1
|
Moretton A, Morel F, Macao B, Lachaume P, Ishak L, Lefebvre M, Garreau-Balandier I, Vernet P, Falkenberg M, Farge G. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One 2017; 12:e0176795. [PMID: 28453550 PMCID: PMC5409072 DOI: 10.1371/journal.pone.0176795] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial DNA (mtDNA) can undergo double-strand breaks (DSBs), caused by defective replication, or by various endogenous or exogenous sources, such as reactive oxygen species, chemotherapeutic agents or ionizing radiations. MtDNA encodes for proteins involved in ATP production, and maintenance of genome integrity following DSBs is thus of crucial importance. However, the mechanisms involved in mtDNA maintenance after DSBs remain unknown. In this study, we investigated the consequences of the production of mtDNA DSBs using a human inducible cell system expressing the restriction enzyme PstI targeted to mitochondria. Using this system, we could not find any support for DSB repair of mtDNA. Instead we observed a loss of the damaged mtDNA molecules and a severe decrease in mtDNA content. We demonstrate that none of the known mitochondrial nucleases are involved in the mtDNA degradation and that the DNA loss is not due to autophagy, mitophagy or apoptosis. Our study suggests that a still uncharacterized pathway for the targeted degradation of damaged mtDNA in a mitophagy/autophagy-independent manner is present in mitochondria, and might provide the main mechanism used by the cells to deal with DSBs.
Collapse
|
Journal Article |
8 |
95 |
2
|
Karlsson T, Lundholm M, Widmark A, Persson E. Tumor Cell-Derived Exosomes from the Prostate Cancer Cell Line TRAMP-C1 Impair Osteoclast Formation and Differentiation. PLoS One 2016; 11:e0166284. [PMID: 27832183 PMCID: PMC5104397 DOI: 10.1371/journal.pone.0166284] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Skeletal metastatic disease is a deleterious consequence of dissemination of tumor cells from numerous primary sites, such as prostate, lung and breast. Skeletal metastases are still incurable, resulting in development of clinical complications and decreased survival for cancer patients with metastatic disease. During the last decade, tumor cell-derived microvesicles have been identified and suggested to be involved in cancer disease progression. Whether cancer exosomes are involved in tumor and bone cell interactions in the metastatic site is still, however, a rather unexplored field. Here we show that exosomes isolated from the murine prostate cancer cell line TRAMP-C1 dramatically decrease fusion and differentiation of monocytic osteoclast precursors to mature, multinucleated osteoclasts. The presence of tumor cell-derived exosomes also clearly decreased the expression of established markers for osteoclast fusion and differentiation, including DC-STAMP, TRAP, cathepsin K, and MMP-9. In contrast, exosomes derived from murine fibroblastic cells did not affect osteoclast formation. Our findings suggest that exosomes released from tumor cells in the tumor-bone interface are involved in pathological regulation of bone cell formation in the metastatic site. This further strengthens the role of tumor cell-derived microvesicles in cancer progression and disease aggressiveness.
Collapse
|
Journal Article |
9 |
61 |
3
|
Akeus P, Szeponik L, Ahlmanner F, Sundström P, Alsén S, Gustavsson B, Sparwasser T, Raghavan S, Quiding-Järbrink M. Regulatory T cells control endothelial chemokine production and migration of T cells into intestinal tumors of APC min/+ mice. Cancer Immunol Immunother 2018; 67:1067-1077. [PMID: 29671006 PMCID: PMC6006230 DOI: 10.1007/s00262-018-2161-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/05/2018] [Indexed: 01/17/2023]
Abstract
Tumor-infiltrating lymphocytes are crucial for anti-tumor immunity. We have previously shown that regulatory T cells (Treg) are able to reduce T-cell transendothelial migration in vitro and accumulation of effector T cells in intestinal tumors in vivo. Treg depletion also resulted in increased levels of the chemokines CXCL9 and CXCL10 specifically in the tumors. In this study, we investigated the mechanisms for Treg mediated suppression of T-cell migration into intestinal tumors in the APCmin/+ mouse model. By breeding APCmin/+ mice with DEREG mice, which harbour a high affinity diphtheria toxin receptor under the control of the FOXP3 promoter, we were able to deplete Treg in tumor-bearing mice. Using adoptive transfer experiments, we could document a markedly increased migration of T cells specifically into Treg depleted tumors, and that Treg depletion results in increased production of the CXCR3 ligand CXCL10 from endothelial cells in the tumors. Furthermore, we were able to demonstrate that T cells use CXCR3 to migrate into intestinal tumors. In addition, human colon adenocarcinomas express high levels of mRNA CXCR3 ligands and tumor endothelial cells produce CXCL9 and CXCL10 ex vivo. In conclusion, this study demonstrates that Treg reduce endothelial CXCL10 production, inhibit T-cell migration into tumors and that CXCR3 mediated signalling is crucial for lymphocyte accumulation in intestinal tumors. Thus, immunotherapy aimed at Treg depletion may be effective by increasing not only T effector cell activity, but also their accumulation in tumors.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Cell Movement
- Chemokine CXCL9/metabolism
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Disease Models, Animal
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Female
- Humans
- Intestinal Neoplasms/immunology
- Intestinal Neoplasms/metabolism
- Intestinal Neoplasms/pathology
- Lymphocyte Depletion
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Receptors, CXCR3/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Tumor Cells, Cultured
Collapse
|
research-article |
7 |
14 |
4
|
Tükenmez H, Magnussen HM, Kovermann M, Byström A, Wolf-Watz M. Linkage between Fitness of Yeast Cells and Adenylate Kinase Catalysis. PLoS One 2016; 11:e0163115. [PMID: 27642758 PMCID: PMC5028032 DOI: 10.1371/journal.pone.0163115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/03/2016] [Indexed: 01/08/2023] Open
Abstract
Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies.
Collapse
|
Journal Article |
9 |
12 |
5
|
DeVries AA, Dennis J, Tyrer JP, Peng PC, Coetzee SG, Reyes AL, Plummer JT, Davis BD, Chen SS, Dezem FS, Aben KKH, Anton-Culver H, Antonenkova NN, Beckmann MW, Beeghly-Fadiel A, Berchuck A, Bogdanova NV, Bogdanova-Markov N, Brenton JD, Butzow R, Campbell I, Chang-Claude J, Chenevix-Trench G, Cook LS, DeFazio A, Doherty JA, Dörk T, Eccles DM, Eliassen AH, Fasching PA, Fortner RT, Giles GG, Goode EL, Goodman MT, Gronwald J, Håkansson N, Hildebrandt MAT, Huff C, Huntsman DG, Jensen A, Kar S, Karlan BY, Khusnutdinova EK, Kiemeney LA, Kjaer SK, Kupryjanczyk J, Labrie M, Lambrechts D, Le ND, Lubiński J, May T, Menon U, Milne RL, Modugno F, Monteiro AN, Moysich KB, Odunsi K, Olsson H, Pearce CL, Pejovic T, Ramus SJ, Riboli E, Riggan MJ, Romieu I, Sandler DP, Schildkraut JM, Setiawan VW, Sieh W, Song H, Sutphen R, Terry KL, Thompson PJ, Titus L, Tworoger SS, Van Nieuwenhuysen E, Edwards DV, Webb PM, Wentzensen N, Whittemore AS, Wolk A, Wu AH, Ziogas A, Freedman ML, Lawrenson K, Pharoah PDP, Easton DF, Gayther SA, Jones MR. Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci. J Natl Cancer Inst 2022; 114:1533-1544. [PMID: 36210504 PMCID: PMC9949586 DOI: 10.1093/jnci/djac160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/13/2022] [Accepted: 08/18/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Known risk alleles for epithelial ovarian cancer (EOC) account for approximately 40% of the heritability for EOC. Copy number variants (CNVs) have not been investigated as EOC risk alleles in a large population cohort. METHODS Single nucleotide polymorphism array data from 13 071 EOC cases and 17 306 controls of White European ancestry were used to identify CNVs associated with EOC risk using a rare admixture maximum likelihood test for gene burden and a by-probe ratio test. We performed enrichment analysis of CNVs at known EOC risk loci and functional biofeatures in ovarian cancer-related cell types. RESULTS We identified statistically significant risk associations with CNVs at known EOC risk genes; BRCA1 (PEOC = 1.60E-21; OREOC = 8.24), RAD51C (Phigh-grade serous ovarian cancer [HGSOC] = 5.5E-4; odds ratio [OR]HGSOC = 5.74 del), and BRCA2 (PHGSOC = 7.0E-4; ORHGSOC = 3.31 deletion). Four suggestive associations (P < .001) were identified for rare CNVs. Risk-associated CNVs were enriched (P < .05) at known EOC risk loci identified by genome-wide association study. Noncoding CNVs were enriched in active promoters and insulators in EOC-related cell types. CONCLUSIONS CNVs in BRCA1 have been previously reported in smaller studies, but their observed frequency in this large population-based cohort, along with the CNVs observed at BRCA2 and RAD51C gene loci in EOC cases, suggests that these CNVs are potentially pathogenic and may contribute to the spectrum of disease-causing mutations in these genes. CNVs are likely to occur in a wider set of susceptibility regions, with potential implications for clinical genetic testing and disease prevention.
Collapse
Grants
- P01 CA017054 NCI NIH HHS
- N01 CN025403 NCI NIH HHS
- UM1 CA176726 NCI NIH HHS
- R01 CA058860 NCI NIH HHS
- P50 CA105009 NCI NIH HHS
- R01-CA122443 NIH HHS
- 076113 Wellcome Trust
- G0401527 Medical Research Council
- U19-CA148112 NCI NIH HHS
- P50 CA136393 NCI NIH HHS
- C490/A10119 C490/A10124 Cancer Research UK
- 1000143 Medical Research Council
- R01-CA54419 NIH HHS
- C8221/A19170 Cancer Research UK
- R01 CA049449 NCI NIH HHS
- P50 CA159981 NCI NIH HHS
- T32 GM118288 NIGMS NIH HHS
- CA1X01HG007491-01 NIH HHS
- Z01-ES044005 NIEHS NIH HHS
- R01 CA106414 NCI NIH HHS
- R01 CA095023 NCI NIH HHS
- N01 PC067010 NCI NIH HHS
- P30 CA047904 NCI NIH HHS
- R01 CA058598 NCI NIH HHS
- U01 CA176726 NCI NIH HHS
- S10 RR025141 NCRR NIH HHS
- M01 RR000056 NCRR NIH HHS
- Department of Health
- 5T32GM118288-03 NIH HHS
- MR/N003284/1 Medical Research Council
- P30 CA014089 NCI NIH HHS
- K07-CA080668 NCI NIH HHS
- 14136 Cancer Research UK
- Worldwide Cancer Research
- MR_UU_12023 Medical Research Council
- R01 CA067262 NCI NIH HHS
- UM1 CA186107 NCI NIH HHS
- P30 CA015083 NCI NIH HHS
- G1000143 Medical Research Council
- R01 CA076016 NCI NIH HHS
- NHGRI NIH HHS
- P01 CA087969 NCI NIH HHS
- R01- CA61107 NCI NIH HHS
- R01-CA58598 NIH HHS
- U19 CA148112 NCI NIH HHS
- ULTR000445 NCATS NIH HHS
- R03 CA115195 NCI NIH HHS
- Wellcome Trust
- Breast Cancer Now
- R01 CA160669 NCI NIH HHS
- R01-CA058860 NIH HHS
- MC_UU_00004/01 Medical Research Council
- C570/A16491 Cancer Research UK
- R01-CA76016 NIH HHS
- R01-CA106414-A2 NIH HHS
- 001 World Health Organization
- Z01 ES049033 Intramural NIH HHS
- R01 CA126841 NCI NIH HHS
- MR/M012190/1 Medical Research Council
- 209057 Wellcome Trust
- R03 CA113148 NCI NIH HHS
- R01 CA149429 NCI NIH HHS
- National Institute of General Medical Sciences
- National Institutes of Health
- CSMC Precision Health Initiative
- Tell Every Amazing Lady About Ovarian Cancer Louisa M. McGregor Ovarian Cancer Foundation
- Ovarian Cancer Research Fund thanks
- National Cancer Institute
- National Human Genome Research Institute
- Canadian Institutes of Health Research
- Ovarian Cancer Research Fund
- European Commission’s Seventh Framework Programme
- Army Medical Research and Materiel Command
- National Health & Medical Research Council of Australia
- Cancer Councils of New South Wales, Victoria, Queensland, South Australia and Tasmania and Cancer Foundation of Western Australia
- Ovarian Cancer Australia
- Peter MacCallum Foundation
- University of Erlangen-Nuremberg
- National Kankerplan
- Breast Cancer Now, Institute of Cancer Research
- National Center for Advancing Translational Sciences
- European Commission
- International Agency for Research on Cancer
- Danish Cancer Society
- Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale
- Institut National de la Santé et de la Recherche Médicale
- German Cancer Aid; German Cancer Research Center
- Federal Ministry of Education and Research
- Hellenic Health Foundation
- Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy
- National Research Council
- Dutch Ministry of Public Health, Welfare and Sports
- Netherlands Cancer Registry
- LK Research Funds
- Dutch Prevention Funds
- World Cancer Research Fund
- Nordforsk, Nordic Centre of Excellence programme on Food, Nutrition and Health
- Health Research Fund
- Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra
- Swedish Cancer Society, Swedish Research Council and County Councils of Skåne and Västerbotten
- German Federal Ministry of Education and Research, Programme of Clinical Biomedical Research
- German Cancer Research Center
- Rudolf-Bartling Foundation
- Helsinki University Hospital Research Fund
- University of Pittsburgh School of Medicine Dean’s Faculty Advancement Award
- Department of Defense
- NCI
- Swedish Cancer Society, Swedish Research Council, Beta Kamprad Foundation
- Danish Cancer Society, Copenhagen
- Mayo Foundation
- Minnesota Ovarian Cancer Alliance
- Fred C. and Katherine B. Andersen Foundation
- VicHealth and Cancer Council Victoria, Cancer Council Victoria
- National Health and Medical Research Council of Australia
- NHMRC
- DOD Ovarian Cancer Research Program
- Moffitt Cancer Center
- Merck Pharmaceuticals
- Radboud University Medical Centre
- UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge
- National Institute of Environmental Health Sciences
- The Swedish Cancer Foundation
- the Swedish Research Council
- American Cancer Society
- Celma Mastry Ovarian Cancer Foundation
- Lon V Smith Foundation
- The Eve Appeal
- National Institute for Health Research University College London Hospitals Biomedical Research Centre
- California Cancer Research Program
- National Science Centre
- NIH
Collapse
|
Research Support, N.I.H., Intramural |
3 |
6 |
6
|
Li H, Zeitelhofer M, Nilsson I, Liu X, Allan L, Gloria B, Perani A, Murone C, Catimel B, Neville AM, Scott FE, Scott AM, Eriksson U. Development of monoclonal anti-PDGF-CC antibodies as tools for investigating human tissue expression and for blocking PDGF-CC induced PDGFRα signalling in vivo. PLoS One 2018; 13:e0201089. [PMID: 30052660 PMCID: PMC6063412 DOI: 10.1371/journal.pone.0201089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/09/2018] [Indexed: 01/06/2023] Open
Abstract
PDGF-CC is a member of the platelet-derived growth factor (PDGF) family that stimulates PDGFRα phosphorylation and thereby activates intracellular signalling events essential for development but also in cancer, fibrosis and neuropathologies involving blood-brain barrier (BBB) disruption. In order to elucidate the biological and pathological role(s) of PDGF-CC signalling, we have generated high affinity neutralizing monoclonal antibodies (mAbs) recognizing human PDGF-CC. We determined the complementarity determining regions (CDRs) of the selected clones, and mapped the binding epitope for clone 6B3. Using the monoclonal 6B3, we determined the expression pattern for PDGF-CC in different human primary tumours and control tissues, and explored its ability to neutralize PDGF-CC-induced phosphorylation of PDGFRα. In addition, we showed that PDGF-CC induced disruption of the blood-retinal barrier (BRB) was significantly reduced upon intraperitoneal administration of a chimeric anti-PDGF-CC antibody. In summary, we report on high affinity monoclonal antibodies against PDGF-CC that have therapeutic efficacy in vivo.
Collapse
|
research-article |
7 |
6 |
7
|
Zeitelhofer M, Li H, Adzemovic MZ, Nilsson I, Muhl L, Scott AM, Eriksson U. Preclinical toxicological assessment of a novel monoclonal antibody targeting human platelet-derived growth factor CC (PDGF-CC) in PDGF-CChum mice. PLoS One 2018; 13:e0200649. [PMID: 30021009 PMCID: PMC6051635 DOI: 10.1371/journal.pone.0200649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/30/2018] [Indexed: 01/24/2023] Open
Abstract
Platelet-derived growth factor CC (PDGF-CC) is important during foetal development but also in pathogenesis of neurologic diseases, cancer and fibrosis. We have previously demonstrated that blocking the PDGF-CC/PDGF receptor alpha (PDGFRα) axis resulted in reduction of stroke volume and cerebrovascular permeability after experimentally induced stroke. Recently, we could translate these findings into the clinic showing that imatinib, a small tyrosine kinase inhibitor targeting PDGF receptors, can significantly improve neurological outcome after ischemic stroke in human. Herein we report preclinical toxicological analyses of our newly generated monoclonal anti-human PDGF-CC antibody 6B3 (mAb 6B3) in PDGF-CC humanized mice. Beside histological organ assessment, we also analysed serum, urine, haematological parameters and the general health status of the treated mice. We could not find any indications that mAb 6B3 is toxic or has other significant side effects neither in short, nor in long treatment regimens. Our results indicate that mAb 6B3 can be further developed for clinical use. This opens up the possibility to assess the therapeutic potential of blocking PDGF-CC in diverse pathological conditions such as neurologic diseases, cancer and fibrosis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/adverse effects
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Drug Evaluation, Preclinical
- Humans
- Lymphokines/antagonists & inhibitors
- Lymphokines/immunology
- Mice
- Mice, Transgenic
- Platelet-Derived Growth Factor/antagonists & inhibitors
- Platelet-Derived Growth Factor/immunology
Collapse
|
research-article |
7 |
5 |
8
|
Pacheco AP, Cedernaes J, Benedict C. Insomnia, OSA, and Mood Disorders: The Gut Connection. Curr Psychiatry Rep 2024; 26:703-711. [PMID: 39400694 PMCID: PMC11706850 DOI: 10.1007/s11920-024-01546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE OF REVIEW With the growing body of research examining the link between sleep disorders, including insomnia and obstructive sleep apnea (OSA), and the gut microbiome, this review seeks to offer a thorough overview of the most significant findings in this emerging field. RECENT FINDINGS Current evidence suggests a complex association between imbalances in the gut microbiome, insomnia, and OSA, with potential reciprocal interactions that may influence each other. Notably, specific gut microbiome species, whether over- or under-abundant, have been associated with variation in both sleep and mood in patients diagnosed with, e.g., major depressive disorder or bipolar disorder. Further studies are needed to explore the potential of targeting the gut microbiome as a therapeutic approach for insomnia and its possible effects on mood. The variability in current scientific literature highlights the importance of establishing standardized research methodologies.
Collapse
|
Review |
1 |
|
9
|
McGrath S, Grimstad K, Thorarinsdottir K, Forslind K, Glinatsi D, Leu Agelii M, Aranburu A, Sundell T, Jonsson CA, Camponeschi A, Hultgård Ekwall AK, Tilevik A, Gjertsson I, Mårtensson IL. Correlation of Professional Antigen-Presenting Tbet +CD11c + B Cells With Bone Destruction in Untreated Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1263-1277. [PMID: 38570939 DOI: 10.1002/art.42857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE Subsets of CD21-/low memory B cells (MBCs), including double-negative (DN, CD27-IgD-) and Tbet+CD11c+ cells, are expanded in chronic inflammatory diseases. In rheumatoid arthritis (RA), CD21-/low MBCs correlate with joint destruction. However, whether this is due to the Tbet+CD11c+ subset, its function and pathogenic contribution to RA are unknown. This study aims to investigate the association between CD21-/lowTbet+CD11c+ MBCs and joint destruction as well as other clinical parameters and to elucidate their functional properties in patients with untreated RA (uRA). METHODS Clinical observations were combined with flow cytometry (n = 36) and single-cell RNA sequencing (scRNA-seq) and V(D)J sequencing (n = 4) of peripheral blood (PB) MBCs from patients with uRA. The transcriptome of circulating Tbet+CD11c+ MBCs was compared with scRNA-seq data of synovial B cells. In vitro coculture of Tbet+CD11c+ B cells with T cells was used to assess costimulatory capacity. RESULTS CD21-/lowTbet+CD11c+ MBCs in PB correlated with bone destruction but no other clinical parameters analyzed. The Tbet+CD11c+ MBCs have undergone clonal expansion and express somatically mutated V genes. Gene expression analysis of these cells identified a unique signature of more than 150 up-regulated genes associated with antigen presentation functions, including B cell receptor activation and clathrin-mediated antigen internalization; regulation of actin filaments, endosomes, and lysosomes; antigen processing, loading, presentation, and costimulation; a transcriptome mirrored in their synovial tissue counterparts. In vitro, Tbet+CD11c+ B cells induced retinoic acid receptor-related orphan nuclear receptor γT expression in CD4+ T cells, thereby polarizing to Th17 cells, a T cell subset critical for osteoclastogenesis and associated with bone destruction. CONCLUSION This study suggests that Tbet+CD11c+ MBCs contribute to the pathogenesis of RA by promoting bone destruction through antigen presentation, T cell activation, and Th17 polarization.
Collapse
|
|
1 |
|
10
|
Brandão LEM, Popa A, Cedernaes E, Cedernaes C, Lampola L, Cedernaes J. Exposure to a more unhealthy diet impacts sleep microstructure during normal sleep and recovery sleep: A randomized trial. Obesity (Silver Spring) 2023. [PMID: 37245331 DOI: 10.1002/oby.23787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE Although intake of specific macronutrients has been associated with sleep parameters, interventional evidence is lacking. Therefore, this randomized trial was conducted to examine how a more unhealthy high-fat/high-sugar (HFHS) diet impacts sleep in humans. METHODS In a crossover study, 15 healthy young men consumed two isocaloric diets in random order for a week: an HFHS and a low-fat/low-sugar diet. Following each diet, in-lab sleep was recorded using polysomnography during a full night of sleep and during recovery sleep after extended wakefulness. Sleep duration, macrostructure, and microstructure (oscillatory pattern and slow waves) were investigated using machine learning-based algorithms. RESULTS Sleep duration did not differ across the diets based on actigraphy and the in-lab polysomnography. Sleep macrostructure was similar after 1 week on each diet. Compared with the low-fat/low-sugar diet, consumption of the HFHS diet resulted in reduced delta power, delta to beta ratio, and slow wave amplitude but increased alpha and theta power during deep sleep. During recovery sleep, similar sleep oscillatory changes were observed. CONCLUSIONS Short-term consumption of a more unhealthy diet alters sleep oscillatory features that regulate the restorative properties of sleep. Whether such changes can mediate adverse health outcomes associated with consumption of an unhealthier diet warrants investigation.
Collapse
|
|
2 |
|
11
|
Polychronopoulos PA, Bedoya-Reina OC, Johnsen JI. The Neuroblastoma Microenvironment, Heterogeneity and Immunotherapeutic Approaches. Cancers (Basel) 2024; 16:1863. [PMID: 38791942 PMCID: PMC11119056 DOI: 10.3390/cancers16101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroblastoma is a peripheral nervous system tumor that almost exclusively occurs in young children. Although intensified treatment modalities have led to increased patient survival, the prognosis for patients with high-risk disease is still around 50%, signifying neuroblastoma as a leading cause of cancer-related deaths in children. Neuroblastoma is an embryonal tumor and is shaped by its origin from cells within the neural crest. Hence, neuroblastoma usually presents with a low mutational burden and is, in the majority of cases, driven by epigenetically deregulated transcription networks. The recent development of Omic techniques has given us detailed knowledge of neuroblastoma evolution, heterogeneity, and plasticity, as well as intra- and intercellular molecular communication networks within the neuroblastoma microenvironment. Here, we discuss the potential of these recent discoveries with emphasis on new treatment modalities, including immunotherapies which hold promise for better future treatment regimens.
Collapse
|
Review |
1 |
|