1
|
Basu S, Wallner B. DockQ: A Quality Measure for Protein-Protein Docking Models. PLoS One 2016; 11:e0161879. [PMID: 27560519 PMCID: PMC4999177 DOI: 10.1371/journal.pone.0161879] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/12/2016] [Indexed: 01/26/2023] Open
Abstract
The state-of-the-art to assess the structural quality of docking models is currently based on three related yet independent quality measures: Fnat, LRMS, and iRMS as proposed and standardized by CAPRI. These quality measures quantify different aspects of the quality of a particular docking model and need to be viewed together to reveal the true quality, e.g. a model with relatively poor LRMS (>10Å) might still qualify as 'acceptable' with a descent Fnat (>0.50) and iRMS (<3.0Å). This is also the reason why the so called CAPRI criteria for assessing the quality of docking models is defined by applying various ad-hoc cutoffs on these measures to classify a docking model into the four classes: Incorrect, Acceptable, Medium, or High quality. This classification has been useful in CAPRI, but since models are grouped in only four bins it is also rather limiting, making it difficult to rank models, correlate with scoring functions or use it as target function in machine learning algorithms. Here, we present DockQ, a continuous protein-protein docking model quality measure derived by combining Fnat, LRMS, and iRMS to a single score in the range [0, 1] that can be used to assess the quality of protein docking models. By using DockQ on CAPRI models it is possible to almost completely reproduce the original CAPRI classification into Incorrect, Acceptable, Medium and High quality. An average PPV of 94% at 90% Recall demonstrating that there is no need to apply predefined ad-hoc cutoffs to classify docking models. Since DockQ recapitulates the CAPRI classification almost perfectly, it can be viewed as a higher resolution version of the CAPRI classification, making it possible to estimate model quality in a more quantitative way using Z-scores or sum of top ranked models, which has been so valuable for the CASP community. The possibility to directly correlate a quality measure to a scoring function has been crucial for the development of scoring functions for protein structure prediction, and DockQ should be useful in a similar development in the protein docking field. DockQ is available at http://github.com/bjornwallner/DockQ/.
Collapse
|
research-article |
9 |
228 |
2
|
Henjum K, Almdahl IS, Årskog V, Minthon L, Hansson O, Fladby T, Nilsson LNG. Cerebrospinal fluid soluble TREM2 in aging and Alzheimer's disease. Alzheimers Res Ther 2016; 8:17. [PMID: 27121148 PMCID: PMC4848774 DOI: 10.1186/s13195-016-0182-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/30/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) neuropathology is associated with neuroinflammation, but there are few useful biomarkers. Mutant variants of triggering receptor expressed on myeloid cells 2 (TREM2) have recently been linked to late-onset AD and other neurodegenerative disorders. TREM2, a microglial receptor, is involved in innate immunity. A cleaved fragment, soluble TREM2 (sTREM2), is present in the cerebrospinal fluid (CSF). METHODS We developed and used a novel enzyme-linked immunosorbent assay to investigate the potential value of CSF sTREM2 as an AD biomarker in two independent cohorts: an AD/mild cognitive impairment (MCI)/control cohort (n = 100) and an AD/control cohort (n = 50). RESULTS We found no significant difference in sTREM2 levels between groups of controls and patients with AD or MCI. However, among all controls there was a positive correlation between sTREM2 and age (Spearman rho = 0.50; p < 0.001; n = 75). In the AD/MCI/control cohort, CSF sTREM2 correlated positively with total Tau (T-tau) (Spearman rho 0.57; p < 0.001; n = 50), phosphorylated Tau (P-tau) (Spearman rho 0.63; p < 0.001; n = 50) and amyloid-β1-42 (Aβ42) (Spearman rho 0.35; p = 0.01; n = 50) in control subjects. Among controls with a CSF Aβ42 above a cut-off value (700 pg/ml) in this cohort, the positive correlation between sTREM2 and Aβ42 was stronger (Spearman rho = 0.44; p = 0.002; n = 46). CONCLUSIONS sTREM2 in CSF correlates with aging in controls, and with the neurodegenerative markers CSF T-tau/P-tau among controls who are negative for AD CSF core biomarkers Aβ42, T-tau or P-tau.
Collapse
|
research-article |
9 |
111 |
3
|
Razavi M, Marathe NP, Gillings MR, Flach CF, Kristiansson E, Joakim Larsson DG. Discovery of the fourth mobile sulfonamide resistance gene. MICROBIOME 2017; 5:160. [PMID: 29246178 PMCID: PMC5732528 DOI: 10.1186/s40168-017-0379-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Over the past 75 years, human pathogens have acquired antibiotic resistance genes (ARGs), often from environmental bacteria. Integrons play a major role in the acquisition of antibiotic resistance genes. We therefore hypothesized that focused exploration of integron gene cassettes from microbial communities could be an efficient way to find novel mobile resistance genes. DNA from polluted Indian river sediments were amplified using three sets of primers targeting class 1 integrons and sequenced by long- and short-read technologies to maintain both accuracy and context. RESULTS Up to 89% of identified open reading frames encode known resistance genes, or variations thereof (> 1000). We identified putative novel ARGs to aminoglycosides, beta-lactams, trimethoprim, rifampicin, and chloramphenicol, including several novel OXA variants, providing reduced susceptibility to carbapenems. One dihydropteroate synthase gene, with less than 34% amino acid identity to the three known mobile sulfonamide resistance genes (sul1-3), provided complete resistance when expressed in Escherichia coli. The mobilized gene, here named sul4, is the first mobile sulfonamide resistance gene discovered since 2003. Analyses of adjacent DNA suggest that sul4 has been decontextualized from a set of chromosomal genes involved in folate synthesis in its original host, likely within the phylum Chloroflexi. The presence of an insertion sequence common region element could provide mobility to the entire integron. Screening of 6489 metagenomic datasets revealed that sul4 is already widespread in seven countries across Asia and Europe. CONCLUSIONS Our findings show that exploring integrons from environmental communities with a history of antibiotic exposure can provide an efficient way to find novel, mobile resistance genes. The mobilization of a fourth sulfonamide resistance gene is likely to provide expanded opportunities for sulfonamide resistance to spread, with potential impacts on both human and animal health.
Collapse
|
research-article |
8 |
104 |
4
|
Basile W, Salvatore M, Bassot C, Elofsson A. Why do eukaryotic proteins contain more intrinsically disordered regions? PLoS Comput Biol 2019; 15:e1007186. [PMID: 31329574 PMCID: PMC6675126 DOI: 10.1371/journal.pcbi.1007186] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 08/01/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Intrinsic disorder is more abundant in eukaryotic than prokaryotic proteins. Methods predicting intrinsic disorder are based on the amino acid sequence of a protein. Therefore, there must exist an underlying difference in the sequences between eukaryotic and prokaryotic proteins causing the (predicted) difference in intrinsic disorder. By comparing proteins, from complete eukaryotic and prokaryotic proteomes, we show that the difference in intrinsic disorder emerges from the linker regions connecting Pfam domains. Eukaryotic proteins have more extended linker regions, and in addition, the eukaryotic linkers are significantly more disordered, 38% vs. 12-16% disordered residues. Next, we examined the underlying reason for the increase in disorder in eukaryotic linkers, and we found that the changes in abundance of only three amino acids cause the increase. Eukaryotic proteins contain 8.6% serine; while prokaryotic proteins have 6.5%, eukaryotic proteins also contain 5.4% proline and 5.3% isoleucine compared with 4.0% proline and ≈ 7.5% isoleucine in the prokaryotes. All these three differences contribute to the increased disorder in eukaryotic proteins. It is tempting to speculate that the increase in serine frequencies in eukaryotes is related to regulation by kinases, but direct evidence for this is lacking. The differences are observed in all phyla, protein families, structural regions and type of protein but are most pronounced in disordered and linker regions. The observation that differences in the abundance of three amino acids cause the difference in disorder between eukaryotic and prokaryotic proteins raises the question: Are amino acid frequencies different in eukaryotic linkers because the linkers are more disordered or do the differences cause the increased disorder? Intrinsic disorder is essential for various functions in eukaryotic cells and is a signature of eukaryotic proteins. Here, we try to understand the origin of the difference in disorder between eukaryotic and prokaryotic proteins. We show that eukaryotic proteins contain more extended linker regions and that these linker regions are significantly more disordered. Further, we show, for the first time, that the difference in disorder originates from a systematic difference in amino acid frequencies between eukaryotic and prokaryotic proteins. Three amino acids contribute to the difference in disorder; serine and proline are more abundant in eukaryotic linkers, while isoleucine is less frequent. These shifts in frequencies are observed in all phyla, protein families, structural regions and type of protein but are most pronounced in disordered and linker regions. It is tempting to speculate that the increase in serine frequencies in eukaryotes is related to regulation by kinases, but direct evidence for this is lacking. Anyhow the widespread of the shifts in abundance indicates that the differences are ancient and caused be some yet not fully understood selective difference acting on eukaryotic and prokaryotic proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
66 |
5
|
Dumanski JP, Halvardson J, Davies H, Rychlicka-Buniowska E, Mattisson J, Moghadam BT, Nagy N, Węglarczyk K, Bukowska-Strakova K, Danielsson M, Olszewski P, Piotrowski A, Oerton E, Ambicka A, Przewoźnik M, Bełch Ł, Grodzicki T, Chłosta PL, Imreh S, Giedraitis V, Kilander L, Nordlund J, Ameur A, Gyllensten U, Johansson Å, Józkowicz A, Siedlar M, Klich-Rączka A, Jaszczyński J, Enroth S, Baran J, Ingelsson M, Perry JRB, Ryś J, Forsberg LA. Immune cells lacking Y chromosome show dysregulation of autosomal gene expression. Cell Mol Life Sci 2021; 78:4019-4033. [PMID: 33837451 PMCID: PMC8106578 DOI: 10.1007/s00018-021-03822-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/01/2021] [Accepted: 03/25/2021] [Indexed: 01/09/2023]
Abstract
Epidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer's disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a "genetic wasteland", and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.
Collapse
|
research-article |
4 |
62 |
6
|
Mattsson N, Ossenkoppele R, Smith R, Strandberg O, Ohlsson T, Jögi J, Palmqvist S, Stomrud E, Hansson O. Greater tau load and reduced cortical thickness in APOE ε4-negative Alzheimer's disease: a cohort study. Alzheimers Res Ther 2018; 10:77. [PMID: 30086796 PMCID: PMC6081879 DOI: 10.1186/s13195-018-0403-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alzheimer's disease is characterized by aggregated β-amyloid and tau proteins, but the clinical presentations and patterns of brain atrophy vary substantially. A part of this heterogeneity may be linked to the risk allele APOE ε4. The spread of tau pathology is related to atrophy and cognitive decline, but little data exist on the effects of APOE ε4 on tau. The objective of this preliminary study was therefore to test if tau load and brain structure differ by APOE ε4 in Alzheimer's disease. METHODS Sixty-five β-amyloid-positive patients at the prodromal and dementia stages of Alzheimer's disease were enrolled, including APOE ε4-positive (n = 46) and APOE ε4-negative (n = 19) patients. 18F-AV-1451 positron emission tomography was used to measure tau and brain magnetic resonance imaging (MRI) was used to measure cortical thickness. RESULTS Compared with their APOE ε4-positive counterparts, APOE ε4-negative patients had greater tau load and reduced cortical thickness, with the most pronounced effects for both in the parietal cortex. Relative to the overall cortical tau load, APOE ε4-positive patients had greater tau load in the entorhinal cortex. APOE ε4-positive patients also had slightly greater cortical β-amyloid load. There was an interaction between APOE ε4 and 18F-AV-1451 on cortical thickness, with greater effects of 18F-AV-1451 on cortical thickness in APOE ε4-negative patients. APOE ε4 and 18F-AV-1451 were independent predictors of cognition, but showed distinct associations with different cognitive tests. CONCLUSIONS APOE genotype may be associated with differences in pathways in Alzheimer's disease, potentially through differential development and spread of tau, as well as through effects on cognitive outcomes involving non-tau-related mechanisms.
Collapse
|
research-article |
7 |
57 |
7
|
Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C. Metabolic regulation of neurodifferentiation in the adult brain. Cell Mol Life Sci 2020; 77:2483-2496. [PMID: 31912194 PMCID: PMC7320050 DOI: 10.1007/s00018-019-03430-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Understanding the mechanisms behind neurodifferentiation in adults will be an important milestone in our quest to identify treatment strategies for cognitive disorders observed during our natural ageing or disease. It is now clear that the maturation of neural stem cells to neurones, fully integrated into neuronal circuits requires a complete remodelling of cellular metabolism, including switching the cellular energy source. Mitochondria are central for this transition and are increasingly seen as the regulatory hub in defining neural stem cell fate and neurodevelopment. This review explores our current knowledge of metabolism during adult neurodifferentiation.
Collapse
|
Review |
5 |
55 |
8
|
Bratic A, Clemente P, Calvo-Garrido J, Maffezzini C, Felser A, Wibom R, Wedell A, Freyer C, Wredenberg A. Mitochondrial Polyadenylation Is a One-Step Process Required for mRNA Integrity and tRNA Maturation. PLoS Genet 2016; 12:e1006028. [PMID: 27176048 PMCID: PMC4866704 DOI: 10.1371/journal.pgen.1006028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/14/2016] [Indexed: 12/20/2022] Open
Abstract
Polyadenylation has well characterised roles in RNA turnover and translation in a variety of biological systems. While polyadenylation on mitochondrial transcripts has been suggested to be a two-step process required to complete translational stop codons, its involvement in mitochondrial RNA turnover is less well understood. We studied knockdown and knockout models of the mitochondrial poly(A) polymerase (MTPAP) in Drosophila melanogaster and demonstrate that polyadenylation of mitochondrial mRNAs is exclusively performed by MTPAP. Further, our results show that mitochondrial polyadenylation does not regulate mRNA stability but protects the 3' terminal integrity, and that despite a lack of functioning 3' ends, these trimmed transcripts are translated, suggesting that polyadenylation is not required for mitochondrial translation. Additionally, loss of MTPAP leads to reduced steady-state levels and disturbed maturation of tRNACys, indicating that polyadenylation in mitochondria might be important for the stability and maturation of specific tRNAs. The polyadenylation of cellular RNAs is a well-studied signal for gene expression, with a defined function in either RNA turnover or translation, in the majority of systems. In mammalian mitochondria the role of polyadenylation is less clear, and can to date only be attributed to completing the translational stop signal on several mitochondrial transcripts. Previous work though demonstrated that mitochondrial polyadenylation requires a certain length and shortening of the poly(A) tail signal has detrimental effects on mitochondrial function. In this study we deleted the mitochondrial polymerase responsible for polyadenylation in the fly, Drosophila melanogaster, and demonstrate that the mitochondrial poly(A) tail is essential for preserving the 3’ ends of mitochondrial transcripts, with no other enzyme capable of completing stop signals. Our study also shows that polyadenylation does not regulate transcript stability nor is it required for translation, but might be involved in the maturation of certain mitochondrial tRNAs. We therefore conclude that besides completing translational stop signals, mitochondrial polyadenylation protects the 3’ termini from degradation.
Collapse
|
Journal Article |
9 |
41 |
9
|
Kämpe AJ, Costantini A, Mäkitie RE, Jäntti N, Valta H, Mäyränpää M, Kröger H, Pekkinen M, Taylan F, Jiao H, Mäkitie O. PLS3 sequencing in childhood-onset primary osteoporosis identifies two novel disease-causing variants. Osteoporos Int 2017; 28:3023-3032. [PMID: 28748388 PMCID: PMC5624974 DOI: 10.1007/s00198-017-4150-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Altogether 95 children with primary bone fragility were screened for variants in PLS3, the gene underlying X-linked osteoporosis. Two children with multiple peripheral and spinal fractures and low BMD had novel disease-causing PLS3 variants. Children with milder phenotypes had no pathogenic variants. PLS3 screening is indicated in childhood-onset primary osteoporosis. INTRODUCTION The study aimed to determine the role of pathogenic PLS3 variants in children's bone fragility and to elucidate the associated phenotypic features. METHODS Two cohorts of children with bone fragility were screened for variants in PLS3, the gene underlying X-linked osteoporosis. Cohort I comprised 31 patients with childhood-onset primary osteoporosis of unknown etiology. Cohort II comprised 64 children who had sustained multiple fractures but were otherwise healthy. Clinical and radiological data were reviewed. Peripheral blood DNA was Sanger sequenced for coding exons and flanking intronic regions of PLS3. RESULTS In two patients of cohort I, where other common genetic causes had been excluded, we identified two novel disease-causing PLS3 variants. Patient 1 was a male with bilateral femoral fractures at 10 years, low BMD (Z-score -4.1; 18 years), and multiple vertebral compression fractures. He had a novel nonsense variant in PLS3. Patient 2 was a girl with multiple long bone and vertebral fractures and low BMD (Z-score -6.6 at 6 years). She had a de novo missense variant in PLS3; whole exome sequencing and array-CGH identified no other genetic causes. Iliac crest bone biopsies confirmed low-turnover osteoporosis in both patients. In cohort II, no pathogenic PLS3 variants were identified in any of the subjects. CONCLUSIONS Two novel disease-causing variants in PLS3 were identified in a boy and a girl with multiple peripheral and spinal fractures and very low BMD while no pathogenic variants were identified in children with less severe skeletal fragility. PLS3 screening is warranted in male and female patients with childhood-onset primary osteoporosis.
Collapse
|
research-article |
8 |
32 |
10
|
Chiotis K, Stenkrona P, Almkvist O, Stepanov V, Ferreira D, Arakawa R, Takano A, Westman E, Varrone A, Okamura N, Shimada H, Higuchi M, Halldin C, Nordberg A. Dual tracer tau PET imaging reveals different molecular targets for 11C-THK5351 and 11C-PBB3 in the Alzheimer brain. Eur J Nucl Med Mol Imaging 2018; 45:1605-1617. [PMID: 29752516 PMCID: PMC6061462 DOI: 10.1007/s00259-018-4012-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
Abstract
Purpose Several tau PET tracers have been developed, but it remains unclear whether they bind to the same molecular target on the heterogeneous tau pathology. In this study we evaluated the binding of two chemically different tau-specific PET tracers (11C-THK5351 and 11C-PBB3) in a head-to-head, in vivo, multimodal design. Methods Nine patients with a diagnosis of mild cognitive impairment or probable Alzheimer’s disease and cerebrospinal fluid biomarker evidence supportive of the presence of Alzheimer’s disease brain pathology were recruited after thorough clinical assessment. All patients underwent imaging with the tau-specific PET tracers 11C-THK5351 and 11C-PBB3 on the same day, as well as imaging with the amyloid-beta-specific tracer 11C-AZD2184, a T1-MRI sequence, and neuropsychological assessment. Results The load and regional distribution of binding differed between 11C-THK5351 and 11C-PBB3 with no statistically significant regional correlations observed between the tracers. The binding pattern of 11C-PBB3, but not that of 11C-THK5351, in the temporal lobe resembled that of 11C-AZD2184, with strong correlations detected between 11C-PBB3 and 11C-AZD2184 in the temporal and occipital lobes. Global cognition correlated more closely with 11C-THK5351 than with 11C-PBB3 binding. Similarly, cerebrospinal fluid tau measures and entorhinal cortex thickness were more closely correlated with 11C-THK5351 than with 11C-PBB3 binding. Conclusion This research suggests different molecular targets for these tracers; while 11C-PBB3 appeared to preferentially bind to tau deposits with a close spatial relationship to amyloid-beta, the binding pattern of 11C-THK5351 fitted the expected distribution of tau pathology in Alzheimer’s disease better and was more closely related to downstream disease markers. Electronic supplementary material The online version of this article (10.1007/s00259-018-4012-5) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
7 |
31 |
11
|
Lennartsson A, Arner E, Fagiolini M, Saxena A, Andersson R, Takahashi H, Noro Y, Sng J, Sandelin A, Hensch TK, Carninci P. Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticity by HDAC inhibitors. Epigenetics Chromatin 2015; 8:55. [PMID: 26673794 PMCID: PMC4678690 DOI: 10.1186/s13072-015-0043-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/09/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The capacity for plasticity in the adult brain is limited by the anatomical traces laid down during early postnatal life. Removing certain molecular brakes, such as histone deacetylases (HDACs), has proven to be effective in recapitulating juvenile plasticity in the mature visual cortex (V1). We investigated the chromatin structure and transcriptional control by genome-wide sequencing of DNase I hypersensitive sites (DHSS) and cap analysis of gene expression (CAGE) libraries after HDAC inhibition by valproic acid (VPA) in adult V1. RESULTS We found that VPA reliably reactivates the critical period plasticity and induces a dramatic change of chromatin organization in V1 yielding significantly greater accessibility distant from promoters, including at enhancer regions. VPA also induces nucleosome eviction specifically from retrotransposon (in particular SINE) elements. The transiently accessible SINE elements overlap with transcription factor-binding sites of the Fox family. Mapping of transcription start site activity using CAGE revealed transcription of epigenetic and neural plasticity-regulating genes following VPA treatment, which may help to re-program the genomic landscape and reactivate plasticity in the adult cortex. CONCLUSIONS Treatment with HDAC inhibitors increases accessibility to enhancers and repetitive elements underlying brain-specific gene expression and reactivation of visual cortical plasticity.
Collapse
|
research-article |
10 |
31 |
12
|
Li X, Sandler H, Kleiven S. The importance of nonlinear tissue modelling in finite element simulations of infant head impacts. Biomech Model Mechanobiol 2017; 16:823-840. [PMID: 27873038 PMCID: PMC5422506 DOI: 10.1007/s10237-016-0855-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/11/2016] [Indexed: 11/14/2022]
Abstract
Despite recent efforts on the development of finite element (FE) head models of infants, a model capable of capturing head responses under various impact scenarios has not been reported. This is hypothesized partially attributed to the use of simplified linear elastic models for soft tissues of suture, scalp and dura. Orthotropic elastic constants are yet to be determined to incorporate the direction-specific material properties of infant cranial bone due to grain fibres radiating from the ossification centres. We report here on our efforts in advancing the above-mentioned aspects in material modelling in infant head and further incorporate them into subject-specific FE head models of a newborn, 5- and 9-month-old infant. Each model is subjected to five impact tests (forehead, occiput, vertex, right and left parietal impacts) and two compression tests. The predicted global head impact responses of the acceleration-time impact curves and the force-deflection compression curves for different age groups agree well with the experimental data reported in the literature. In particular, the newly developed Ogden hyperelastic model for suture, together with the nonlinear modelling of scalp and dura mater, enables the models to achieve more realistic impact performance compared with linear elastic models. The proposed approach for obtaining age-dependent skull bone orthotropic material constants counts both an increase in stiffness and decrease in anisotropy in the skull bone-two essential biological growth parameters during early infancy. The profound deformation of infant head causes a large stretch at the interfaces between the skull bones and the suture, suggesting that infant skull fractures are likely to initiate from the interfaces; the impact angle has a profound influence on global head impact responses and the skull injury metrics for certain impact locations, especially true for a parietal impact.
Collapse
|
research-article |
8 |
31 |
13
|
Crump C, Sundquist J, Sundquist K. Association of preterm birth with lipid disorders in early adulthood: A Swedish cohort study. PLoS Med 2019; 16:e1002947. [PMID: 31626652 PMCID: PMC6799885 DOI: 10.1371/journal.pmed.1002947] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/12/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Preterm birth has previously been linked with cardiovascular disease (CVD) in adulthood. However, associations with lipid disorders (e.g., high cholesterol or triglycerides), which are major risk factors for CVD, have seldom been examined and are conflicting. Clinicians will increasingly encounter adult survivors of preterm birth and will need to understand the long-term health sequelae. We conducted the first large population-based study to determine whether preterm birth is associated with an increased risk of lipid disorders. METHODS AND FINDINGS A retrospective national cohort study was conducted of all 2,235,012 persons born as singletons in Sweden during 1973 to 1995 (48.6% women), who were followed up for lipid disorders identified from nationwide inpatient, outpatient, and pharmacy data through 2016 (maximum age 44 years). Cox regression was used to adjust for other perinatal and maternal factors, and co-sibling analyses assessed the potential influence of unmeasured shared familial (genetic and/or environmental) factors. A total of 25,050 (1.1%) persons were identified with lipid disorders in 30.3 million person-years of follow-up. Each additional 5 weeks of gestation were associated with a 14% reduction in risk of lipid disorders (adjusted hazard ratio [HR], 0.86; 95% CI, 0.83-0.89; P < 0.001). Relative to full-term birth (gestational age 39-41 weeks), the adjusted HR associated with preterm birth (<37 weeks) was 1.23 (95% CI, 1.16-1.29; P < 0.001), and further stratified was 2.00 (1.41-2.85; P < 0.001) for extremely preterm (22-27 weeks), 1.33 (1.19-1.49; P < 0.001) for very preterm (28-33 weeks), and 1.19 (1.12-1.26; P < 0.001) for late preterm (34-36 weeks). These findings were similar in men and women (e.g., preterm versus full-term, men: HR, 1.22; 95% CI, 1.14-1.31; P < 0.001; women: HR, 1.23; 1.12-1.32; P < 0.001). Co-sibling analyses suggested that they were substantially though not completely explained by shared genetic or environmental factors in families. The main study limitation was the unavailability of laboratory data to assess specific types or severity of lipid disorders. CONCLUSIONS In this large national cohort, preterm birth was associated with an increased risk of lipid disorders in early- to midadulthood. Persons born prematurely may need early preventive evaluation and long-term monitoring for lipid disorders to reduce their future cardiovascular risks.
Collapse
|
Observational Study |
6 |
31 |
14
|
Lysell H, Dahlin M, Viktorin A, Ljungberg E, D'Onofrio BM, Dickman P, Runeson B. Maternal suicide - Register based study of all suicides occurring after delivery in Sweden 1974-2009. PLoS One 2018; 13:e0190133. [PMID: 29304045 PMCID: PMC5755764 DOI: 10.1371/journal.pone.0190133] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/09/2017] [Indexed: 01/07/2023] Open
Abstract
Background Recent research suggests that having a newborn child is associated with substantially reduced risk for maternal suicide. We studied postpartum suicides in a national cohort of mothers and the role of mental disorder, self-harm and delivery related factors. Methods We used a nested case-control design with data from Swedish registries. The cohort consisted of all women given birth in Sweden 1974–2009. Mothers who died by suicide during follow-up were considered cases (n = 1,786) and risk of suicide was estimated with proximity to delivery as the explanatory variable. In a second step, association between suicide during the first year following delivery (n = 145) and mental disorder, self-harm and delivery related variables risk factors were analyzed. Results The first postpartum year was associated with a lower risk of suicide, compared to later (RR 0.80, 95%CI 0.66–0.96), which was unaltered after adjustment for socio-economic status and history of self-harm (aRR 0.82, 95%CI 0.68–0.99). Compared to living mothers, suicide victims of the postpartum year more often had affective disorders (aRR 133.94, 95%CI 45.93–390.61), psychotic disorders (aRR 83.69, 95%CI 36.99–189.31) and history of self-harm (aRR 47.56, 95%CI 18.24–124.02). The aRR of stillbirth was 2.66 (95%CI 0.63–11.30). Conclusions We found only a weak negative association between childbirth during the preceding year and suicide, when using mothers as controls. A severe mental disorder after delivery and a history of self-harm was strongly associated with increased risk of suicide in the postpartum year and may inform the clinical assessment postpartum.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
30 |
15
|
Larsson V, Torisson G, Londos E. Relative survival in patients with dementia with Lewy bodies and Parkinson's disease dementia. PLoS One 2018; 13:e0202044. [PMID: 30096198 PMCID: PMC6086429 DOI: 10.1371/journal.pone.0202044] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION The understanding of survival in dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) is limited, as well as the impact of these diagnoses in an ageing co-morbid population. METHODS A retrospective study of 177 patients who received a DLB or PDD diagnosis between 1997-2014 at the Memory Clinic in Malmö, Sweden. Relative survival was evaluated by adjusting all-cause survival for expected survival, estimated from population life-tables, matched by sex, age and calendar year. Predictors of relative survival were investigated using multivariate regression modelling. RESULTS At follow-up, 143 (81%) patients were deceased with a median survival of 4.1 years (IQR 2.6-6.0). After 10-years follow-up, the standardized mortality ratio was 3.44 (95% CI 2.92-4.04). Relative survival was worse with younger age at diagnosis (excess hazard ratio [eHR] 0.91, 95% CI 0.88-0.94 per year of age), female sex (eHR 1.45, 95% CI 1.01-2.09) and lower mini-mental state examination (eHR 0.93, 95% CI 0.90-0.96). Subgroup analysis (n = 141) showed higher mortality in DLB patients who were positive for APOE ɛ4 (eHR 2.00, 95% CI 1.35-2.97). CONCLUSION The mortality is over three-times higher in patients diagnosed with dementia with Lewy bodies and Parkinson's disease dementia during a ten-year follow-up, compared to persons in the general population. Excess mortality is found primarily in younger patients, females and carriers of APOE ε4. Further research is needed regarding survival and possible interventions, including disease-modifying treatments, to improve care for this patient group.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
30 |
16
|
Malmgren L, McGuigan F, Christensson A, Akesson KE. Reduced kidney function is associated with BMD, bone loss and markers of mineral homeostasis in older women: a 10-year longitudinal study. Osteoporos Int 2017; 28:3463-3473. [PMID: 29038837 PMCID: PMC5684332 DOI: 10.1007/s00198-017-4221-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/06/2017] [Indexed: 01/06/2023]
Abstract
Kidney function decreases with age; however, the long-term influence on bone density (BMD) in older women already at risk of osteoporosis is unknown. We followed kidney function and bone loss for 10 years. Declining kidney function was adversely associated with bone loss and mineral homeostasis in old women, though it attenuated with advanced aging. INTRODUCTION Existing studies do not fully address the relationship between kidney function and bone metabolism with advanced aging in Caucasian women. This study describes the association between kidney function, BMD, bone loss and bone metabolism in older women and provides a review of the available literature for context. METHODS We studied participants from the OPRA cohort with follow-up after 5 and 10 years. Using plasma cystatin C (cysC), estimated glomerular function rate (eGFR) was evaluated at age 75 (n = 981), 80 (n = 685) and 85 (n = 365). Women were stratified into "normal" function (CKD stages 1-2), "intermediate" (stage 3a) and "poor" (stages 3b-5), and outcome measures-BMD, bone loss and markers of mineral homeostasis-were compared. RESULTS Femoral neck (FN) BMD positively associated with kidney function at 75 years old ([Formula: see text] = 0.001, p = 0.028) and 80 years old ([Formula: see text] = 0.001, p = 0.001), although with small effect size. Prevalence of osteoporosis (FN T-score ≤ - 2.5) did not differ with kidney function. Measured at age 75, women with poor kidney function had higher annual percentage bone loss over 5 years compared to those with normal function (2.3%, 95% CI 1.8-2.8 versus 1.3%, 95% CI 1.1-1.5, p = 0.007), although not when measured from age 80 or 85. Additionally, markers of mineral homeostasis (PTH, phosphate, vitamin D, calcium), CRP and osteocalcin differed by kidney function. CONCLUSIONS In old women, kidney function is associated with BMD, bone loss and altered mineral homeostasis; probably, a relationship attenuated in the very elderly.
Collapse
|
Review |
8 |
28 |
17
|
Candefjord S, Winges J, Malik AA, Yu Y, Rylander T, McKelvey T, Fhager A, Elam M, Persson M. Microwave technology for detecting traumatic intracranial bleedings: tests on phantom of subdural hematoma and numerical simulations. Med Biol Eng Comput 2017; 55:1177-1188. [PMID: 27738858 PMCID: PMC5544814 DOI: 10.1007/s11517-016-1578-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury is the leading cause of death and severe disability for young people and a major public health problem for elderly. Many patients with intracranial bleeding are treated too late, because they initially show no symptoms of severe injury and are not transported to a trauma center. There is a need for a method to detect intracranial bleedings in the prehospital setting. In this study, we investigate whether broadband microwave technology (MWT) in conjunction with a diagnostic algorithm can detect subdural hematoma (SDH). A human cranium phantom and numerical simulations of SDH are used. Four phantoms with SDH 0, 40, 70 and 110 mL are measured with a MWT instrument. The simulated dataset consists of 1500 observations. Classification accuracy is assessed using fivefold cross-validation, and a validation dataset never used for training. The total accuracy is 100 and 82-96 % for phantom measurements and simulated data, respectively. Sensitivity and specificity for bleeding detection were 100 and 96 %, respectively, for the simulated data. SDH of different sizes is differentiated. The classifier requires training dataset size in order of 150 observations per class to achieve high accuracy. We conclude that the results indicate that MWT can detect and estimate the size of SDH. This is promising for developing MWT to be used for prehospital diagnosis of intracranial bleedings.
Collapse
|
research-article |
8 |
28 |
18
|
Grassi L, Väänänen SP, Ristinmaa M, Jurvelin JS, Isaksson H. Prediction of femoral strength using 3D finite element models reconstructed from DXA images: validation against experiments. Biomech Model Mechanobiol 2016; 16:989-1000. [PMID: 28004226 PMCID: PMC5422489 DOI: 10.1007/s10237-016-0866-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/10/2016] [Indexed: 12/01/2022]
Abstract
Computed tomography (CT)-based finite element (FE) models may improve the current osteoporosis diagnostics and prediction of fracture risk by providing an estimate for femoral strength. However, the need for a CT scan, as opposed to the conventional use of dual-energy X-ray absorptiometry (DXA) for osteoporosis diagnostics, is considered a major obstacle. The 3D shape and bone mineral density (BMD) distribution of a femur can be reconstructed using a statistical shape and appearance model (SSAM) and the DXA image of the femur. Then, the reconstructed shape and BMD could be used to build FE models to predict bone strength. Since high accuracy is needed in all steps of the analysis, this study aimed at evaluating the ability of a 3D FE model built from one 2D DXA image to predict the strains and fracture load of human femora. Three cadaver femora were retrieved, for which experimental measurements from ex vivo mechanical tests were available. FE models were built using the SSAM-based reconstructions: using only the SSAM-reconstructed shape, only the SSAM-reconstructed BMD distribution, and the full SSAM-based reconstruction (including both shape and BMD distribution). When compared with experimental data, the SSAM-based models predicted accurately principal strains (coefficient of determination >0.83, normalized root-mean-square error <16%) and femoral strength (standard error of the estimate 1215 N). These results were only slightly inferior to those obtained with CT-based FE models, but with the considerable advantage of the models being built from DXA images. In summary, the results support the feasibility of SSAM-based models as a practical tool to introduce FE-based bone strength estimation in the current fracture risk diagnostics.
Collapse
|
Journal Article |
9 |
27 |
19
|
Nair AG, Bhalla US, Hellgren Kotaleski J. Role of DARPP-32 and ARPP-21 in the Emergence of Temporal Constraints on Striatal Calcium and Dopamine Integration. PLoS Comput Biol 2016; 12:e1005080. [PMID: 27584878 PMCID: PMC5008828 DOI: 10.1371/journal.pcbi.1005080] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/22/2016] [Indexed: 01/06/2023] Open
Abstract
In reward learning, the integration of NMDA-dependent calcium and dopamine by striatal projection neurons leads to potentiation of corticostriatal synapses through CaMKII/PP1 signaling. In order to elicit the CaMKII/PP1-dependent response, the calcium and dopamine inputs should arrive in temporal proximity and must follow a specific (dopamine after calcium) order. However, little is known about the cellular mechanism which enforces these temporal constraints on the signal integration. In this computational study, we propose that these temporal requirements emerge as a result of the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. Specifically, DARPP-32-mediated signaling could implement an input-interval dependent gating function, via transient PP1 inhibition, thus enforcing the requirement for temporal proximity. Furthermore, ARPP-21 signaling could impose the additional input-order requirement of calcium and dopamine, due to its Ca2+/calmodulin sequestering property when dopamine arrives first. This highlights the possible role of phosphoproteins in the temporal aspects of striatal signal transduction. A response towards an environmental stimulus could be reinforced if it elicits a reward. On the subcellular level, the environmental stimulus and the reward signal lead to a transient increase in striatal calcium- and dopamine-signaling, respectively. The integration of calcium and dopamine signals, which is important for reward-learning, could elicit a downstream response only if they are close in time and arrive in correct order (first calcium and then dopamine). This study proposes that the requirement for the input signals to be temporally close and in correct order could emerge due to the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. The DARPP-32 signaling implements an input-interval dependent gating function and ARPP-21 implements an input-order dependent threshold-like function. Thus, a molecular mechanism has been presented here which could explain the emergence of important temporal aspects of subcellular signal integration in reward-learning.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
27 |
20
|
Celorio-Mancera MDLP, Wheat CW, Huss M, Vezzi F, Neethiraj R, Reimegård J, Nylin S, Janz N. Evolutionary history of host use, rather than plant phylogeny, determines gene expression in a generalist butterfly. BMC Evol Biol 2016; 16:59. [PMID: 26956800 PMCID: PMC4782335 DOI: 10.1186/s12862-016-0627-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/26/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Although most insect species are specialized on one or few groups of plants, there are phytophagous insects that seem to use virtually any kind of plant as food. Understanding the nature of this ability to feed on a wide repertoire of plants is crucial for the control of pest species and for the elucidation of the macroevolutionary mechanisms of speciation and diversification of insect herbivores. Here we studied Vanessa cardui, the species with the widest diet breadth among butterflies and a potential insect pest, by comparing tissue-specific transcriptomes from caterpillars that were reared on different host plants. We tested whether the similarities of gene-expression response reflect the evolutionary history of adaptation to these plants in the Vanessa and related genera, against the null hypothesis of transcriptional profiles reflecting plant phylogenetic relatedness. RESULT Using both unsupervised and supervised methods of data analysis, we found that the tissue-specific patterns of caterpillar gene expression are better explained by the evolutionary history of adaptation of the insects to the plants than by plant phylogeny. CONCLUSION Our findings suggest that V. cardui may use two sets of expressed genes to achieve polyphagy, one associated with the ancestral capability to consume Rosids and Asterids, and another allowing the caterpillar to incorporate a wide range of novel host-plants.
Collapse
|
research-article |
9 |
26 |
21
|
Wu X, Pedersen K, Edlund J, Eriksson L, Åström M, Andersson AF, Bertilsson S, Dopson M. Potential for hydrogen-oxidizing chemolithoautotrophic and diazotrophic populations to initiate biofilm formation in oligotrophic, deep terrestrial subsurface waters. MICROBIOME 2017; 5:37. [PMID: 28335808 PMCID: PMC5364579 DOI: 10.1186/s40168-017-0253-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/12/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Deep terrestrial biosphere waters are separated from the light-driven surface by the time required to percolate to the subsurface. Despite biofilms being the dominant form of microbial life in many natural environments, they have received little attention in the oligotrophic and anaerobic waters found in deep bedrock fractures. This study is the first to use community DNA sequencing to describe biofilm formation under in situ conditions in the deep terrestrial biosphere. RESULTS In this study, flow cells were attached to boreholes containing either "modern marine" or "old saline" waters of different origin and degree of isolation from the light-driven surface of the earth. Using 16S rRNA gene sequencing, we showed that planktonic and attached populations were dissimilar while gene frequencies in the metagenomes suggested that hydrogen-fed, carbon dioxide- and nitrogen-fixing populations were responsible for biofilm formation across the two aquifers. Metagenome analyses further suggested that only a subset of the populations were able to attach and produce an extracellular polysaccharide matrix. Initial biofilm formation is thus likely to be mediated by a few bacterial populations which were similar to Epsilonproteobacteria, Deltaproteobacteria, Betaproteobacteria, Verrucomicrobia, and unclassified bacteria. CONCLUSIONS Populations potentially capable of attaching to a surface and to produce extracellular polysaccharide matrix for attachment were identified in the terrestrial deep biosphere. Our results suggest that the biofilm populations were taxonomically distinct from the planktonic community and were enriched in populations with a chemolithoautotrophic and diazotrophic metabolism coupling hydrogen oxidation to energy conservation under oligotrophic conditions.
Collapse
|
research-article |
8 |
23 |
22
|
Spiegelberg D, Mortensen AC, Selvaraju RK, Eriksson O, Stenerlöw B, Nestor M. Molecular imaging of EGFR and CD44v6 for prediction and response monitoring of HSP90 inhibition in an in vivo squamous cell carcinoma model. Eur J Nucl Med Mol Imaging 2015; 43:974-982. [PMID: 26627081 PMCID: PMC4819754 DOI: 10.1007/s00259-015-3260-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/10/2015] [Indexed: 01/19/2023]
Abstract
Purpose Heat shock protein 90 (HSP90) is essential for the activation and stabilization of numerous oncogenic client proteins. AT13387 is a novel HSP90 inhibitor promoting degradation of oncogenic proteins upon binding, and may also act as a radiosensitizer. For optimal treatment there is, however, the need for identification of biomarkers for patient stratification and therapeutic response monitoring, and to find suitable targets for combination treatments. The aim of this study was to assess the response of surface antigens commonly expressed in squamous cell carcinoma to AT13387 treatment, and to find suitable biomarkers for molecular imaging and radioimmunotherapy in combination with HSP90 inhibition. Methods Cancer cell proliferation and radioimmunoassays were used to evaluate the effect of AT13387 on target antigen expression in vitro. Inhibitor effects were then assessed in vivo in mice-xenografts. Animals were treated with AT13387 (5 × 50 mg/kg), and were imaged with PET using either 18F-FDG or 124I-labelled tracers for EGFR and CD44v6, and this was followed by ex-vivo biodistribution analysis and immunohistochemical staining. Results AT13387 exposure resulted in high cytotoxicity and possible radiosensitization with IC50 values below 4 nM. Both in vitro and in vivo AT13387 effectively downregulated HSP90 client proteins. PET imaging with 124I-cetuximab showed a significant decrease of EGFR in AT13387-treated animals compared with untreated animals. In contrast, the squamous cell carcinoma-associated biomarker CD44v6, visualized with 124I-AbD19384 as well as 18F-FDG uptake, were not significantly altered by AT13387 treatment. Conclusion We conclude that AT13387 downregulates HSP90 client proteins, and that molecular imaging of these proteins may be a suitable approach for assessing treatment response. Furthermore, radioimmunotherapy targeting CD44v6 in combination with AT13387 may potentiate the radioimmunotherapy outcome due to radiosensitizing effects of the drug, and could potentially lead to a lower dose to normal tissues. Electronic supplementary material The online version of this article (doi:10.1007/s00259-015-3260-x) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
22 |
23
|
Khoshnood B, Dacklin I, Grabbe C. Urm1: an essential regulator of JNK signaling and oxidative stress in Drosophila melanogaster. Cell Mol Life Sci 2016; 73:1939-54. [PMID: 26715182 PMCID: PMC11108535 DOI: 10.1007/s00018-015-2121-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/28/2015] [Accepted: 12/15/2015] [Indexed: 12/29/2022]
Abstract
Ubiquitin-related modifier 1 (Urm1) is a ubiquitin-like molecule (UBL) with the dual capacity to act both as a sulphur carrier and posttranslational protein modifier. Here we characterize the Drosophila melanogaster homologues of Urm1 (CG33276) and its E1 activating enzyme Uba4 (CG13090), and show that they function together to induce protein urmylation in vivo. Urm1 conjugation to target proteins in general, and to the evolutionary conserved substrate Peroxiredoxin 5 (Prx5) specifically, is dependent on Uba4. A complete loss of Urm1 is lethal in flies, although a small number of adult zygotic Urm1 (n123) mutant escapers can be recovered. These escapers display a decreased general fitness and shortened lifespan, but in contrast to their S. cerevisiae counterparts, they are resistant to oxidative stress. Providing a molecular explanation, we demonstrate that cytoprotective JNK signaling is increased in Urm1 deficient animals. In agreement, molecular and genetic evidence suggest that elevated activity of the JNK downstream target genes Jafrac1 and gstD1 strongly contributes to the tolerance against oxidative stress displayed by Urm1 (n123) null mutants. In conclusion, Urm1 is a UBL that is involved in the regulation of JNK signaling and the response against oxidative stress in the fruit fly.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
21 |
24
|
Fleetwood F, Güler R, Gordon E, Ståhl S, Claesson-Welsh L, Löfblom J. Novel affinity binders for neutralization of vascular endothelial growth factor (VEGF) signaling. Cell Mol Life Sci 2016; 73:1671-83. [PMID: 26552422 PMCID: PMC11108507 DOI: 10.1007/s00018-015-2088-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023]
Abstract
Angiogenesis denotes the formation of new blood vessels from pre-existing vasculature. Progression of diseases such as cancer and several ophthalmological disorders may be promoted by excess angiogenesis. Novel therapeutics to inhibit angiogenesis and diagnostic tools for monitoring angiogenesis during therapy, hold great potential for improving treatment of such diseases. We have previously generated so-called biparatopic Affibody constructs with high affinity for the vascular endothelial growth factor receptor-2 (VEGFR2), which recognize two non-overlapping epitopes in the ligand-binding site on the receptor. Affibody molecules have previously been demonstrated suitable for imaging purposes. Their small size also makes them attractive for applications where an alternative route of administration is beneficial, such as topical delivery using eye drops. In this study, we show that decreasing linker length between the two Affibody domains resulted in even slower dissociation from the receptor. The new variants of the biparatopic Affibody bound to VEGFR2-expressing cells, blocked VEGFA binding, and inhibited VEGFA-induced signaling of VEGFR2 over expressing cells. Moreover, the biparatopic Affibody inhibited sprout formation of endothelial cells in an in vitro angiogenesis assay with similar potency as the bivalent monoclonal antibody ramucirumab. This study demonstrates that the biparatopic Affibody constructs show promise for future therapeutic as well as in vivo imaging applications.
Collapse
|
research-article |
9 |
18 |
25
|
Töger J, Arvidsson PM, Bock J, Kanski M, Pedrizzetti G, Carlsson M, Arheden H, Heiberg E. Hemodynamic forces in the left and right ventricles of the human heart using 4D flow magnetic resonance imaging: Phantom validation, reproducibility, sensitivity to respiratory gating and free analysis software. PLoS One 2018; 13:e0195597. [PMID: 29621344 PMCID: PMC5886587 DOI: 10.1371/journal.pone.0195597] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/26/2018] [Indexed: 01/17/2023] Open
Abstract
Purpose To investigate the accuracy, reproducibility and sensitivity to respiratory gating, field strength and ventricle segmentation of hemodynamic force quantification in the left and right ventricles of the heart (LV and RV) using 4D-flow magnetic resonance imaging (MRI), and to provide free hemodynamic force analysis software. Materials and methods A pulsatile flow phantom was imaged using 4D flow MRI and laser-based particle image velocimetry (PIV). Cardiac 4D flow MRI was performed in healthy volunteers at 1.5T (n = 23). Reproducibility was investigated using MR scanners from two different vendors on the same day (n = 8). Subsets of volunteers were also imaged without respiratory gating (n = 17), at 3T on the same day (n = 6), and 1–12 days later on the same scanner (n = 9, median 6 days). Agreement was measured using the intraclass correlation coefficient (ICC). Results Phantom validation showed good accuracy for both scanners (Scanner 1: bias -14±9%, y = 0.82x+0.08, R2 = 0.96, Scanner 2: bias -12±8%, y = 0.99x-0.08, R2 = 1.00). Force reproducibility was strong in the LV (0.09±0.07 vs 0.09±0.07 N, bias 0.00±0.04 N, ICC = 0.87) and RV (0.09±0.06 vs 0.09±0.05 N, bias 0.00±0.03, ICC = 0.83). Strong to very strong agreement was found for scans with and without respiratory gating (LV/RV: ICC = 0.94/0.95), scans on different days (ICC = 0.92/0.87), and 1.5T and 3T scans (ICC = 0.93/0.94). Conclusion Software for quantification of hemodynamic forces in 4D-flow MRI was developed, and results show high accuracy and strong to very strong reproducibility for both the LV and RV, supporting its use for research and clinical investigations. The software including source code is released freely for research.
Collapse
|
Validation Study |
7 |
17 |