1
|
Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R, Stanton C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 2022; 11:e1260. [PMID: 35212478 PMCID: PMC8756738 DOI: 10.1002/mbo3.1260] [Citation(s) in RCA: 328] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
It is well established that the gut microbiota plays an important role in host health and is perturbed by several factors including antibiotics. Antibiotic-induced changes in microbial composition can have a negative impact on host health including reduced microbial diversity, changes in functional attributes of the microbiota, formation, and selection of antibiotic-resistant strains making hosts more susceptible to infection with pathogens such as Clostridioides difficile. Antibiotic resistance is a global crisis and the increased use of antibiotics over time warrants investigation into its effects on microbiota and health. In this review, we discuss the adverse effects of antibiotics on the gut microbiota and thus host health, and suggest alternative approaches to antibiotic use.
Collapse
|
Review |
3 |
328 |
2
|
Shivanna M, Otake K, Song B, van Wyk LM, Yang Q, Kumar N, Feldmann WK, Pham T, Suepaul S, Space B, Barbour LJ, Kitagawa S, Zaworotko MJ. Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angew Chem Int Ed Engl 2021; 60:20383-20390. [PMID: 34250717 PMCID: PMC8457195 DOI: 10.1002/anie.202106263] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 01/03/2023]
Abstract
Structural changes at the active site of an enzyme induced by binding to a substrate molecule can result in enhanced activity in biological systems. Herein, we report that the new hybrid ultramicroporous material sql-SIFSIX-bpe-Zn exhibits an induced fit binding mechanism when exposed to acetylene, C2 H2 . The resulting phase change affords exceptionally strong C2 H2 binding that in turn enables highly selective C2 H2 /C2 H4 and C2 H2 /CO2 separation demonstrated by dynamic breakthrough experiments. sql-SIFSIX-bpe-Zn was observed to exhibit at least four phases: as-synthesised (α); activated (β); and C2 H2 induced phases (β' and γ). sql-SIFSIX-bpe-Zn-β exhibited strong affinity for C2 H2 at ambient conditions as demonstrated by benchmark isosteric heat of adsorption (Qst ) of 67.5 kJ mol-1 validated through in situ pressure gradient differential scanning calorimetry (PG-DSC). Further, in situ characterisation and DFT calculations provide insight into the mechanism of the C2 H2 induced fit transformation, binding positions and the nature of host-guest and guest-guest interactions.
Collapse
|
research-article |
4 |
54 |
3
|
Sisodiya SM, Whelan CD, Hatton SN, Huynh K, Altmann A, Ryten M, Vezzani A, Caligiuri ME, Labate A, Gambardella A, Ives‐Deliperi V, Meletti S, Munsell BC, Bonilha L, Tondelli M, Rebsamen M, Rummel C, Vaudano AE, Wiest R, Balachandra AR, Bargalló N, Bartolini E, Bernasconi A, Bernasconi N, Bernhardt B, Caldairou B, Carr SJ, Cavalleri GL, Cendes F, Concha L, Desmond PM, Domin M, Duncan JS, Focke NK, Guerrini R, Hamandi K, Jackson GD, Jahanshad N, Kälviäinen R, Keller SS, Kochunov P, Kowalczyk MA, Kreilkamp BA, Kwan P, Lariviere S, Lenge M, Lopez SM, Martin P, Mascalchi M, Moreira JC, Morita‐Sherman ME, Pardoe HR, Pariente JC, Raviteja K, Rocha CS, Rodríguez‐Cruces R, Seeck M, Semmelroch MK, Sinclair B, Soltanian‐Zadeh H, Stein DJ, Striano P, Taylor PN, Thomas RH, Thomopoulos SI, Velakoulis D, Vivash L, Weber B, Yasuda CL, Zhang J, Thompson PM, McDonald CR, ENIGMA Consortium Epilepsy Working Group. The ENIGMA-Epilepsy working group: Mapping disease from large data sets. Hum Brain Mapp 2020; 43:113-128. [PMID: 32468614 PMCID: PMC8675408 DOI: 10.1002/hbm.25037] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common and serious neurological disorder, with many different constituent conditions characterized by their electro clinical, imaging, and genetic features. MRI has been fundamental in advancing our understanding of brain processes in the epilepsies. Smaller-scale studies have identified many interesting imaging phenomena, with implications both for understanding pathophysiology and improving clinical care. Through the infrastructure and concepts now well-established by the ENIGMA Consortium, ENIGMA-Epilepsy was established to strengthen epilepsy neuroscience by greatly increasing sample sizes, leveraging ideas and methods established in other ENIGMA projects, and generating a body of collaborating scientists and clinicians to drive forward robust research. Here we review published, current, and future projects, that include structural MRI, diffusion tensor imaging (DTI), and resting state functional MRI (rsfMRI), and that employ advanced methods including structural covariance, and event-based modeling analysis. We explore age of onset- and duration-related features, as well as phenomena-specific work focusing on particular epilepsy syndromes or phenotypes, multimodal analyses focused on understanding the biology of disease progression, and deep learning approaches. We encourage groups who may be interested in participating to make contact to further grow and develop ENIGMA-Epilepsy.
Collapse
|
Review |
5 |
50 |
4
|
Huang Y, Jiang L, Shi B, Ryan KM, Wang J. Highly Efficient Oxygen Evolution Reaction Enabled by Phosphorus Doping of the Fe Electronic Structure in Iron-Nickel Selenide Nanosheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101775. [PMID: 34302445 PMCID: PMC8456200 DOI: 10.1002/advs.202101775] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Indexed: 05/15/2023]
Abstract
The electronic structure of active sites is critically important for electrochemical reactions. Here, the authors report a facile approach to independently regulate the electronic structure of Fe in Ni0.75 Fe0.25 Se2 by P doping. The resulting electrode exhibits superior catalytic performance for the oxygen evolution reaction (OER) showing a low overpotential (238 mV at 100 mA cm-2 , 185 mV at 10 mA cm-2 ) and an impressive durability in an alkaline medium. Additionally, the mass activity of 328.19 A g-1 and turnover frequency (TOF) of 0.18 s-1 at an overpotential of 500 mV are obtained for P─Ni0.75 Fe0.25 Se2 which is much higher than that of Ni0.75 Fe0.25 Se2 and RuO2 . This work presents a new strategy for the rational design of efficient electrocatalysts for OER.
Collapse
|
research-article |
4 |
47 |
5
|
Gutman BA, van Erp TG, Alpert K, Ching CRK, Isaev D, Ragothaman A, Jahanshad N, Saremi A, Zavaliangos‐Petropulu A, Glahn DC, Shen L, Cong S, Alnæs D, Andreassen OA, Doan NT, Westlye LT, Kochunov P, Satterthwaite TD, Wolf DH, Huang AJ, Kessler C, Weideman A, Nguyen D, Mueller BA, Faziola L, Potkin SG, Preda A, Mathalon DH, Bustillo J, Calhoun V, Ford JM, Walton E, Ehrlich S, Ducci G, Banaj N, Piras F, Piras F, Spalletta G, Canales‐Rodríguez EJ, Fuentes‐Claramonte P, Pomarol‐Clotet E, Radua J, Salvador R, Sarró S, Dickie EW, Voineskos A, Tordesillas‐Gutiérrez D, Crespo‐Facorro B, Setién‐Suero E, van Son JM, Borgwardt S, Schönborn‐Harrisberger F, Morris D, Donohoe G, Holleran L, Cannon D, McDonald C, Corvin A, Gill M, Filho GB, Rosa PGP, Serpa MH, Zanetti MV, Lebedeva I, Kaleda V, Tomyshev A, Crow T, James A, Cervenka S, Sellgren CM, Fatouros‐Bergman H, Agartz I, Howells F, Stein DJ, Temmingh H, Uhlmann A, de Zubicaray GI, McMahon KL, Wright M, Cobia D, Csernansky JG, Thompson PM, Turner JA, Wang L. A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium. Hum Brain Mapp 2022; 43:352-372. [PMID: 34498337 PMCID: PMC8675416 DOI: 10.1002/hbm.25625] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
Collapse
|
Meta-Analysis |
3 |
46 |
6
|
Fogarty H, Ward SE, Townsend L, Karampini E, Elliott S, Conlon N, Dunne J, Kiersey R, Naughton A, Gardiner M, Byrne M, Bergin C, O'Sullivan JM, Martin‐Loeches I, Nadarajan P, Bannan C, Mallon PW, Curley GF, Preston RJS, Rehill AM, Baker RI, Cheallaigh CN, O'Donnell JS. Sustained VWF-ADAMTS-13 axis imbalance and endotheliopathy in long COVID syndrome is related to immune dysfunction. J Thromb Haemost 2022; 20:2429-2438. [PMID: 35875995 PMCID: PMC9349977 DOI: 10.1111/jth.15830] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prolonged recovery is common after acute SARS-CoV-2 infection; however, the pathophysiological mechanisms underpinning Long COVID syndrome remain unknown. VWF/ADAMTS-13 imbalance, dysregulated angiogenesis, and immunothrombosis are hallmarks of acute COVID-19. We hypothesized that VWF/ADAMTS-13 imbalance persists in convalescence together with endothelial cell (EC) activation and angiogenic disturbance. Additionally, we postulate that ongoing immune cell dysfunction may be linked to sustained EC and coagulation activation. PATIENTS AND METHODS Fifty patients were reviewed at a minimum of 6 weeks following acute COVID-19. ADAMTS-13, Weibel Palade Body (WPB) proteins, and angiogenesis-related proteins were assessed and clinical evaluation and immunophenotyping performed. Comparisons were made with healthy controls (n = 20) and acute COVID-19 patients (n = 36). RESULTS ADAMTS-13 levels were reduced (p = 0.009) and the VWF-ADAMTS-13 ratio was increased in convalescence (p = 0.0004). Levels of platelet factor 4 (PF4), a putative protector of VWF, were also elevated (p = 0.0001). A non-significant increase in WPB proteins Angiopoietin-2 (Ang-2) and Osteoprotegerin (OPG) was observed in convalescent patients and WPB markers correlated with EC parameters. Enhanced expression of 21 angiogenesis-related proteins was observed in convalescent COVID-19. Finally, immunophenotyping revealed significantly elevated intermediate monocytes and activated CD4+ and CD8+ T cells in convalescence, which correlated with thrombin generation and endotheliopathy markers, respectively. CONCLUSION Our data provide insights into sustained EC activation, dysregulated angiogenesis, and VWF/ADAMTS-13 axis imbalance in convalescent COVID-19. In keeping with the pivotal role of immunothrombosis in acute COVID-19, our findings support the hypothesis that abnormal T cell and monocyte populations may be important in the context of persistent EC activation and hemostatic dysfunction during convalescence.
Collapse
|
brief-report |
3 |
44 |
7
|
O'Halloran S, Pandit A, Heise A, Kellett A. Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204072. [PMID: 36585380 PMCID: PMC9982557 DOI: 10.1002/advs.202204072] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Two-photon polymerization (TPP) has become a premier state-of-the-art method for microscale fabrication of bespoke polymeric devices and surfaces. With applications ranging from the production of optical, drug delivery, tissue engineering, and microfluidic devices, TPP has grown immensely in the past two decades. Significantly, the field has expanded from standard acrylate- and epoxy-based photoresists to custom formulated monomers designed to change the hydrophilicity, surface chemistry, mechanical properties, and more of the resulting structures. This review explains the essentials of TPP, from its initial conception through to standard operating principles and advanced chemical modification strategies for TPP materials. At the outset, the fundamental chemistries of radical and cationic polymerization are described, along with strategies used to tailor mechanical and functional properties. This review then describes TPP systems and introduces an array of commonly used photoresists including hard polyacrylic resins, soft hydrogel acrylic esters, epoxides, and organic/inorganic hybrid materials. Specific examples of each class-including chemically modified photoresists-are described to inform the understanding of their applications to the fields of tissue-engineering scaffolds, micromedical, optical, and drug delivery devices.
Collapse
|
Review |
2 |
39 |
8
|
Narancic T, Salvador M, Hughes GM, Beagan N, Abdulmutalib U, Kenny ST, Wu H, Saccomanno M, Um J, O'Connor KE, Jiménez JI. Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates. Microb Biotechnol 2021; 14:2463-2480. [PMID: 33404203 PMCID: PMC8601165 DOI: 10.1111/1751-7915.13712] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/26/2023] Open
Abstract
The throwaway culture related to the single-use materials such as polyethylene terephthalate (PET) has created a major environmental concern. Recycling of PET waste into biodegradable plastic polyhydroxyalkanoate (PHA) creates an opportunity to improve resource efficiency and contribute to a circular economy. We sequenced the genome of Pseudomonas umsongensis GO16 previously shown to convert PET-derived terephthalic acid (TA) into PHA and performed an in-depth genome analysis. GO16 can degrade a range of aromatic substrates in addition to TA, due to the presence of a catabolic plasmid pENK22. The genetic complement required for the degradation of TA via protocatechuate was identified and its functionality was confirmed by transferring the tph operon into Pseudomonas putida KT2440, which is unable to utilize TA naturally. We also identified the genes involved in ethylene glycol (EG) metabolism, the second PET monomer, and validated the capacity of GO16 to use EG as a sole source of carbon and energy. Moreover, GO16 possesses genes for the synthesis of both medium and short chain length PHA and we have demonstrated the capacity of the strain to convert mixed TA and EG into PHA. The metabolic versatility of GO16 highlights the potential of this organism for biotransformations using PET waste as a feedstock.
Collapse
|
research-article |
4 |
39 |
9
|
Obaid G, Bano S, Thomsen H, Callaghan S, Shah N, Swain JWR, Jin W, Ding X, Cameron CG, McFarland SA, Wu J, Vangel M, Stoilova‐McPhie S, Zhao J, Mino‐Kenudson M, Lin C, Hasan T. Remediating Desmoplasia with EGFR-Targeted Photoactivable Multi-Inhibitor Liposomes Doubles Overall Survival in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104594. [PMID: 35748165 PMCID: PMC9404396 DOI: 10.1002/advs.202104594] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/31/2022] [Indexed: 05/20/2023]
Abstract
Desmoplasia is characteristic of pancreatic ductal adenocarcinoma (PDAC), which exhibits 5-year survival rates of 3%. Desmoplasia presents physical and biochemical barriers that contribute to treatment resistance, yet depleting the stroma alone is unsuccessful and even detrimental to patient outcomes. This study is the first demonstration of targeted photoactivable multi-inhibitor liposomes (TPMILs) that induce both photodynamic and chemotherapeutic tumor insult, while simultaneously remediating desmoplasia in orthotopic PDAC. TPMILs targeted with cetuximab (anti-EGFR mAb) contain lipidated benzoporphyrin derivative (BPD-PC) photosensitizer and irinotecan. The desmoplastic tumors comprise human PDAC cells and patient-derived cancer-associated fibroblasts. Upon photoactivation, the TPMILs induce 90% tumor growth inhibition at only 8.1% of the patient equivalent dose of nanoliposomal irinotecan (nal-IRI). Without EGFR targeting, PMIL photoactivation is ineffective. TPMIL photoactivation is also sixfold more effective at inhibiting tumor growth than a cocktail of Visudyne-photodynamic therapy (PDT) and nal-IRI, and also doubles survival and extends progression-free survival by greater than fivefold. Second harmonic generation imaging reveals that TPMIL photoactivation reduces collagen density by >90% and increases collagen nonalignment by >103 -fold. Collagen nonalignment correlates with a reduction in tumor burden and survival. This single-construct phototoxic, chemotherapeutic, and desmoplasia-remediating regimen offers unprecedented opportunities to substantially extend survival in patients with otherwise dismal prognoses.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
34 |
10
|
Kieffer SR, Lowndes NF. Immediate-Early, Early, and Late Responses to DNA Double Stranded Breaks. Front Genet 2022; 13:793884. [PMID: 35173769 PMCID: PMC8841529 DOI: 10.3389/fgene.2022.793884] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Loss or rearrangement of genetic information can result from incorrect responses to DNA double strand breaks (DSBs). The cellular responses to DSBs encompass a range of highly coordinated events designed to detect and respond appropriately to the damage, thereby preserving genomic integrity. In analogy with events occurring during viral infection, we appropriate the terms Immediate-Early, Early, and Late to describe the pre-repair responses to DSBs. A distinguishing feature of the Immediate-Early response is that the large protein condensates that form during the Early and Late response and are resolved upon repair, termed foci, are not visible. The Immediate-Early response encompasses initial lesion sensing, involving poly (ADP-ribose) polymerases (PARPs), KU70/80, and MRN, as well as rapid repair by so-called ‘fast-kinetic’ canonical non-homologous end joining (cNHEJ). Initial binding of PARPs and the KU70/80 complex to breaks appears to be mutually exclusive at easily ligatable DSBs that are repaired efficiently by fast-kinetic cNHEJ; a process that is PARP-, ATM-, 53BP1-, Artemis-, and resection-independent. However, at more complex breaks requiring processing, the Immediate-Early response involving PARPs and the ensuing highly dynamic PARylation (polyADP ribosylation) of many substrates may aid recruitment of both KU70/80 and MRN to DSBs. Complex DSBs rely upon the Early response, largely defined by ATM-dependent focal recruitment of many signalling molecules into large condensates, and regulated by complex chromatin dynamics. Finally, the Late response integrates information from cell cycle phase, chromatin context, and type of DSB to determine appropriate pathway choice. Critical to pathway choice is the recruitment of p53 binding protein 1 (53BP1) and breast cancer associated 1 (BRCA1). However, additional factors recruited throughout the DSB response also impact upon pathway choice, although these remain to be fully characterised. The Late response somehow channels DSBs into the appropriate high-fidelity repair pathway, typically either ‘slow-kinetic’ cNHEJ or homologous recombination (HR). Loss of specific components of the DSB repair machinery results in cells utilising remaining factors to effect repair, but often at the cost of increased mutagenesis. Here we discuss the complex regulation of the Immediate-Early, Early, and Late responses to DSBs proceeding repair itself.
Collapse
|
|
3 |
30 |
11
|
Hügel S, Davies AR. Public participation, engagement, and climate change adaptation: A review of the research literature. WILEY INTERDISCIPLINARY REVIEWS. CLIMATE CHANGE 2020; 11:e645. [PMID: 35859618 PMCID: PMC9285715 DOI: 10.1002/wcc.645] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/13/2020] [Accepted: 03/09/2020] [Indexed: 05/30/2023]
Abstract
There is a clear need for a state-of-the-art review of how public participation in climate change adaptation is being considered in research across academic communities: The Rio Declaration developed in 1992 at the UN Conference on Environment and Development (UNCED) included explicit goals of citizen participation and engagement in climate actions (Principle 10). Nation states were given special responsibility to facilitate these by ensuring access to information and opportunities to participate in decision-making processes. Since then the need for public participation has featured prominently in calls to climate action. Using text analysis to produce a corpus of abstracts drawn from Web of Science, a review of literature incorporating public participation and citizen engagement in climate change adaptation since 1992 reveals lexical, temporal, and spatial distribution dynamics of research on the topic. An exponential rise in research effort since the year 2000 is demonstrated, with the focus of research action on three substantial themes-risk, flood risk, and risk assessment, perception, and communication. These are critically reviewed and three substantive issues are considered: the paradox of participation, the challenge of governance transformation, and the need to incorporate psycho-social and behavioral adaptation to climate change in policy processes. Gaps in current research include a lack of common understanding of public participation for climate adaptation across disciplines; incomplete articulation of processes involving public participation and citizen engagement; and a paucity of empirical research examining how understanding and usage of influential concepts of risk, vulnerability and adaptive capacity varies among different disciplines and stakeholders. Finally, a provisional research agenda for attending to these gaps is described. This article is categorized under:Vulnerability and Adaptation to Climate Change > Institutions for AdaptationPolicy and Governance > Governing Climate Change in Communities, Cities, and Regions.
Collapse
|
Review |
5 |
25 |
12
|
Goswami D, Domingo‐Lopez DA, Ward NA, Millman JR, Duffy GP, Dolan EB, Roche ET. Design Considerations for Macroencapsulation Devices for Stem Cell Derived Islets for the Treatment of Type 1 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100820. [PMID: 34155834 PMCID: PMC8373111 DOI: 10.1002/advs.202100820] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/24/2021] [Indexed: 05/08/2023]
Abstract
Stem cell derived insulin producing cells or islets have shown promise in reversing Type 1 Diabetes (T1D), yet successful transplantation currently necessitates long-term modulation with immunosuppressant drugs. An alternative approach to avoiding this immune response is to utilize an islet macroencapsulation device, where islets are incorporated into a selectively permeable membrane that can protect the transplanted cells from acute host response, whilst enabling delivery of insulin. These macroencapsulation systems have to meet a number of stringent and challenging design criteria in order to achieve the ultimate goal of reversing T1D. In this progress report, the design considerations and functional requirements of macroencapsulation systems are reviewed, specifically for stem-cell derived islets (SC-islets), highlighting distinct design parameters. Additionally, a perspective on the future for macroencapsulation systems is given, and how incorporating continuous sensing and closed-loop feedback can be transformative in advancing toward an autonomous biohybrid artificial pancreas.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
24 |
13
|
Ma H, Murphy C, Loscher CE, O’Kennedy R. Autoantibodies - enemies, and/or potential allies? Front Immunol 2022; 13:953726. [PMID: 36341384 PMCID: PMC9627499 DOI: 10.3389/fimmu.2022.953726] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 08/13/2023] Open
Abstract
Autoantibodies are well known as potentially highly harmful antibodies which attack the host via binding to self-antigens, thus causing severe associated diseases and symptoms (e.g. autoimmune diseases). However, detection of autoantibodies to a range of disease-associated antigens has enabled their successful usage as important tools in disease diagnosis, prognosis and treatment. There are several advantages of using such autoantibodies. These include the capacity to measure their presence very early in disease development, their stability, which is often much better than their related antigen, and the capacity to use an array of such autoantibodies for enhanced diagnostics and to better predict prognosis. They may also possess capacity for utilization in therapy, in vivo. In this review both the positive and negative aspects of autoantibodies are critically assessed, including their role in autoimmune diseases, cancers and the global pandemic caused by COVID-19. Important issues related to their detection are also highlighted.
Collapse
|
Review |
3 |
22 |
14
|
Ou Q, Power R, Griffin MD. Revisiting regulatory T cells as modulators of innate immune response and inflammatory diseases. Front Immunol 2023; 14:1287465. [PMID: 37928540 PMCID: PMC10623442 DOI: 10.3389/fimmu.2023.1287465] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Regulatory T cells (Treg) are known to be critical for the maintenance of immune homeostasis by suppressing the activation of auto- or allo-reactive effector T cells through a diverse repertoire of molecular mechanisms. Accordingly, therapeutic strategies aimed at enhancing Treg numbers or potency in the setting of autoimmunity and allogeneic transplants have been energetically pursued and are beginning to yield some encouraging outcomes in early phase clinical trials. Less well recognized from a translational perspective, however, has been the mounting body of evidence that Treg directly modulate most aspects of innate immune response under a range of different acute and chronic disease conditions. Recognizing this aspect of Treg immune modulatory function provides a bridge for the application of Treg-based therapies to common medical conditions in which organ and tissue damage is mediated primarily by inflammation involving myeloid cells (mononuclear phagocytes, granulocytes) and innate lymphocytes (NK cells, NKT cells, γδ T cells and ILCs). In this review, we comprehensively summarize pre-clinical and human research that has revealed diverse modulatory effects of Treg and specific Treg subpopulations on the range of innate immune cell types. In each case, we emphasize the key mechanistic insights and the evidence that Treg interactions with innate immune effectors can have significant impacts on disease severity or treatment. Finally, we discuss the opportunities and challenges that exist for the application of Treg-based therapeutic interventions to three globally impactful, inflammatory conditions: type 2 diabetes and its end-organ complications, ischemia reperfusion injury and atherosclerosis.
Collapse
|
Review |
2 |
21 |
15
|
Chen Y, Wang W, Morgan MP, Robson T, Annett S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: current status and therapeutic targets. Front Endocrinol (Lausanne) 2023; 14:1148934. [PMID: 37361533 PMCID: PMC10286797 DOI: 10.3389/fendo.2023.1148934] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity is a global epidemic and overwhelming evidence indicates that it is a risk factor for numerous cancers, including hepatocellular carcinoma (HCC), the third leading cause of cancer-related deaths worldwide. Obesity-associated hepatic tumorigenesis develops from nonalcoholic fatty liver disease (NAFLD), progressing to nonalcoholic steatohepatitis (NASH), cirrhosis and ultimately to HCC. The rising incidence of obesity is resulting in an increased prevalence of NAFLD and NASH, and subsequently HCC. Obesity represents an increasingly important underlying etiology of HCC, in particular as the other leading causes of HCC such as hepatitis infection, are declining due to effective treatments and vaccines. In this review, we provide a comprehensive overview of the molecular mechanisms and cellular signaling pathways involved in the pathogenesis of obesity-associated HCC. We summarize the preclinical experimental animal models available to study the features of NAFLD/NASH/HCC, and the non-invasive methods to diagnose NAFLD, NASH and early-stage HCC. Finally, since HCC is an aggressive tumor with a 5-year survival of less than 20%, we will also discuss novel therapeutic targets for obesity-associated HCC and ongoing clinical trials.
Collapse
|
Review |
2 |
20 |
16
|
Ji W, Yuan H, Xue B, Guerin S, Li H, Zhang L, Liu Y, Shimon LJW, Si M, Cao Y, Wang W, Thompson D, Cai K, Yang R, Gazit E. Co-Assembly Induced Solid-State Stacking Transformation in Amino Acid-Based Crystals with Enhanced Physical Properties. Angew Chem Int Ed Engl 2022; 61:e202201234. [PMID: 35170170 PMCID: PMC9311667 DOI: 10.1002/anie.202201234] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 02/02/2023]
Abstract
The physical characteristics of supramolecular assemblies composed of small building blocks are dictated by molecular packing patterns in the solid-state. Yet, the structure-property correlation is still not fully understood. Herein, we report the unexpected cofacial to herringbone stacking transformation of a small aromatic bipyridine through co-assembly with acetylated glutamic acid. The unique solid-state structural transformation results in enhanced physical properties of the supramolecular organizations. The co-assembly methodology was further expanded to obtain diverse molecular packings by different bipyridine and acetylated amino acid derivatives. This study presents a feasible co-assembly approach to achieve the solid-state stacking transformation of supramolecular organization and opens up new opportunities to further explore the relationship between molecular arrangement and properties of supramolecular assemblies by crystal engineering.
Collapse
|
research-article |
3 |
20 |
17
|
McDonnell EE, Buckley CT. Consolidating and re-evaluating the human disc nutrient microenvironment. JOR Spine 2022; 5:e1192. [PMID: 35386756 PMCID: PMC8966889 DOI: 10.1002/jsp2.1192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Despite exciting advances in regenerative medicine, cell-based strategies for treating degenerative disc disease remain in their infancy. To maximize the potential for successful clinical translation, a more thorough understanding of the in vivo microenvironment is needed to better determine and predict how cell therapies will respond when administered in vivo. Aims This work aims to reflect on the in vivo nutrient microenvironment of the degenerating IVD through consolidating what has already been measured together with investigative in silico models. Materials and Methods This work uses in silico modeling, underpinned by more recent experimentally determined parameters of degeneration and nutrient transport from the literature, to re-evaluate the current knowledge in terms of grade-specific stages of degeneration. Results Through modeling only the metabolically active cell population, this work predicts slightly higher glucose concentrations compared to previous in silico models, while the predicted results show good agreement with previous intradiscal pH and oxygen measurements. Increasing calcification with degeneration limits nutrient transport into the IVD and initiates a build-up of acidity; however, its effect is compensated somewhat by a reduction in diffusional distance due to decreasing disc height. Discussion This work advances in silico modeling through a strong foundation of experimentally determined grade-specific input parameters. Taken together, pre-existing measurements and predicted results suggest that metabolite concentrations may not be as critically low as commonly believed, with calcification not appearing to have a detrimental effect at stages of degeneration when cell therapies are an appropriate intervention. Conclusion Overall, our initiative is to provoke greater deliberation and consideration of the nutrient microenvironment when performing in vitro cell culture and cell therapy development. This work highlights urgency for robust experimental glucose measurements in healthy and degenerating IVDs, not only to validate in silico models but to significantly advance the field in fully elucidating the nutrient microenvironment and refining in vitro techniques to accelerate clinical translation.
Collapse
|
research-article |
3 |
16 |
18
|
Sugrue JA, Bourke NM, O’Farrelly C. Type I Interferon and the Spectrum of Susceptibility to Viral Infection and Autoimmune Disease: A Shared Genomic Signature. Front Immunol 2021; 12:757249. [PMID: 34917078 PMCID: PMC8669998 DOI: 10.3389/fimmu.2021.757249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Type I interferons (IFN-I) and their cognate receptor, the IFNAR1/2 heterodimer, are critical components of the innate immune system in humans. They have been widely explored in the context of viral infection and autoimmune disease where they play key roles in protection against infection or shaping disease pathogenesis. A false dichotomy has emerged in the study of IFN-I where interferons are thought of as either beneficial or pathogenic. This 'good or bad' viewpoint excludes more nuanced interpretations of IFN-I biology - for example, it is known that IFN-I is associated with the development of systemic lupus erythematosus, yet is also protective in the context of infectious diseases and contributes to resistance to viral infection. Studies have suggested that a shared transcriptomic signature underpins both potential resistance to viral infection and susceptibility to autoimmune disease. This seems to be particularly evident in females, who exhibit increased viral resistance and increased susceptibility to autoimmune disease. The molecular mechanisms behind such a signature and the role of sex in its determination have yet to be precisely defined. From a genomic perspective, several single nucleotide polymorphisms (SNPs) in the IFN-I pathway have been associated with both infectious and autoimmune disease. While overlap between infection and autoimmunity has been described in the incidence of these SNPs, it has been overlooked in work and discussion to date. Here, we discuss the possible contributions of IFN-Is to the pathogenesis of infectious and autoimmune diseases. We comment on genetic associations between common SNPs in IFN-I or their signalling molecules that point towards roles in protection against viral infection and susceptibility to autoimmunity and propose that a shared transcriptomic and genomic immunological signature may underlie resistance to viral infection and susceptibility to autoimmunity in humans. We believe that defining shared transcriptomic and genomic immunological signatures underlying resistance to viral infection and autoimmunity in humans will reveal new therapeutic targets and improved vaccine strategies, particularly in females.
Collapse
|
Review |
4 |
15 |
19
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
|
|
3 |
15 |
20
|
McCabe A, Zaheed O, McDade SS, Dean K. Investigating the suitability of in vitro cell lines as models for the major subtypes of epithelial ovarian cancer. Front Cell Dev Biol 2023; 11:1104514. [PMID: 36861035 PMCID: PMC9969113 DOI: 10.3389/fcell.2023.1104514] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most fatal gynaecological malignancy, accounting for over 200,000 deaths worldwide per year. EOC is a highly heterogeneous disease, classified into five major histological subtypes-high-grade serous (HGSOC), clear cell (CCOC), endometrioid (ENOC), mucinous (MOC) and low-grade serous (LGSOC) ovarian carcinomas. Classification of EOCs is clinically beneficial, as the various subtypes respond differently to chemotherapy and have distinct prognoses. Cell lines are often used as in vitro models for cancer, allowing researchers to explore pathophysiology in a relatively cheap and easy to manipulate system. However, most studies that make use of EOC cell lines fail to recognize the importance of subtype. Furthermore, the similarity of cell lines to their cognate primary tumors is often ignored. Identification of cell lines with high molecular similarity to primary tumors is needed in order to better guide pre-clinical EOC research and to improve development of targeted therapeutics and diagnostics for each distinctive subtype. This study aims to generate a reference dataset of cell lines representative of the major EOC subtypes. We found that non-negative matrix factorization (NMF) optimally clustered fifty-six cell lines into five groups, putatively corresponding to each of the five EOC subtypes. These clusters validated previous histological groupings, while also classifying other previously unannotated cell lines. We analysed the mutational and copy number landscapes of these lines to investigate whether they harboured the characteristic genomic alterations of each subtype. Finally we compared the gene expression profiles of cell lines with 93 primary tumor samples stratified by subtype, to identify lines with the highest molecular similarity to HGSOC, CCOC, ENOC, and MOC. In summary, we examined the molecular features of both EOC cell lines and primary tumors of multiple subtypes. We recommend a reference set of cell lines most suited to represent four different subtypes of EOC for both in silico and in vitro studies. We also identify lines displaying poor overall molecular similarity to EOC tumors, which we argue should be avoided in pre-clinical studies. Ultimately, our work emphasizes the importance of choosing suitable cell line models to maximise clinical relevance of experiments.
Collapse
|
research-article |
2 |
15 |
21
|
Wright AL, Righelli L, Broomhall TJ, Lamont HC, El Haj AJ. Magnetic Nanoparticle-Mediated Orientation of Collagen Hydrogels for Engineering of Tendon-Mimetic Constructs. Front Bioeng Biotechnol 2022; 10:797437. [PMID: 35372293 PMCID: PMC8968910 DOI: 10.3389/fbioe.2022.797437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
Despite the high incidence of tendon injuries worldwide, an optimal treatment strategy has yet to be defined. A key challenge for tendon repair is the alignment of the repaired matrix into orientations which provide maximal mechanical strength. Using oriented implants for tissue growth combined with either exogenous or endogenous stem cells may provide a solution. Previous research has shown how oriented fiber-like structures within 3D scaffolds can provide a framework for organized extracellular matrix deposition. In this article, we present our data on the remote magnetic alignment of collagen hydrogels which facilitates long-term collagen orientation. Magnetic nanoparticles (MNPs) at varying concentrations can be contained within collagen hydrogels. Our data show how, in response to the magnetic field lines, MNPs align and form string-like structures orientating at 90 degrees from the applied magnetic field from our device. This can be visualized by light and fluorescence microscopy, and it persists for 21 days post-application of the magnetic field. Confocal microscopy demonstrates the anisotropic macroscale structure of MNP-laden collagen gels subjected to a magnetic field, compared to gels without MNP dosing. Matrix fibrillation was compared between non- and biofunctionalized MNP hydrogels, and different gels dosed with varying MNP concentrations. Human adipose stem cells (hASCs) seeded within the magnetically aligned gels were observed to align in parallel to MNP and collagen orientation 7 days post-application of the magnetic field. hASCs seeded in isotropic gels were randomly organized. Tenocyte-likeness of the cells 7 days post-seeding in collagen I scaffolds was confirmed by the positive expression of tenomodulin and scleraxis proteins. To summarize, we have developed a convenient, non-invasive protocol to control the collagen I hydrogel architecture. Through the presence or absence of MNP dosing and a magnetic field, collagen can be remotely aligned or randomly organized, respectively, in situ. Tendon-like cells were observed to organize in parallel to unidirectionally aligned collagen fibers and polydirectionally in non-aligned collagen constructs. In this way, we were able to engineer the constructs emulating a physiologically and pathologically relevant tendon niche. This can be considered as an innovative approach particularly useful in tissue engineering or organ-on-a-chip applications for remotely controlling collagen matrix organization to recapitulate the native tendon.
Collapse
|
research-article |
3 |
15 |
22
|
Scott R, Joshi LT, McGinn C. Hospital surface disinfection using ultraviolet germicidal irradiation technology: A review. Healthc Technol Lett 2022; 9:25-33. [PMID: 35662749 PMCID: PMC9160814 DOI: 10.1049/htl2.12032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Ultraviolet germicidal irradiation (UVGI) technologies have emerged as a promising alternative to biocides as a means of surface disinfection in hospitals and other healthcare settings. This paper reviews the methods used by researchers and clinicians in deploying and evaluating the efficacy of UVGI technology. The type of UVGI technology used, the clinical setting where the device was deployed, and the methods of environmental testing that the researchers followed are investigated. The findings suggest that clinical UVGI deployments have been growing steadily since 2010 and have increased dramatically since the start of the COVID-19 pandemic. Hardware platforms and operating procedures vary considerably between studies. Most studies measure efficacy of the technology based on the objective measurement of bacterial bioburden reduction; however, studies conducted over longer durations have examined the impact of UVGI on the reduction of healthcare associated infections (HCAIs). Future trends include increased automation and the use of UVGI technologies that are safer for use around people. Although existing evidence seems to support the efficacy of UVGI as a tool capable of reducing HCAIs, more research is needed to measure the magnitude of these effects and to establish recommended best practices.
Collapse
|
Review |
3 |
14 |
23
|
Man K, Brunet MY, Louth S, Robinson TE, Fernandez-Rhodes M, Williams S, Federici AS, Davies OG, Hoey DA, Cox SC. Development of a Bone-Mimetic 3D Printed Ti6Al4V Scaffold to Enhance Osteoblast-Derived Extracellular Vesicles' Therapeutic Efficacy for Bone Regeneration. Front Bioeng Biotechnol 2021; 9:757220. [PMID: 34765595 PMCID: PMC8576375 DOI: 10.3389/fbioe.2021.757220] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular Vesicles (EVs) are considered promising nanoscale therapeutics for bone regeneration. To date, EVs are typically procured from cells on 2D tissue culture plastic, an artificial environment that limits cell growth and does not replicate in situ biochemical or biophysical conditions. This study investigated the potential of 3D printed titanium scaffolds coated with hydroxyapatite to promote the therapeutic efficacy of osteoblast-derived EVs. Ti6Al4V titanium scaffolds with different pore sizes (500 and 1000 µm) and shapes (square and triangle) were fabricated by selective laser melting. A bone-mimetic nano-needle hydroxyapatite (nnHA) coating was then applied. EVs were procured from scaffold-cultured osteoblasts over 2 weeks and vesicle concentration was determined using the CD63 ELISA. Osteogenic differentiation of human bone marrow stromal cells (hBMSCs) following treatment with primed EVs was evaluated by assessing alkaline phosphatase activity, collagen production and calcium deposition. Triangle pore scaffolds significantly increased osteoblast mineralisation (1.5-fold) when compared to square architectures (P ≤ 0.001). Interestingly, EV yield was also significantly enhanced on these higher permeability structures (P ≤ 0.001), in particular (2.2-fold) for the larger pore structures (1000 µm). Furthermore osteoblast-derived EVs isolated from triangular pore scaffolds significantly increased hBMSCs mineralisation when compared to EVs acquired from square pore scaffolds (1.7-fold) and 2D culture (2.2-fold) (P ≤ 0.001). Coating with nnHA significantly improved osteoblast mineralisation (>2.6-fold) and EV production (4.5-fold) when compared to uncoated scaffolds (P ≤ 0.001). Together, these findings demonstrate the potential of harnessing bone-mimetic culture platforms to enhance the production of pro-regenerative EVs as an acellular tool for bone repair.
Collapse
|
research-article |
4 |
13 |
24
|
Panda C, Doyle LM, Gericke R, McDonald AR. Rapid Iron(III)-Fluoride-Mediated Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2021; 60:26281-26286. [PMID: 34582619 PMCID: PMC9298026 DOI: 10.1002/anie.202112683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 01/08/2023]
Abstract
We anticipate high-valent metal-fluoride species will be highly effective hydrogen atom transfer (HAT) oxidants because of the magnitude of the H-F bond (in the product) that drives HAT oxidation. We prepared a dimeric FeIII (F)-F-FeIII (F) complex (1) by reacting [FeII (NCCH3 )2 (TPA)](ClO4 )2 (TPA=tris(2-pyridylmethyl)amine) with difluoro(phenyl)-λ3 -iodane (difluoroiodobenzene). 1 was a sluggish oxidant, however, it was readily activated by reaction with Lewis or Brønsted acids to yield a monomeric [FeIII (TPA)(F)(X)]+ complex (2) where X=F/OTf. 1 and 2 were characterized using NMR, EPR, UV/Vis, and FT-IR spectroscopies and mass spectrometry. 2 was a remarkably reactive FeIII reagent for oxidative C-H activation, demonstrating reaction rates for hydrocarbon HAT comparable to the most reactive FeIII and FeIV oxidants.
Collapse
|
research-article |
4 |
12 |
25
|
Joyce SA, O'Malley D. Bile acids, bioactive signalling molecules in interoceptive gut-to-brain communication. J Physiol 2022; 600:2565-2578. [PMID: 35413130 PMCID: PMC9325455 DOI: 10.1113/jp281727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
Aside from facilitating solubilisation and absorption of dietary lipids and lipid-soluble vitamins, amphipathic bile acids (BAs) also act as bioactive signalling molecules. A plethora of conjugated or unconjugated primary and bacterially modified secondary BA moieties have been identified, with significant divergence between species. These molecules are excreted into the external environment of the intestinal lumen, yet nuclear and membrane receptors that are sensitive to BAs are expressed internally in the liver, intestinal and neural tissues, amongst others. The diversity of BAs and receptors underpins the multitude of distinct bioactive functions attributed to BAs, but also hampers elucidation of the physiological mechanisms underpinning these actions. In this Topical Review, we have considered the potential of BAs as cross-barrier signalling molecules that contribute to interoceptive pathways informing the central nervous system of environmental changes in the gut lumen. Activation of BAs on FGF19 -secreting enterocytes, enteroendocrine cells coupled to sensory nerves or intestinal immune cells would facilitate indirect signalling, whereas direct activation of BA receptors in the brain is likely to occur primarily under pathophysiological conditions when concentrations of BAs are elevated.
Collapse
|
research-article |
3 |
12 |