Tran S, Sipila P, Thakur S, Zhang C, Narendran A. Identification and In Vivo Validation of Unique Anti-Oncogenic Mechanisms Involving Protein Kinase Signaling and Autophagy Mediated by the Investigational Agent PV-10.
Cancers (Basel) 2024;
16:1520. [PMID:
38672602 PMCID:
PMC11048188 DOI:
10.3390/cancers16081520]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
PV-10 is a 10% formulation of rose bengal sodium that has potent immunotherapeutic and anti-cancer activity against various tumors, including metastatic melanoma and refractory neuroblastoma. Currently, PV-10 is undergoing clinical testing for refractory metastatic neuroendocrine cancer and melanomas. However, preclinical investigation of PV-10 activity and its mechanisms against phenotypically and molecularly diverse adult solid tumors had not been conducted. In a panel of human cell lines derived from breast, colorectal, head and neck, and testicular cancers, we demonstrated that PV-10 induces cytotoxicity by apoptotic and autophagic pathways involving caspase-mediated PARP cleavage, downregulation of SQSTM1/p62, and upregulation of beclin-1. Treatment with PV-10 also consistently reduced phosphorylation of WNK1, which has been implicated in cancer cell migration and autophagy inhibition. By wound healing assay, PV-10 treatment inhibited the migration of cancer cells. Finally, significant inhibition of tumor growth was also noted in tumor-bearing mice treated with PV-10 by intralesional or systemic administration. In addition to known PV-10-mediated tumor-specific cytotoxic effects, we identified the mechanisms of PV-10 and provide new insights into its effect on autophagy and metastasis. Our data provide essential mechanism-based evidence and biomarkers of activity to formulate clinical studies of PV-10 in the future.
Collapse