1
|
Sancho-Shimizu V, Brodin P, Cobat A, Biggs CM, Toubiana J, Lucas CL, Henrickson SE, Belot A, Tangye SG, Milner JD, Levin M, Abel L, Bogunovic D, Casanova JL, Zhang SY. SARS-CoV-2-related MIS-C: A key to the viral and genetic causes of Kawasaki disease? J Exp Med 2021; 218:e20210446. [PMID: 33904890 PMCID: PMC8080850 DOI: 10.1084/jem.20210446] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) emerged in April 2020 in communities with high COVID-19 rates. This new condition is heterogenous but resembles Kawasaki disease (KD), a well-known but poorly understood and clinically heterogenous pediatric inflammatory condition for which weak associations have been found with a myriad of viral illnesses. Epidemiological data clearly indicate that SARS-CoV-2 is the trigger for MIS-C, which typically occurs about 1 mo after infection. These findings support the hypothesis of viral triggers for the various forms of classic KD. We further suggest that rare inborn errors of immunity (IEIs) altering the immune response to SARS-CoV-2 may underlie the pathogenesis of MIS-C in some children. The discovery of monogenic IEIs underlying MIS-C would shed light on its pathogenesis, paving the way for a new genetic approach to classic KD, revisited as a heterogeneous collection of IEIs to viruses.
Collapse
|
Comparative Study |
4 |
101 |
2
|
Lee D, Le Pen J, Yatim A, Dong B, Aquino Y, Ogishi M, Pescarmona R, Talouarn E, Rinchai D, Zhang P, Perret M, Liu Z, Jordan I, Elmas Bozdemir S, Bayhan GI, Beaufils C, Bizien L, Bisiaux A, Lei W, Hasan M, Chen J, Gaughan C, Asthana A, Libri V, Luna JM, Jaffré F, Hoffmann HH, Michailidis E, Moreews M, Seeleuthner Y, Bilguvar K, Mane S, Flores C, Zhang Y, Arias AA, Bailey R, Schlüter A, Milisavljevic B, Bigio B, Le Voyer T, Materna M, Gervais A, Moncada-Velez M, Pala F, Lazarov T, Levy R, Neehus AL, Rosain J, Peel J, Chan YH, Morin MP, Pino-Ramirez RM, Belkaya S, Lorenzo L, Anton J, Delafontaine S, Toubiana J, Bajolle F, Fumadó V, DeDiego ML, Fidouh N, Rozenberg F, Pérez-Tur J, Chen S, Evans T, Geissmann F, Lebon P, Weiss SR, Bonnet D, Duval X, CoV-Contact Cohort§, COVID Human Genetic Effort¶, Pan-Hammarström Q, Planas AM, Meyts I, Haerynck F, Pujol A, Sancho-Shimizu V, Dalgard CL, Bustamante J, Puel A, Boisson-Dupuis S, Boisson B, Maniatis T, Zhang Q, Bastard P, Notarangelo L, Béziat V, Perez de Diego R, Rodriguez-Gallego C, Su HC, Lifton RP, Jouanguy E, Cobat A, Alsina L, Keles S, Haddad E, Abel L, Belot A, Quintana-Murci L, et alLee D, Le Pen J, Yatim A, Dong B, Aquino Y, Ogishi M, Pescarmona R, Talouarn E, Rinchai D, Zhang P, Perret M, Liu Z, Jordan I, Elmas Bozdemir S, Bayhan GI, Beaufils C, Bizien L, Bisiaux A, Lei W, Hasan M, Chen J, Gaughan C, Asthana A, Libri V, Luna JM, Jaffré F, Hoffmann HH, Michailidis E, Moreews M, Seeleuthner Y, Bilguvar K, Mane S, Flores C, Zhang Y, Arias AA, Bailey R, Schlüter A, Milisavljevic B, Bigio B, Le Voyer T, Materna M, Gervais A, Moncada-Velez M, Pala F, Lazarov T, Levy R, Neehus AL, Rosain J, Peel J, Chan YH, Morin MP, Pino-Ramirez RM, Belkaya S, Lorenzo L, Anton J, Delafontaine S, Toubiana J, Bajolle F, Fumadó V, DeDiego ML, Fidouh N, Rozenberg F, Pérez-Tur J, Chen S, Evans T, Geissmann F, Lebon P, Weiss SR, Bonnet D, Duval X, CoV-Contact Cohort§, COVID Human Genetic Effort¶, Pan-Hammarström Q, Planas AM, Meyts I, Haerynck F, Pujol A, Sancho-Shimizu V, Dalgard CL, Bustamante J, Puel A, Boisson-Dupuis S, Boisson B, Maniatis T, Zhang Q, Bastard P, Notarangelo L, Béziat V, Perez de Diego R, Rodriguez-Gallego C, Su HC, Lifton RP, Jouanguy E, Cobat A, Alsina L, Keles S, Haddad E, Abel L, Belot A, Quintana-Murci L, Rice CM, Silverman RH, Zhang SY, Casanova JL. Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children. Science 2023; 379:eabo3627. [PMID: 36538032 PMCID: PMC10451000 DOI: 10.1126/science.abo3627] [Show More Authors] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/16/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.
Collapse
|
research-article |
2 |
88 |
3
|
Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med 2022; 219:e20211387. [PMID: 35319722 PMCID: PMC8952682 DOI: 10.1084/jem.20211387] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
The vast interindividual clinical variability observed in any microbial infection-ranging from silent infection to lethal disease-is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway. Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria, and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but that are otherwise redundant, thereby underlying specific infectious diseases.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
79 |
4
|
Lopez J, Mommert M, Mouton W, Pizzorno A, Brengel-Pesce K, Mezidi M, Villard M, Lina B, Richard JC, Fassier JB, Cheynet V, Padey B, Duliere V, Julien T, Paul S, Bastard P, Belot A, Bal A, Casanova JL, Rosa-Calatrava M, Morfin F, Walzer T, Trouillet-Assant S. Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. J Exp Med 2021; 218:e20211211. [PMID: 34357402 PMCID: PMC8352718 DOI: 10.1084/jem.20211211] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
IFN-I and IFN-III immunity in the nasal mucosa is poorly characterized during SARS-CoV-2 infection. We analyze the nasal IFN-I/III signature, namely the expression of ISGF-3-dependent IFN-stimulated genes, in mildly symptomatic COVID-19 patients and show its correlation with serum IFN-α2 levels, which peak at symptom onset and return to baseline from day 10 onward. Moreover, the nasal IFN-I/III signature correlates with the nasopharyngeal viral load and is associated with the presence of infectious viruses. By contrast, we observe low nasal IFN-I/III scores despite high nasal viral loads in a subset of critically ill COVID-19 patients, which correlates with the presence of autoantibodies (auto-Abs) against IFN-I in both blood and nasopharyngeal mucosa. In addition, functional assays in a reconstituted human airway epithelium model of SARS-CoV-2 infection confirm the role of such auto-Abs in abrogating the antiviral effects of IFN-I, but not those of IFN-III. Thus, IFN-I auto-Abs may compromise not only systemic but also local antiviral IFN-I immunity at the early stages of SARS-CoV-2 infection.
Collapse
|
research-article |
4 |
77 |
5
|
Zhang Q, Matuozzo D, Le Pen J, Lee D, Moens L, Asano T, Bohlen J, Liu Z, Moncada-Velez M, Kendir-Demirkol Y, Jing H, Bizien L, Marchal A, Abolhassani H, Delafontaine S, Bucciol G, COVID Human Genetic Effort AbelLaurentAbolhassaniHassanAiutiAlessandroAkcanOzge MetinAl-MuhsenSalehAl-MullaFahdAlkanGulsumAndersonMark S.AndreakosEvangelosAriasAndrés A.El BakkouriJalilaBaris FeldmanHagitBelotAlexandreBiggsCatherine M.BogunovicDusanBolzeAlexandreBondarenkoAnastasiiaBousfihaAhmed A.BozdemirSefika ElmasBrodinPetterBrycesonYenanBustamanteCarlos D.ButteManish J.CasariGiorgioChristodoulouJohnColobranRogerCondino-NetoAntonioConstantinescuStefan N.CooperMegan A.DalgardClifton L.DesaiMurkeshDroletBeth A.El BaghdadiJamilaEmirogluMelikeErdenizEmine HafizeEspinosa-PadillaSaraFellayJacquesFloresCarlosFrancoJosé LuisFroidureAntoineGregersenPeter K.GrimbacherBodoGulhanBelginHaerynckFilomeenHaginDavidHalwaniRabihHammarströmLennartHeathJames R.HenricksonSarah E.HsiehElena W.Y.HusebyeEysteinImaiKohsukeItanYuvalJabandzievPetrJarvisErich D.KaramitrosTimokratisKarbuzAdemKisandKaiKuCheng-LungLauYu-LungLingYunLucasCarrie L.ManiatisTomMansouriDavoodMaródiLászlóMetinAyseMeytsIsabelleMilnerJoshua D.MironskaKristinaMogensenTrine H.MorioTomohiroNgLisa F.P.NotarangeloLuigi D.NovelliAntonioNovelliGiuseppeO'FarrellyClionaOkadaSatoshiOkamotoKeisukeTüter ÖzŞadiye KübraOzcelikTayfunPan-HammarströmQiangPapadakiMariaPapeJean W.ParlakayAslinur OzkayaPerez de DiegoRebecaPerlinDavid S.PesoleGrazianoPlanasAnna M.PokornaPetraPrandoCarolinaPujolAuroraQuintana-MurciLluisRamaswamySathishkumarReniaLaurentResnickIgorRivièreJacques G.Rodríguez-GallegoCarlosSancho-ShimizuVanessaSedivaAnnaSeppänenMikko R.J.ShahrooeiMohammedShcherbinaAnnaSlabaKaterinaSlabyOndrejSnowAndrew L.Soler-PalacínPereDe SomerLienSpaanAndrás N.TancevskiIvanTangyeStuart G.Abou TayounAhmadThanosDimitrisTurveyStuart E.UddinK M FurkanUddinMohammed J.van de BeekDiederikVermeulenFrançoisVinhDonald C.von BernuthHorstWautersJoostWoutersCarineYahsiAysunKanik YuksekSalihaZatzMayanaZawadzkiPawelSuHelen C.CasanovaJean-Laurent, Bayhan GI, Keles S, Kiykim A, Hancerli S, Haerynck F, Florkin B, Hatipoglu N, Ozcelik T, Morelle G, Zatz M, Ng LF, Lye DC, Young BE, Leo YS, Dalgard CL, Lifton RP, Renia L, Meyts I, Jouanguy E, Hammarström L, Pan-Hammarström Q, Boisson B, Bastard P, Su HC, Boisson-Dupuis S, Abel L, Rice CM, Zhang SY, Cobat A, Casanova JL. Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. J Exp Med 2022; 219:e20220131. [PMID: 35708626 PMCID: PMC9206114 DOI: 10.1084/jem.20220131] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/01/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022] Open
Abstract
Recessive or dominant inborn errors of type I interferon (IFN) immunity can underlie critical COVID-19 pneumonia in unvaccinated adults. The risk of COVID-19 pneumonia in unvaccinated children, which is much lower than in unvaccinated adults, remains unexplained. In an international cohort of 112 children (<16 yr old) hospitalized for COVID-19 pneumonia, we report 12 children (10.7%) aged 1.5-13 yr with critical (7 children), severe (3), and moderate (2) pneumonia and 4 of the 15 known clinically recessive and biochemically complete inborn errors of type I IFN immunity: X-linked recessive TLR7 deficiency (7 children) and autosomal recessive IFNAR1 (1), STAT2 (1), or TYK2 (3) deficiencies. Fibroblasts deficient for IFNAR1, STAT2, or TYK2 are highly vulnerable to SARS-CoV-2. These 15 deficiencies were not found in 1,224 children and adults with benign SARS-CoV-2 infection without pneumonia (P = 1.2 × 10-11) and with overlapping age, sex, consanguinity, and ethnicity characteristics. Recessive complete deficiencies of type I IFN immunity may underlie ∼10% of hospitalizations for COVID-19 pneumonia in children.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
76 |
6
|
Zhang Q, Pizzorno A, Miorin L, Bastard P, Gervais A, Le Voyer T, Bizien L, Manry J, Rosain J, Philippot Q, Goavec K, Padey B, Cupic A, Laurent E, Saker K, Vanker M, Särekannu K, García-Salum T, Ferres M, Le Corre N, Sánchez-Céspedes J, Balsera-Manzanero M, Carratala J, Retamar-Gentil P, Abelenda-Alonso G, Valiente A, Tiberghien P, Zins M, Debette S, Meyts I, Haerynck F, Castagnoli R, Notarangelo LD, Gonzalez-Granado LI, Dominguez-Pinilla N, Andreakos E, Triantafyllia V, Rodríguez-Gallego C, Solé-Violán J, Ruiz-Hernandez JJ, Rodríguez de Castro F, Ferreres J, Briones M, Wauters J, Vanderbeke L, Feys S, Kuo CY, Lei WT, Ku CL, Tal G, Etzioni A, Hanna S, Fournet T, Casalegno JS, Queromes G, Argaud L, Javouhey E, Rosa-Calatrava M, Cordero E, Aydillo T, Medina RA, Kisand K, Puel A, Jouanguy E, Abel L, Cobat A, Trouillet-Assant S, García-Sastre A, Casanova JL. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. J Exp Med 2022; 219:e20220514. [PMID: 36112363 PMCID: PMC9485705 DOI: 10.1084/jem.20220514] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022] Open
Abstract
Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10-5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10-5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10-10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
72 |
7
|
Vazquez SE, Bastard P, Kelly K, Gervais A, Norris PJ, Dumont LJ, Casanova JL, Anderson MS, DeRisi JL. Neutralizing Autoantibodies to Type I Interferons in COVID-19 Convalescent Donor Plasma. J Clin Immunol 2021; 41:1169-1171. [PMID: 34009544 PMCID: PMC8132742 DOI: 10.1007/s10875-021-01060-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 11/25/2022]
|
Research Support, Non-U.S. Gov't |
4 |
60 |
8
|
Sharma M, Leung D, Momenilandi M, Jones LC, Pacillo L, James AE, Murrell JR, Delafontaine S, Maimaris J, Vaseghi-Shanjani M, Del Bel KL, Lu HY, Chua GT, Di Cesare S, Fornes O, Liu Z, Di Matteo G, Fu MP, Amodio D, Tam IYS, Chan GSW, Sharma AA, Dalmann J, van der Lee R, Blanchard-Rohner G, Lin S, Philippot Q, Richmond PA, Lee JJ, Matthews A, Seear M, Turvey AK, Philips RL, Brown-Whitehorn TF, Gray CJ, Izumi K, Treat JR, Wood KH, Lack J, Khleborodova A, Niemela JE, Yang X, Liang R, Kui L, Wong CSM, Poon GWK, Hoischen A, van der Made CI, Yang J, Chan KW, Rosa Duque JSD, Lee PPW, Ho MHK, Chung BHY, Le HTM, Yang W, Rohani P, Fouladvand A, Rokni-Zadeh H, Changi-Ashtiani M, Miryounesi M, Puel A, Shahrooei M, Finocchi A, Rossi P, Rivalta B, Cifaldi C, Novelli A, Passarelli C, Arasi S, Bullens D, Sauer K, Claeys T, Biggs CM, Morris EC, Rosenzweig SD, O’Shea JJ, Wasserman WW, Bedford HM, van Karnebeek CD, Palma P, Burns SO, Meyts I, Casanova JL, Lyons JJ, Parvaneh N, Nguyen ATV, Cancrini C, Heimall J, Ahmed H, McKinnon ML, Lau YL, Béziat V, Turvey SE. Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease. J Exp Med 2023; 220:e20221755. [PMID: 36884218 PMCID: PMC10037107 DOI: 10.1084/jem.20221755] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder.
Collapse
|
Research Support, N.I.H., Intramural |
2 |
54 |
9
|
Bastard P, Hsiao KC, Zhang Q, Choin J, Best E, Chen J, Gervais A, Bizien L, Materna M, Harmant C, Roux M, Hawley NL, Weeks DE, McGarvey ST, Sandoval K, Barberena-Jonas C, Quinto-Cortés CD, Hagelberg E, Mentzer AJ, Robson K, Coulibaly B, Seeleuthner Y, Bigio B, Li Z, Uzé G, Pellegrini S, Lorenzo L, Sbihi Z, Latour S, Besnard M, Adam de Beaumais T, Jacqz Aigrain E, Béziat V, Deka R, Esera Tulifau L, Viali S, Reupena MS, Naseri T, McNaughton P, Sarkozy V, Peake J, Blincoe A, Primhak S, Stables S, Gibson K, Woon ST, Drake KM, Hill AV, Chan CY, King R, Ameratunga R, Teiti I, Aubry M, Cao-Lormeau VM, Tangye SG, Zhang SY, Jouanguy E, Gray P, Abel L, Moreno-Estrada A, Minster RL, Quintana-Murci L, Wood AC, Casanova JL. A loss-of-function IFNAR1 allele in Polynesia underlies severe viral diseases in homozygotes. J Exp Med 2022; 219:e20220028. [PMID: 35442418 PMCID: PMC9026234 DOI: 10.1084/jem.20220028] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Globally, autosomal recessive IFNAR1 deficiency is a rare inborn error of immunity underlying susceptibility to live attenuated vaccine and wild-type viruses. We report seven children from five unrelated kindreds of western Polynesian ancestry who suffered from severe viral diseases. All the patients are homozygous for the same nonsense IFNAR1 variant (p.Glu386*). This allele encodes a truncated protein that is absent from the cell surface and is loss-of-function. The fibroblasts of the patients do not respond to type I IFNs (IFN-α2, IFN-ω, or IFN-β). Remarkably, this IFNAR1 variant has a minor allele frequency >1% in Samoa and is also observed in the Cook, Society, Marquesas, and Austral islands, as well as Fiji, whereas it is extremely rare or absent in the other populations tested, including those of the Pacific region. Inherited IFNAR1 deficiency should be considered in individuals of Polynesian ancestry with severe viral illnesses.
Collapse
|
research-article |
3 |
41 |
10
|
Ogishi M, Arias AA, Yang R, Han JE, Zhang P, Rinchai D, Halpern J, Mulwa J, Keating N, Chrabieh M, Lainé C, Seeleuthner Y, Ramírez-Alejo N, Nekooie-Marnany N, Guennoun A, Muller-Fleckenstein I, Fleckenstein B, Kilic SS, Minegishi Y, Ehl S, Kaiser-Labusch P, Kendir-Demirkol Y, Rozenberg F, Errami A, Zhang SY, Zhang Q, Bohlen J, Philippot Q, Puel A, Jouanguy E, Pourmoghaddas Z, Bakhtiar S, Willasch AM, Horneff G, Llanora G, Shek LP, Chai LY, Tay SH, Rahimi HH, Mahdaviani SA, Nepesov S, Bousfiha AA, Erdeniz EH, Karbuz A, Marr N, Navarrete C, Adeli M, Hammarstrom L, Abolhassani H, Parvaneh N, Al Muhsen S, Alosaimi MF, Alsohime F, Nourizadeh M, Moin M, Arnaout R, Alshareef S, El-Baghdadi J, Genel F, Sherkat R, Kiykim A, Yücel E, Keles S, Bustamante J, Abel L, Casanova JL, Boisson-Dupuis S. Impaired IL-23-dependent induction of IFN-γ underlies mycobacterial disease in patients with inherited TYK2 deficiency. J Exp Med 2022; 219:e20220094. [PMID: 36094518 PMCID: PMC9472563 DOI: 10.1084/jem.20220094] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 12/21/2022] Open
Abstract
Human cells homozygous for rare loss-of-expression (LOE) TYK2 alleles have impaired, but not abolished, cellular responses to IFN-α/β (underlying viral diseases in the patients) and to IL-12 and IL-23 (underlying mycobacterial diseases). Cells homozygous for the common P1104A TYK2 allele have selectively impaired responses to IL-23 (underlying isolated mycobacterial disease). We report three new forms of TYK2 deficiency in six patients from five families homozygous for rare TYK2 alleles (R864C, G996R, G634E, or G1010D) or compound heterozygous for P1104A and a rare allele (A928V). All these missense alleles encode detectable proteins. The R864C and G1010D alleles are hypomorphic and loss-of-function (LOF), respectively, across signaling pathways. By contrast, hypomorphic G996R, G634E, and A928V mutations selectively impair responses to IL-23, like P1104A. Impairment of the IL-23-dependent induction of IFN-γ is the only mechanism of mycobacterial disease common to patients with complete TYK2 deficiency with or without TYK2 expression, partial TYK2 deficiency across signaling pathways, or rare or common partial TYK2 deficiency specific for IL-23 signaling.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
36 |
11
|
Campbell TM, Liu Z, Zhang Q, Moncada-Velez M, Covill LE, Zhang P, Alavi Darazam I, Bastard P, Bizien L, Bucciol G, Lind Enoksson S, Jouanguy E, Karabela ŞN, Khan T, Kendir-Demirkol Y, Arias AA, Mansouri D, Marits P, Marr N, Migeotte I, Moens L, Ozcelik T, Pellier I, Sendel A, Şenoğlu S, Shahrooei M, Smith CE, Vandernoot I, Willekens K, Kart Yaşar K, COVID Human Genetic Effort AbelLaurentAiutiAlessandroAl-MuhsenSalehAl-MullaFahdAndersonMark S.AndreakosEvangelosAriasAndrés A.Baris FeldmanHagitBelotAlexandreBiggsCatherine M.BogunovicDusanBolzeAlexandreBondarenkoAnastasiiaBousfihaAhmed A.BrodinPetterBrycesonYenanBustamanteCarlos D.ButteManish J.CasariGiorgioChristodoulouJohnCondino-NetoAntonioConstantinescuStefan N.CooperMegan A.DalgardClifton L.DesaiMurkeshDroletBeth A.El BaghdadiJamilaEspinosa-PadillaSaraFellayJacquesFloresCarlosFrancoJosé LuisFroidureAntoineGregersenPeter K.GrimbacherBodoHaerynckFilomeenHaginDavidHalwaniRabihHammarströmLennartHeathJames R.HenricksonSarah E.HsiehElena W.Y.HusebyeEysteinImaiKohsukeItanYuvalJarvisErich D.KaramitrosTimokratisKisandKaiKuCheng-LungLauYu-LungLingYunLucasCarrie L.ManiatisTomMansouriDavoodMaródiLászlóMeytsIsabelleMilnerJoshua D.MironskaKristinaMogensenTrine H.MorioTomohiroNgLisa F.P.NotarangeloLuigi D.NovelliAntonioNovelliGiuseppeO'FarrellyClionaOkadaSatoshiOkamotoKeisukeOzcelikTayfunPan-HammarströmQiangPapadakiMariaPapeJean W.Perez de DiegoRebecaPerlinDavid S.PesoleGrazianoPlanasAnna M.PrandoCarolinaPujolAuroraQuintana-MurciLluisRamaswamySathishkumarReniaLaurentResnickIgorRodríguez-GallegoCarlosSancho-ShimizuVanessaSedivaAnnaSeppänenMikko R.J.ShahrooeiMohammedShcherbinaAnnaSlabyOndrejSnowAndrew L.Soler-PalacínPereSpaanAndrás N.TancevskiIvanTangyeStuart G.TayounAhmad AbouTurveyStuart E.UddinK M FurkanUddinMohammed J.van de BeekDiederikVinhDonald C.von BernuthHorstWautersJoostZatzMayanaZawadzkiPawelSuHelen C.CasanovaJean-Laurent, Bergman P, Abel L, Cobat A, Casanova JL, Meyts I, Bryceson YT. Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. J Exp Med 2022; 219:e20220202. [PMID: 35670811 PMCID: PMC9178406 DOI: 10.1084/jem.20220202] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Autosomal recessive IRF7 deficiency was previously reported in three patients with single critical influenza or COVID-19 pneumonia episodes. The patients' fibroblasts and plasmacytoid dendritic cells produced no detectable type I and III IFNs, except IFN-β. Having discovered four new patients, we describe the genetic, immunological, and clinical features of seven IRF7-deficient patients from six families and five ancestries. Five were homozygous and two were compound heterozygous for IRF7 variants. Patients typically had one episode of pulmonary viral disease. Age at onset was surprisingly broad, from 6 mo to 50 yr (mean age 29 yr). The respiratory viruses implicated included SARS-CoV-2, influenza virus, respiratory syncytial virus, and adenovirus. Serological analyses indicated previous infections with many common viruses. Cellular analyses revealed strong antiviral immunity and expanded populations of influenza- and SARS-CoV-2-specific memory CD4+ and CD8+ T cells. IRF7-deficient individuals are prone to viral infections of the respiratory tract but are otherwise healthy, potentially due to residual IFN-β and compensatory adaptive immunity.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
24 |
12
|
David C, Arango-Franco CA, Badonyi M, Fouchet J, Rice GI, Didry-Barca B, Maisonneuve L, Seabra L, Kechiche R, Masson C, Cobat A, Abel L, Talouarn E, Béziat V, Deswarte C, Livingstone K, Paul C, Malik G, Ross A, Adam J, Walsh J, Kumar S, Bonnet D, Bodemer C, Bader-Meunier B, Marsh JA, Casanova JL, Crow YJ, Manoury B, Frémond ML, Bohlen J, Lepelley A. Gain-of-function human UNC93B1 variants cause systemic lupus erythematosus and chilblain lupus. J Exp Med 2024; 221:e20232066. [PMID: 38869500 PMCID: PMC11176256 DOI: 10.1084/jem.20232066] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
UNC93B1 is a transmembrane domain protein mediating the signaling of endosomal Toll-like receptors (TLRs). We report five families harboring rare missense substitutions (I317M, G325C, L330R, R466S, and R525P) in UNC93B1 causing systemic lupus erythematosus (SLE) or chilblain lupus (CBL) as either autosomal dominant or autosomal recessive traits. As for a D34A mutation causing murine lupus, we recorded a gain of TLR7 and, to a lesser extent, TLR8 activity with the I317M (in vitro) and G325C (in vitro and ex vivo) variants in the context of SLE. Contrastingly, in three families segregating CBL, the L330R, R466S, and R525P variants were isomorphic with respect to TLR7 activity in vitro and, for R525P, ex vivo. Rather, these variants demonstrated a gain of TLR8 activity. We observed enhanced interaction of the G325C, L330R, and R466S variants with TLR8, but not the R525P substitution, indicating different disease mechanisms. Overall, these observations suggest that UNC93B1 mutations cause monogenic SLE or CBL due to differentially enhanced TLR7 and TLR8 signaling.
Collapse
|
research-article |
1 |
20 |
13
|
Bastard P, Gervais A, Taniguchi M, Saare L, Särekannu K, Le Voyer T, Philippot Q, Rosain J, Bizien L, Asano T, Garcia-Prat M, Parra-Martínez A, Migaud M, Tsumura M, Conti F, Belot A, Rivière JG, Morio T, Tanaka J, Javouhey E, Haerynck F, Duvlis S, Ozcelik T, Keles S, Tandjaoui-Lambiotte Y, Escoda S, Husain M, Pan-Hammarström Q, Hammarström L, Ahlijah G, Abi Haidar A, Soudee C, Arseguel V, Abolhassani H, Sahanic S, Tancevski I, Nukui Y, Hayakawa S, Chrousos GP, Michos A, Tatsi EB, Filippatos F, Rodriguez-Palmero A, Troya J, Tipu I, Meyts I, Roussel L, Ostrowski SR, Schidlowski L, Prando C, Condino-Neto A, Cheikh N, Bousfiha AA, El Bakkouri J, Peterson P, Pujol A, Lévy R, Quartier P, Vinh DC, Boisson B, Béziat V, Zhang SY, Borghesi A, Pession A, Andreakos E, Marr N, Mentis AFA, Mogensen TH, Rodríguez-Gallego C, Soler-Palacin P, Colobran R, Tillmann V, Neven B, Trouillet-Assant S, Brodin P, Abel L, Jouanguy E, Zhang Q, Martinón-Torres F, Salas A, Gómez-Carballa A, Gonzalez-Granado LI, Kisand K, Okada S, Puel A, Cobat A, Casanova JL. Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children. J Exp Med 2024; 221:e20231353. [PMID: 38175961 PMCID: PMC10771097 DOI: 10.1084/jem.20231353] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-α2 in 10 patients: IFN-α2 only in three, IFN-α2 plus IFN-ω in five, and IFN-α2, IFN-ω plus IFN-β in two; IFN-ω only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-α2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-ω in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-α2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-ω only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-ω and/or IFN-α2.
Collapse
|
research-article |
1 |
20 |
14
|
Lévy R, Gothe F, Momenilandi M, Magg T, Materna M, Peters P, Raedler J, Philippot Q, Rack-Hoch AL, Langlais D, Bourgey M, Lanz AL, Ogishi M, Rosain J, Martin E, Latour S, Vladikine N, Distefano M, Khan T, Rapaport F, Schulz MS, Holzer U, Fasth A, Sogkas G, Speckmann C, Troilo A, Bigley V, Roppelt A, Dinur-Schejter Y, Toker O, Bronken Martinsen KH, Sherkat R, Somekh I, Somech R, Shouval DS, Kühl JS, Ip W, McDermott EM, Cliffe L, Ozen A, Baris S, Rangarajan HG, Jouanguy E, Puel A, Bustamante J, Alyanakian MA, Fusaro M, Wang Y, Kong XF, Cobat A, Boutboul D, Castelle M, Aguilar C, Hermine O, Cheminant M, Suarez F, Yildiran A, Bousfiha A, Al-Mousa H, Alsohime F, Cagdas D, Abraham RS, Knutsen AP, Fevang B, Bhattad S, Kiykim A, Erman B, Arikoglu T, Unal E, Kumar A, Geier CB, Baumann U, Neven B, Rohlfs M, Walz C, Abel L, Malissen B, Marr N, Klein C, Casanova JL, Hauck F, Béziat V. Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J Exp Med 2023; 220:e20220275. [PMID: 36515678 PMCID: PMC9754768 DOI: 10.1084/jem.20220275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/17/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Patients with inherited CARMIL2 or CD28 deficiency have defective T cell CD28 signaling, but their immunological and clinical phenotypes remain largely unknown. We show that only one of three CARMIL2 isoforms is produced and functional across leukocyte subsets. Tested mutant CARMIL2 alleles from 89 patients and 52 families impair canonical NF-κB but not AP-1 and NFAT activation in T cells stimulated via CD28. Like CD28-deficient patients, CARMIL2-deficient patients display recalcitrant warts and low blood counts of CD4+ and CD8+ memory T cells and CD4+ TREGs. Unlike CD28-deficient patients, they have low counts of NK cells and memory B cells, and their antibody responses are weak. CARMIL2 deficiency is fully penetrant by the age of 10 yr and is characterized by numerous infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation, including inflammatory bowel disease. Patients with somatic reversions of a mutant allele in CD4+ T cells have milder phenotypes. Our study suggests that CARMIL2 governs immunological pathways beyond CD28.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
11 |
15
|
Zhang P, Chaldebas M, Ogishi M, Al Qureshah F, Ponsin K, Feng Y, Rinchai D, Milisavljevic B, Han JE, Moncada-Vélez M, Keles S, Schröder B, Stenson PD, Cooper DN, Cobat A, Boisson B, Zhang Q, Boisson-Dupuis S, Abel L, Casanova JL. Genome-wide detection of human intronic AG-gain variants located between splicing branchpoints and canonical splice acceptor sites. Proc Natl Acad Sci U S A 2023; 120:e2314225120. [PMID: 37931111 PMCID: PMC10655562 DOI: 10.1073/pnas.2314225120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023] Open
Abstract
Human genetic variants that introduce an AG into the intronic region between the branchpoint (BP) and the canonical splice acceptor site (ACC) of protein-coding genes can disrupt pre-mRNA splicing. Using our genome-wide BP database, we delineated the BP-ACC segments of all human introns and found extreme depletion of AG/YAG in the [BP+8, ACC-4] high-risk region. We developed AGAIN as a genome-wide computational approach to systematically and precisely pinpoint intronic AG-gain variants within the BP-ACC regions. AGAIN identified 350 AG-gain variants from the Human Gene Mutation Database, all of which alter splicing and cause disease. Among them, 74% created new acceptor sites, whereas 31% resulted in complete exon skipping. AGAIN also predicts the protein-level products resulting from these two consequences. We performed AGAIN on our exome/genomes database of patients with severe infectious diseases but without known genetic etiology and identified a private homozygous intronic AG-gain variant in the antimycobacterial gene SPPL2A in a patient with mycobacterial disease. AGAIN also predicts a retention of six intronic nucleotides that encode an in-frame stop codon, turning AG-gain into stop-gain. This allele was then confirmed experimentally to lead to loss of function by disrupting splicing. We further showed that AG-gain variants inside the high-risk region led to misspliced products, while those outside the region did not, by two case studies in genes STAT1 and IRF7. We finally evaluated AGAIN on our 14 paired exome-RNAseq samples and found that 82% of AG-gain variants in high-risk regions showed evidence of missplicing. AGAIN is publicly available from https://hgidsoft.rockefeller.edu/AGAIN and https://github.com/casanova-lab/AGAIN.
Collapse
|
research-article |
2 |
10 |
16
|
Moriya K, Nakano T, Honda Y, Tsumura M, Ogishi M, Sonoda M, Nishitani-Isa M, Uchida T, Hbibi M, Mizoguchi Y, Ishimura M, Izawa K, Asano T, Kakuta F, Abukawa D, Rinchai D, Zhang P, Kambe N, Bousfiha A, Yasumi T, Boisson B, Puel A, Casanova JL, Nishikomori R, Ohga S, Okada S, Sasahara Y, Kure S. Human RELA dominant-negative mutations underlie type I interferonopathy with autoinflammation and autoimmunity. J Exp Med 2023; 220:e20212276. [PMID: 37273177 PMCID: PMC10242411 DOI: 10.1084/jem.20212276] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/28/2022] [Accepted: 04/07/2023] [Indexed: 06/06/2023] Open
Abstract
Inborn errors of the NF-κB pathways underlie various clinical phenotypes in humans. Heterozygous germline loss-of-expression and loss-of-function mutations in RELA underlie RELA haploinsufficiency, which results in TNF-dependent chronic mucocutaneous ulceration and autoimmune hematological disorders. We here report six patients from five families with additional autoinflammatory and autoimmune manifestations. These patients are heterozygous for RELA mutations, all of which are in the 3' segment of the gene and create a premature stop codon. Truncated and loss-of-function RelA proteins are expressed in the patients' cells and exert a dominant-negative effect. Enhanced expression of TLR7 and MYD88 mRNA in plasmacytoid dendritic cells (pDCs) and non-pDC myeloid cells results in enhanced TLR7-driven secretion of type I/III interferons (IFNs) and interferon-stimulated gene expression in patient-derived leukocytes. Dominant-negative mutations in RELA thus underlie a novel form of type I interferonopathy with systemic autoinflammatory and autoimmune manifestations due to excessive IFN production, probably triggered by otherwise non-pathogenic TLR ligands.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
10 |
17
|
Vandoren R, Boeren M, Schippers J, Bartholomeus E, Mullan K, Michels N, Aerts O, Leysen J, Bervoets A, Lambert J, Leuridan E, Wens J, Peeters K, Emonds MP, Jansens H, Casanova JL, Bastard P, Suls A, Van Tendeloo V, Ponsaerts P, Delputte P, Ogunjimi B, Laukens K, Meysman P. Unraveling the Immune Signature of Herpes Zoster: Insights Into the Pathophysiology and Human Leukocyte Antigen Risk Profile. J Infect Dis 2024; 230:706-715. [PMID: 38195164 PMCID: PMC11420803 DOI: 10.1093/infdis/jiad609] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024] Open
Abstract
The varicella-zoster virus (VZV) infects >95% of the population. VZV reactivation causes herpes zoster (HZ), known as shingles, primarily affecting the elderly and individuals who are immunocompromised. However, HZ can occur in otherwise healthy individuals. We analyzed the immune signature and risk profile in patients with HZ using a genome-wide association study across different UK Biobank HZ cohorts. Additionally, we conducted one of the largest HZ human leukocyte antigen association studies to date, coupled with transcriptomic analysis of pathways underlying HZ susceptibility. Our findings highlight the significance of the major histocompatibility complex locus for HZ development, identifying 5 protective and 4 risk human leukocyte antigen alleles. This demonstrates that HZ susceptibility is largely governed by variations in the major histocompatibility complex. Furthermore, functional analyses revealed the upregulation of type I interferon and adaptive immune responses. These findings provide fresh molecular insights into the pathophysiology and activation of innate and adaptive immune responses triggered by symptomatic VZV reactivation.
Collapse
|
research-article |
1 |
3 |
18
|
Benezech S, Khoryati L, Cognard J, Netea SA, Khan T, Moreews M, Saker K, De Guillebon JM, Khaldi-Plassart S, Pescarmona R, Viel S, Malcus C, Perret M, Ar Gouilh M, Vabret A, Venet F, Remy S, Chopin E, Lina G, Vandenesch F, Rousseaux N, Bastard P, Zhang SY, Casanova JL, Trouillet-Assant S, Walzer T, Kuijpers TW, Javouhey E, Dauwalder O, Marr N, Belot A. Pre-Covid-19, SARS-CoV-2-Negative Multisystem Inflammatory Syndrome in Children. N Engl J Med 2023; 389:2105-2107. [PMID: 38048195 PMCID: PMC10755832 DOI: 10.1056/nejmc2307574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
|
Letter |
2 |
1 |
19
|
Al Qureshah F, Le Pen J, de Weerd NA, Moncada-Velez M, Materna M, Lin DC, Milisavljevic B, Vianna F, Bizien L, Lorenzo L, Lecuit M, Pommier JD, Keles S, Ozcelik T, Pedraza-Sanchez S, de Prost N, El Zein L, Hammoud H, Ng LFP, Halwani R, Saheb Sharif-Askari N, Lau YL, Tam AR, Singh N, Bhattad S, Berkun Y, Chantratita W, Aguilar-López R, Shahrooei M, Abel L, Bastard P, Jouanguy E, Béziat V, Zhang P, Rice CM, Cobat A, Zhang SY, Hertzog PJ, Casanova JL, Zhang Q. A common form of dominant human IFNAR1 deficiency impairs IFN-α and -ω but not IFN-β-dependent immunity. J Exp Med 2025; 222:e20241413. [PMID: 39680367 DOI: 10.1084/jem.20241413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Autosomal recessive deficiency of the IFNAR1 or IFNAR2 chain of the human type I IFN receptor abolishes cellular responses to IFN-α, -β, and -ω, underlies severe viral diseases, and is globally very rare, except for IFNAR1 and IFNAR2 deficiency in Western Polynesia and the Arctic, respectively. We report 11 human IFNAR1 alleles, the products of which impair but do not abolish responses to IFN-α and -ω without affecting responses to IFN-β. Ten of these alleles are rare in all populations studied, but the remaining allele (P335del) is common in Southern China (minor allele frequency ≈2%). Cells heterozygous for these variants display a dominant phenotype in vitro with impaired responses to IFN-α and -ω, but not -β, and viral susceptibility. Negative dominance, rather than haploinsufficiency, accounts for this dominance. Patients heterozygous for these variants are prone to viral diseases, attesting to both the dominance of these variants clinically and the importance of IFN-α and -ω for protective immunity against some viruses.
Collapse
|
|
1 |
|
20
|
Spaan AN, Boisson B, Masters SL. Primary disorders of polyubiquitination: Dual roles in autoinflammation and immunodeficiency. J Exp Med 2025; 222:e20241047. [PMID: 40232244 PMCID: PMC11998746 DOI: 10.1084/jem.20241047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
The last decades have brought a rapid expansion of the number of primary disorders related to the polyubiquitination pathways in humans. Most of these disorders manifest with two seemingly contradictory clinical phenotypes: autoinflammation, immunodeficiency, or both. We provide an overview of the molecular pathogenesis of these disorders, and their role in inflammation and infection. By focusing on data from human genetic diseases, we explore the complexities of the polyubiquitination pathways and the corresponding clinical phenotypes of their deficiencies. We offer a road map for the discovery of new genetic etiologies. By considering the triggers that induce inflammation, we propose autoinflammation and immunodeficiency as continuous clinical phenotypes.
Collapse
|
Review |
1 |
|
21
|
Rosain J, Le Voyer T, Liu X, Gervais A, Polivka L, Cederholm A, Berteloot L, Parent AV, Pescatore A, Spinosa E, Minic S, Kiszewski AE, Tsumura M, Thibault C, Esnaola Azcoiti M, Martinovic J, Philippot Q, Khan T, Marchal A, Charmeteau-De Muylder B, Bizien L, Deswarte C, Hadjem L, Fauvarque MO, Dorgham K, Eriksson D, Falcone EL, Puel M, Ünal S, Geraldo A, Le Floc'h C, Li H, Rheault S, Muti C, Bobrie-Moyrand C, Welfringer-Morin A, Fuleihan RL, Lévy R, Roelens M, Gao L, Materna M, Pellegrini S, Piemonti L, Catherinot E, Goffard JC, Fekkar A, Sacko-Sow A, Soudée C, Boucherit S, Neehus AL, Has C, Hübner S, Blanchard-Rohner G, Amador-Borrero B, Utsumi T, Taniguchi M, Tani H, Izawa K, Yasumi T, Kanai S, Migaud M, Aubart M, Lambert N, Gorochov G, Picard C, Soudais C, L'Honneur AS, Rozenberg F, Milner JD, Zhang SY, Vabres P, Trpinac D, Marr N, Boddaert N, Desguerre I, Pasparakis M, Miller CN, Poziomczyk CS, Abel L, Okada S, Jouanguy E, Cheynier R, Zhang Q, Cobat A, Béziat V, Boisson B, Steffann J, Fusco F, Ursini MV, Hadj-Rabia S, Bodemer C, Bustamante J, Luche H, Puel A, Courtois G, Bastard P, Landegren N, Anderson MS, Casanova JL. Incontinentia pigmenti underlies thymic dysplasia, autoantibodies to type I IFNs, and viral diseases. J Exp Med 2024; 221:e20231152. [PMID: 39352576 PMCID: PMC11448874 DOI: 10.1084/jem.20231152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Human inborn errors of thymic T cell tolerance underlie the production of autoantibodies (auto-Abs) neutralizing type I IFNs, which predispose to severe viral diseases. We analyze 131 female patients with X-linked dominant incontinentia pigmenti (IP), heterozygous for loss-of-function (LOF) NEMO variants, from 99 kindreds in 10 countries. Forty-seven of these patients (36%) have auto-Abs neutralizing IFN-α and/or IFN-ω, a proportion 23 times higher than that for age-matched female controls. This proportion remains stable from the age of 6 years onward. On imaging, female patients with IP have a small, abnormally structured thymus. Auto-Abs against type I IFNs confer a predisposition to life-threatening viral diseases. By contrast, patients with IP lacking auto-Abs against type I IFNs are at no particular risk of viral disease. These results suggest that IP accelerates thymic involution, thereby underlying the production of auto-Abs neutralizing type I IFNs in at least a third of female patients with IP, predisposing them to life-threatening viral diseases.
Collapse
|
|
1 |
|
22
|
Gervais A, Marchal A, Fortova A, Berankova M, Krbkova L, Pychova M, Salat J, Zhao S, Kerrouche N, Le Voyer T, Stiasny K, Raffl S, Schieber Pachart A, Fafi-Kremer S, Gravier S, Robbiani DF, Abel L, MacDonald MR, Rice CM, Weissmann G, Kamal Eldin T, Robatscher E, Erne EM, Pagani E, Borghesi A, Puel A, Bastard P, Velay A, Martinot M, Hansmann Y, Aberle JH, Ruzek D, Cobat A, Zhang SY, Casanova JL. Autoantibodies neutralizing type I IFNs underlie severe tick-borne encephalitis in ∼10% of patients. J Exp Med 2024; 221:e20240637. [PMID: 39316018 PMCID: PMC11448868 DOI: 10.1084/jem.20240637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Tick-borne encephalitis (TBE) virus (TBEV) is transmitted to humans via tick bites. Infection is benign in >90% of the cases but can cause mild (<5%), moderate (<4%), or severe (<1%) encephalitis. We show here that ∼10% of patients hospitalized for severe TBE in cohorts from Austria, Czech Republic, and France carry auto-Abs neutralizing IFN-α2, -β, and/or -ω at the onset of disease, contrasting with only ∼1% of patients with moderate and mild TBE. These auto-Abs were found in two of eight patients who died and none of 13 with silent infection. The odds ratios (OR) for severe TBE in individuals with these auto-Abs relative to those without them in the general population were 4.9 (95% CI: 1.5-15.9, P < 0.0001) for the neutralization of only 100 pg/ml IFN-α2 and/or -ω, and 20.8 (95% CI: 4.5-97.4, P < 0.0001) for the neutralization of 10 ng/ml IFN-α2 and -ω. Auto-Abs neutralizing type I IFNs accounted for ∼10% of severe TBE cases in these three European cohorts.
Collapse
|
research-article |
1 |
|
23
|
Le Pen J, Paniccia G, Kinast V, Moncada-Velez M, Ashbrook AW, Bauer M, Hoffmann HH, Pinharanda A, Ricardo-Lax I, Stenzel AF, Rosado-Olivieri EA, Dinnon KH, Doyle WC, Freije CA, Hong SH, Lee D, Lewy T, Luna JM, Peace A, Schmidt C, Schneider WM, Winkler R, Yip EZ, Larson C, McGinn T, Menezes MR, Ramos-Espiritu L, Banerjee P, Poirier JT, Sànchez-Rivera FJ, Cobat A, Zhang Q, Casanova JL, Carroll TS, Glickman JF, Michailidis E, Razooky B, MacDonald MR, Rice CM. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist. PLoS Biol 2024; 22:e3002767. [PMID: 39316623 PMCID: PMC11486371 DOI: 10.1371/journal.pbio.3002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Collapse
|
research-article |
1 |
|
24
|
Riller Q, Sorin B, Courteille C, Ho-Nhat D, Le Voyer T, Debray JC, Stolzenberg MC, Schmutz M, Pellé O, Becquard T, Rodrigo Riestra M, Berteloot L, Migaud M, Delage L, Jeanpierre M, Boussard C, Brunaud C, Magérus A, Bretot C, Michel V, Roux C, Picard C, Masson C, Bole-Feysot C, Cagnard N, Corneau A, Meyts I, Baud V, Casanova JL, Fischer A, Dejardin E, Puel A, Boulanger C, Neven B, Rieux-Laucat F. Mutations disrupting the kinase domain of IKKα lead to immunodeficiency and immune dysregulation in humans. J Exp Med 2025; 222:e20240843. [PMID: 39812688 PMCID: PMC11734625 DOI: 10.1084/jem.20240843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
IKKα, encoded by CHUK, is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. The absence of IKKα causes fetal encasement syndrome in humans, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and causes combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features. We showed that both variants were loss-of-function. Non-canonical NF-κB activation was profoundly diminished in stromal and immune cells while the canonical pathway was unexpectedly partially impaired. Reintroducing wt CHUK restored non-canonical NF-κB activation. The patient had neutralizing autoantibodies against type I IFN, akin to non-canonical NF-κB pathway deficiencies. Thus, this is the first case of biallelic CHUK mutations disrupting IKKα kinase function, broadening non-canonical NF-κB defect understanding, and suggesting IKKα's role in canonical NF-κB target gene expression in humans.
Collapse
|
Case Reports |
1 |
|
25
|
Saidoune F, Lee D, Di Domizio J, Le Floc’h C, Jenelten R, Le Pen J, Bondet V, Joncic A, Morren MA, Béziat V, Zhang SY, Jouanguy E, Duffy D, Rice CM, Conrad C, Fellay J, Casanova JL, Gilliet M, Yatim A. Enhanced TLR7-dependent production of type I interferon by pDCs underlies pandemic chilblains. J Exp Med 2025; 222:e20231467. [PMID: 40227192 PMCID: PMC11995862 DOI: 10.1084/jem.20231467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/02/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
Outbreaks of chilblains were reported during the COVID-19 pandemic. Given the essential role of type I interferon (I-IFN) in protective immunity against SARS-CoV-2 and the association of chilblains with inherited type I interferonopathies, we hypothesized that excessive I-IFN responses to SARS-CoV-2 might underlie the occurrence of chilblains in this context. We identified a transient I-IFN signature in chilblain lesions, accompanied by an acral infiltration of activated plasmacytoid dendritic cells (pDCs). Patients with chilblains were otherwise asymptomatic or had mild disease without seroconversion. Their leukocytes produced abnormally high levels of I-IFN upon TLR7 stimulation with agonists or ssRNA viruses-particularly SARS-CoV-2-but not with DNA agonists of TLR9 or the dsDNA virus HSV-1. Moreover, the patients' pDCs displayed cell-intrinsic hyperresponsiveness to TLR7 stimulation regardless of TLR7 levels. Inherited TLR7 or I-IFN deficiency confers a predisposition to life-threatening COVID-19. Conversely, our findings suggest that enhanced TLR7 activity in predisposed individuals could confer innate, pDC-mediated, sterilizing immunity to SARS-CoV-2 infection, with I-IFN-driven chilblains as a trade-off.
Collapse
|
research-article |
1 |
|