein-coupled receptor 35 (GPR35) interacting with TRPV4, and abnormally enhanced interactions were found in aging endothelial cells. Subsequently, we revealed that intensive GPR35-TRPV4 interaction significantly contributes to endothelial dysfunction during aging, utilizing TRPV4 endothelial-specific knockout (TRPV4EC -/-), AAV-FLT1-shRNA (GPR35) mice, and GPR35 overexpressed/knocked-down HUVECs. Furthermore, molecular docking analysis and subsequent co-IP and pressure myograph experiments indicated that both Thonningianin A and Carfilzomib efficiently restored the GPR35-TRPV4 interaction, preventing endothelial dysfunction and vasodilation impairment. Our study identifies the crucial role of GPR35-TRPV4 interaction in aging-associated abnormal endothelial function and vascular tone modulation. Restoring GPR35-TRPV4 interaction via Thonningianin A or Carfilzomib represents a promising precision approach for aging-related endothelial dysfunction.
Collapse
|
research-article |
1 |
1 |
18
|
Liu S, Wang J, Li Y, Wang M, Du P, Zhang Z, Li W, Sun R, Fan M, Yang M, Yin H. A Multivalent mRNA Therapeutic Vaccine Exhibits Breakthroughs in Immune Tolerance and Virological Suppression of HBV by Stably Presenting the Pre-S Antigen on the Cell Membrane. Pharmaceutics 2025; 17:211. [PMID: 40006578 PMCID: PMC11859219 DOI: 10.3390/pharmaceutics17020211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: In chronic hepatitis B infection (CHB), the hepatitis B surface antigen (HBsAg) continuously exhausts the hepatitis B surface antibody (HBsAb), which leads to the formation of immune tolerance. Accordingly, the hepatitis B virus (HBV) infection can be blocked by inhibiting the binding of the hepatitis B surface pre-S1/pre-S2 antigen to the hepatocyte receptor NTCP, but the clinical cure rate of pre-S-based vaccines for CHB is limited. Methods: In this study, we designed and prepared multivalent hepatitis B therapeutic mRNA vaccines encoding three hepatitis B surface antigen proteins (L, M, and S) at the cell membrane, verified via in vitro transfection and expression experiments. An in vivo immunization experiment in HBV transgenic (Tg) mice was first completed. Subsequently, an adeno-associated virus plasmid vector carrying the HBV1.2-fold genome (pAAV HBV1.2) model and the adeno-associated virus vector carrying HBV1.3-fold genome (rAAV HBV1.3) model were constructed and immunized with mRNA vaccines. The HBV antigen, antibodies, and HBV DNA in serum were detected. Indirect (enzyme-linked immunosorbent assay) ELISA were made to analyze the activated antigen-specific IgG in HBV Tg mice. Antigen-dependent T-cell activation experiments were carried out, as well as the acute toxicity tests in mice. Results: The L protein/pre-S antigens could be stably presented at the cell membrane with the support of the S protein (and M protein). After vaccinations, the vaccines effectively reactivated the production of high levels of HBsAb, disrupted immune tolerance, and activated the production of high-affinity antibodies against structural pre-S antigen in HBV Tg mice. The HBsAg seroconversion and serum HBV DNA clearance were achieved in two HBV mice models. Furthermore, pre-S antigen-dependent T-cell response against HBV infection was confirmed. The therapeutic vaccine also showed safety in mice. Conclusions: A novel therapeutic mRNA vaccine was developed to break through HBsAg-mediated immune tolerance and treat CHB by stably presenting the pre-S antigen at the membrane, and the vaccine has great potential for the functional cure of CHB.
Collapse
|
research-article |
1 |
1 |
19
|
Li C, He D, Liu Y, Yang C, Zhang L. Anti-hypertensive medication adherence, socioeconomic status, and cognitive aging in the Chinese community-dwelling middle-aged and older adults ≥ 45 years: a population-based longitudinal study. BMC Med 2025; 23:121. [PMID: 40001139 PMCID: PMC11863513 DOI: 10.1186/s12916-025-03949-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND It remains unclear whether anti-hypertensive medication use is associated with cognitive aging in general Chinese middle-aged and older adults, as well as the interplay with socioeconomic status (SES). We aim to examine associations of anti-hypertensive medication adherence, SES, and cognitive aging in Chinese middle-aged and older adults. METHODS Our study was based on the China Health and Retirement Longitudinal Study, an ongoing longitudinal national survey recruiting community-dwelling adults aged ≥ 45 years. Baseline anti-hypertensive medication use was assessed at wave 1. Longitudinal adherence to anti-hypertensive medication was assessed during waves 1 and 2. SES was assessed using income, education, employment, and medical insurance. The annual rate of cognitive change was assessed using cognitive Z scores. Linear mixed models were used to examine longitudinal associations. RESULTS A total of 9229 participants were included (mean [SD] age: 57.1 [8.9] years; men: 50.8%). After controlling for blood pressure and other characteristics, participants taking anti-hypertensive medication at baseline, compared to participants not using medication, had a significantly decelerated decline in global cognition (β = 0.014; 95% confidence interval [CI], 0.003 to 0.025 SD/year; P = 0.01) and memory (β = 0.021; 95% CI, 0.008 to 0.034 SD/year; P = 0.001), respectively. Similarly, participants with high anti-hypertensive medication adherence during follow-up had slower declines in global cognition (β = 0.014; 95% CI, 0.002 to 0.027 SD/year; P = 0.02) and memory (β = 0.023; 95% CI, 0.008 to 0.038 SD/year; P = 0.003), compared to the low adherence group. There were no significant differences in cognitive decline between hypertension participants using or persistently adhering to medication and normotension participants. The SES significantly interacted with anti-hypertensive medication in associations with cognitive aging, with more evident associations observed in low SES subgroup (all P for interaction < 0.05). Several sensitivity analyses were conducted, observing consistent findings. CONCLUSIONS Adhering to anti-hypertensive medication was associated with decelerated cognitive aging in Chinese community-dwelling middle-aged and older adults, especially in participants with low SES. These findings indicate that promoting anti-hypertensive medication use could be important to achieve healthy and inclusive cognitive aging in general Chinese middle-aged and older adults living with hypertension.
Collapse
|
research-article |
1 |
1 |
20
|
Wang R, Ding L, Xue J, Wu H, Cai C, Qiao Z, Caro J, Wang H. Engineering of Covalent Organic Framework Nanosheet Membranes for Fast and Efficient Ion Sieving: Charge-Induced Cation Confined Transport. SMALL METHODS 2025; 9:e2401111. [PMID: 39404812 DOI: 10.1002/smtd.202401111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/07/2024] [Indexed: 03/22/2025]
Abstract
Artificial membranes with ion-selective nanochannels for high-efficiency mono/divalent ion separation are of great significance in water desalination and lithium-ion extraction, but they remain a great challenge due to the slight physicochemical property differences of various ions. Here, the successful synthesis of two-dimensional TpEBr-based covalent organic framework (COF) nanosheets, and the stacking of them as consecutive membranes for efficient mono/divalent ion separation is reported. The obtained COF nanosheet membranes with intrinsic one-dimensional pores and abundant cationic sites display high permeation rates for monovalent cations (K+, Na+, Li+) of ≈0.1-0.3 mol m-2 h-1, while the value of divalent cations (Ca2+, Mg2+) is two orders of magnitude lower, resulting in an ultrahigh mono/divalent cation separation selectivity up to 130.4, superior to the state-of-the-art ion sieving membranes. Molecular dynamics simulations further confirm that electrostatic interaction controls the confined transport of cations through the cationic COF nanopores, where multivalent cations face i) strong electrostatic repulsion and ii) steric transport hindrance since the large hydrated divalent cations are retarded due to a layer of strongly adsorbed chloride ions at the pore wall, while smaller monovalent cations can swiftly permeate through the nanopores.
Collapse
|
|
1 |
1 |
21
|
Han SY, Zhao ZX, Wu J. In situ genetic engineering of host T-cells based on acellular scaffold strategy: a big but also small step for solid tumor immunotherapy. Mil Med Res 2024; 11:12. [PMID: 38308320 PMCID: PMC10837930 DOI: 10.1186/s40779-024-00517-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
|
Letter |
1 |
1 |
22
|
An Q, Duan L, Wang Y, Wang F, Liu X, Liu C, Hu Q. Role of CD4 + T cells in cancer immunity: a single-cell sequencing exploration of tumor microenvironment. J Transl Med 2025; 23:179. [PMID: 39953548 PMCID: PMC11829416 DOI: 10.1186/s12967-025-06167-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Recent oncological research has intensely focused on the tumor immune microenvironment (TME), particularly the functions of CD4 + T lymphocytes. CD4+ T lymphocytes have been implicated in antigen presentation, cytokine release, and cytotoxicity, suggesting their contribution to the dynamics of the TME. Furthermore, the application of single-cell sequencing has yielded profound insights into the phenotypic diversity and functional specificity of CD4+ T cells in the TME. In this review, we discuss the current findings from single-cell analyses, emphasizing the heterogeneity of CD4+ T cell subsets and their implications in tumor immunology. In addition, we review the critical signaling pathways and molecular networks underpinning CD4+ T cell activities, thereby offering novel perspectives on therapeutic targets and strategies for cancer treatment and prognosis.
Collapse
|
Review |
1 |
1 |
23
|
Li Q, Liang Z, Huang Y, Zhang W, Xie S, Zhong Y, Zhao C, Luo Z, Huang S. Tailoring Self-Catalytic N─Co Bonds into Heterostructure Architectures: Deciphering Polytellurides Conversion Mechanism Toward Ultralong-Lifespan Potassium Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2502894. [PMID: 40066488 DOI: 10.1002/adma.202502894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/28/2025] [Indexed: 05/06/2025]
Abstract
Transition metal tellurides (TMTes) are promising anodes for potassium-ion batteries (PIBs) due to their high theoretical specific capacity and impressive electronic conductivity. Nevertheless, TMTes suffer from persistent capacity degradation due to the large volume expansion, high ion-diffusion energy barriers, and the dissolution/shuttle of potassium polytellurides (KxTey). Herein, a heterostructured CoTe2 composite equipped with a self-catalytic center (N-CoTe2/LTTC) is developed, exploiting its low-tortuosity tunneling, chemical tunability, and self-catalytic properties to elevate cycling stability to new heights. Systematic experiments have verified that the elaborate N-CoTe2/LTTC provides a short-range and efficient electron/ion transport path, accelerates K+ diffusion kinetics, and suppresses huge volume distortion. Notably, the N─Co bonds self-catalytic center can promote the adsorption capabilities and accelerate the conversion kinetics for KxTey under the synergistic effect of heterojunction. Consequently, the optimized N-CoTe2/LTTC electrode delivers an ultralong‑lifespan cyclability (over 25 000 cycles at 2.0 A g-1, only 0.0019% capacity decay rate per cycle), outperforming those of reported Te-based anodes. Finally, the N-CoTe2/LTTC//PTCDA@450 full cell manifests impressive stability (over 4300 cycles at 2.0 A g-1). This work uncovers the impact of catalytic centers on the conversion of KxTey and provides valuable insights for rationally designing ultralong-lifespan TMTes anodes for PIBs.
Collapse
|
|
1 |
1 |
24
|
Gao N, Wu H, Li B, Yu H, Wu L, Zhang J, Zhang N, Lin B, Zhao Q, Gao Z. Nucleos(t)ide analogs continuation is not associated with a lower risk of HBsAg seroreversion following PEG-IFN-induced HBsAg loss. Virol J 2025; 22:80. [PMID: 40108632 PMCID: PMC11924841 DOI: 10.1186/s12985-025-02700-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND/AIMS It is unclear whether nucleos(t)ide analogs (NUCs) continuation provides clinical benefits following HBsAg seroclearance with pegylated interferon (PEG-IFN)-based therapy. This study aims to investigate the role of NUCs continuation in HBsAg seroreversion. METHODS Patients who experienced serum HBsAg loss after PEG-IFN-based therapy were enrolled and followed up for 96 weeks. Propensity score matching (PSM) was performed using a 1:1 ratio to adjust for the associated factors. A multivariate logistic regression analysis was used to determine the factors associated with HBsAg seroreversion. RESULTS In total, 220 patients with HBsAg seroclearance were divided into NUCs (n = 54) and non-NUCs (n = 166) consolidation therapy groups. At week 96, the HBsAg seroreversion (12/54 vs. 31/166, P = 0.709) and virological relapse (2/54 vs. 10/166, P = 0.759) rates were similar in the NUCs and non-NUCs groups. After PSM, HBsAg seroreversion (12/53 vs. 13/53; P = 1.000) and virological relapse (2/53 vs. 4/53; P = 0.674) rates were not significantly different between the two groups. Serum hepatitis B surface antibody titer (odds ratio, 0.388; 95% confidence interval, 0.245-0.616; P < 0.001) was found to be associated with HBsAg seroreversion, while NUCs continuation was not related to HBsAg seroreversion. CONCLUSIONS NUCs continuation is not associated with a lower risk of HBsAg seroreversion in patients with serum HBsAg loss following PEG-IFN-based therapy.
Collapse
|
research-article |
1 |
1 |
25
|
Urgesa G, Lu L, Gao J, Guo L, Qin T, Liu B, Xie J, Xi B. Natural Sunlight-Mediated Emodin Photoinactivation of Aeromonas hydrophila. Int J Mol Sci 2024; 25:5444. [PMID: 38791482 PMCID: PMC11121522 DOI: 10.3390/ijms25105444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Aeromonas hydrophila can be a substantial concern, as it causes various diseases in aquaculture. An effective and green method for inhibiting A. hydrophila is urgently required. Emodin, a naturally occurring anthraquinone compound, was exploited as a photo-antimicrobial agent against A. hydrophila. At the minimum inhibitory concentration of emodin (256 mg/L) to inactivate A. hydrophilia in 30 min, an 11.32% survival rate was observed under 45 W white compact fluorescent light irradiation. In addition, the antibacterial activity under natural sunlight (0.78%) indicated its potential for practical application. Morphological observations demonstrated that the cell walls and membranes of A. hydrophila were susceptible to damage by emodin when exposed to light irradiation. More importantly, the photoinactivation of A. hydrophila was predominantly attributed to the hydroxyl radicals and superoxide radicals produced by emodin, according to the trapping experiment and electron spin resonance spectroscopy. Finally, a light-dependent reactive oxygen species punching mechanism of emodin to photoinactivate A. hydrophila was proposed. This study highlights the potential use of emodin in sunlight-mediated applications for bacterial control, thereby providing new possibilities for the use of Chinese herbal medicine in aquatic diseases prevention.
Collapse
|
research-article |
1 |
1 |