1
|
Ariga H, Toki S, Ishibashi K. Potato Virus X Vector-Mediated DNA-Free Genome Editing in Plants. PLANT & CELL PHYSIOLOGY 2020; 61:1946-1953. [PMID: 32991731 PMCID: PMC7758033 DOI: 10.1093/pcp/pcaa123] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/14/2020] [Indexed: 05/04/2023]
Abstract
Genome editing technology is important for plant science and crop breeding. Genome-edited plants prepared using general CRISPR-Cas9 methods usually contain foreign DNA, which is problematic for the production of genome-edited transgene-free plants for vegetative propagation or highly heterozygous hybrid cultivars. Here, we describe a method for highly efficient targeted mutagenesis in Nicotiana benthamiana through the expression of Cas9 and single-guide (sg)RNA using a potato virus X (PVX) vector. Following Agrobacterium-mediated introduction of virus vector cDNA, >60% of shoots regenerated without antibiotic selection carried targeted mutations, while ≤18% of shoots contained T-DNA. The PVX vector was also used to express a base editor consisting of modified Cas9 fused with cytidine deaminase to introduce targeted nucleotide substitution in regenerated shoots. We also report exogenous DNA-free genome editing by mechanical inoculation of virions comprising the PVX vector expressing Cas9. This simple and efficient virus vector-mediated delivery of CRISPR-Cas9 could facilitate transgene-free gene editing in plants.
Collapse
|
research-article |
5 |
47 |
2
|
Wu ML, Cui YC, Ge L, Cui LP, Xu ZC, Zhang HY, Wang ZJ, Zhou D, Wu S, Chen L, Cui H. NbCycB2 represses Nbwo activity via a negative feedback loop in tobacco trichome development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1815-1827. [PMID: 31990970 PMCID: PMC7242068 DOI: 10.1093/jxb/erz542] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 01/25/2020] [Indexed: 05/20/2023]
Abstract
The transcription factor Woolly (Wo) and its downstream gene CycB2 have been shown to regulate trichome development in tomato (Solanum lycopersicum). It has been demonstrated that only the gain-of-function allele of Slwo (SlWoV, the Slwo woolly motif mutant allele) can increase the trichome density; however, it remains unclear why the two alleles function differently in trichome development. In this study, we used Nicotiana benthamiana as a model and cloned the homologues of Slwo and SlCycB2 (named Nbwo and NbCycB2). We also constructed a Nbwo gain-of-function allele with the same mutation site as SlWoV (named NbWoV). We found that both Nbwo and NbWoV directly regulate NbCycB2 and their own expression by binding to the promoter of NbCycB2 and their own genomic sequences. As form of a feedback regulation, NbCycB2 negatively regulates trichome formation by repressing Nbwo activity at the protein level. We also found that mutations in the Nbwo woolly motif can prevent repression of NbWoV by NbCycB2, which results in a significant increase in the amount of active Nbwo proteins and in increases in trichome density and the number of branches. Our results reveal a novel reciprocal regulation mechanism between NbCycB2 and Nbwo during trichome formation in N. benthamiana.
Collapse
|
research-article |
5 |
29 |
3
|
Atkinson N, Velanis CN, Wunder T, Clarke DJ, Mueller-Cajar O, McCormick AJ. The pyrenoidal linker protein EPYC1 phase separates with hybrid Arabidopsis-Chlamydomonas Rubisco through interactions with the algal Rubisco small subunit. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5271-5285. [PMID: 31504763 PMCID: PMC6793452 DOI: 10.1093/jxb/erz275] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/13/2019] [Indexed: 05/21/2023]
Abstract
Photosynthetic efficiencies in plants are restricted by the CO2-fixing enzyme Rubisco but could be enhanced by introducing a CO2-concentrating mechanism (CCM) from green algae, such as Chlamydomonas reinhardtii (hereafter Chlamydomonas). A key feature of the algal CCM is aggregation of Rubisco in the pyrenoid, a liquid-like organelle in the chloroplast. Here we have used a yeast two-hybrid system and higher plants to investigate the protein-protein interaction between Rubisco and essential pyrenoid component 1 (EPYC1), a linker protein required for Rubisco aggregation. We showed that EPYC1 interacts with the small subunit of Rubisco (SSU) from Chlamydomonas and that EPYC1 has at least five SSU interaction sites. Interaction is crucially dependent on the two surface-exposed α-helices of the Chlamydomonas SSU. EPYC1 could be localized to the chloroplast in higher plants and was not detrimental to growth when expressed stably in Arabidopsis with or without a Chlamydomonas SSU. Although EPYC1 interacted with Rubisco in planta, EPYC1 was a target for proteolytic degradation. Plants expressing EPYC1 did not show obvious evidence of Rubisco aggregation. Nevertheless, hybrid Arabidopsis Rubisco containing the Chlamydomonas SSU could phase separate into liquid droplets with purified EPYC1 in vitro, providing the first evidence of pyrenoid-like aggregation for Rubisco derived from a higher plant.
Collapse
|
research-article |
6 |
27 |
4
|
Blanco NE, Liebsch D, Guinea Díaz M, Strand Å, Whelan J. Dual and dynamic intracellular localization of Arabidopsis thaliana SnRK1.1. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2325-2338. [PMID: 30753728 DOI: 10.1093/jxb/erz023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Sucrose non-fermenting 1 (SNF1)-related protein kinase 1.1 (SnRK1.1; also known as KIN10 or SnRK1α) has been identified as the catalytic subunit of the complex SnRK1, the Arabidopsis thaliana homologue of a central integrator of energy and stress signalling in eukaryotes dubbed AMPK/Snf1/SnRK1. A nuclear localization of SnRK1.1 has been previously described and is in line with its function as an integrator of energy and stress signals. Here, using two biological models (Nicotiana benthamiana and Arabidopsis thaliana), native regulatory sequences, different microscopy techniques, and manipulations of cellular energy status, it was found that SnRK1.1 is localized dynamically between the nucleus and endoplasmic reticulum (ER). This distribution was confirmed at a spatial and temporal level by co-localization studies with two different fluorescent ER markers, one of them being the SnRK1.1 phosphorylation target HMGR. The ER and nuclear localization displayed a dynamic behaviour in response to perturbations of the plastidic electron transport chain. These results suggest that an ER-associated SnRK1.1 fraction might be sensing the cellular energy status, being a point of crosstalk with other ER stress regulatory pathways.
Collapse
|
|
6 |
14 |
5
|
Kurotani KI, Hirakawa H, Shirasawa K, Tanizawa Y, Nakamura Y, Isobe S, Notaguchi M. Genome Sequence and Analysis of Nicotiana benthamiana, the Model Plant for Interactions between Organisms. PLANT & CELL PHYSIOLOGY 2023; 64:248-257. [PMID: 36755428 PMCID: PMC9977260 DOI: 10.1093/pcp/pcac168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Nicotiana benthamiana is widely used as a model plant for dicotyledonous angiosperms. In fact, the strains used in research are highly susceptible to a wide range of viruses. Accordingly, these strains are subject to plant pathology and plant-microbe interactions. In terms of plant-plant interactions, N. benthamiana is one of the plants that exhibit grafting affinity with plants from different families. Thus, N. benthamiana is a good model for plant biology and has been the subject of genome sequencing analyses for many years. However, N. benthamiana has a complex allopolyploid genome, and its previous reference genome is fragmented into 141,000 scaffolds. As a result, molecular genetic analysis is difficult to perform. To improve this effort, de novo whole-genome assembly was performed in N. benthamiana with Hifi reads, and 1,668 contigs were generated with a total length of 3.1 Gb. The 21 longest scaffolds, regarded as pseudomolecules, contained a 2.8-Gb sequence, occupying 95.6% of the assembled genome. A total of 57,583 high-confidence gene sequences were predicted. Based on a comparison of the genome structures between N. benthamiana and N. tabacum, N. benthamiana was found to have more complex chromosomal rearrangements, reflecting the age of interspecific hybridization. To verify the accuracy of the annotations, the cell wall modification genes involved in grafting were analyzed, which revealed not only the previously indeterminate untranslated region, intron and open reading frame sequences but also the genomic locations of their family genes. Owing to improved genome assembly and annotation, N. benthamiana would increasingly be more widely accessible.
Collapse
|
research-article |
2 |
12 |
6
|
Wei X, Lu W, Mao L, Han X, Wei X, Zhao X, Xia M, Xu C. ABF2 and MYB transcription factors regulate feruloyl transferase FHT involved in ABA-mediated wound suberization of kiwifruit. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:305-317. [PMID: 31559426 PMCID: PMC6913711 DOI: 10.1093/jxb/erz430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/12/2019] [Indexed: 05/09/2023]
Abstract
Suberin is a cell-wall biopolymer with aliphatic and aromatic domains that is synthesized in the wound tissues of plants in order to restrict water loss and pathogen infection. ω-hydroxyacid/fatty alcohol hydroxycinnamoyl transferase (FHT) is required for cross-linking of the aliphatic and aromatic domains. ABA is known to play a positive role in suberin biosynthesis but it is not known how it interacts with FHT. In this study, the kiwifruit (Actinidia chinensis) AchnFHT gene was isolated and was found to be localized in the cytosol. Transient overexpression of AchnFHT in leaves of Nicotiana benthamiana induced massive production of ferulate, ω-hydroxyacids, and primary alcohols, consistent with the in vitro ability of AchnFHT to catalyse acyl-transfer from feruloyl-CoA to ω-hydroxypalmitic acid and 1-tetradecanol. A regulatory function of four TFs (AchnABF2, AchnMYB4, AchnMYB41, and AchnMYB107) on AchnFHT was identified. These TFs localized in the nucleus and directly interacted with the AchnFHT promoter in yeast one-hybrid assays. Dual-luciferase analysis indicated that AchnABF2, AchnMYB41, and AchnMYB107 activated the AchnFHT promoter while AchnMYB4 repressed it. These findings were supported by the results of transient overexpression in N. benthamiana, in which AchnABF2, AchnMYB41, and AchnMYB107 induced expression of suberin biosynthesis genes (including FHT) and accumulation of suberin monomers, whilst AchnMYB4 had the opposite effect. Exogenous ABA induced the expression of AchnABF2, AchnMYB41, AchnMYB107, and AchnFHT and induced suberin monomer formation, but it inhibited AchnMYB4 expression. In addition, fluridone (an inhibitor of ABA biosynthesis) was found to counter the inductive effects of ABA. Activation of suberin monomer biosynthesis by AchnFHT was therefore controlled in a coordinated way by both repression of AchnMYB4 and promotion of AchnABF2, AchnMYB41, and AchnMYB107.
Collapse
|
research-article |
5 |
11 |
7
|
Kiba A, Nakano M, Hosokawa M, Galis I, Nakatani H, Shinya T, Ohnishi K, Hikichi Y. Phosphatidylinositol-phospholipase C2 regulates pattern-triggered immunity in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5027-5038. [PMID: 32412590 PMCID: PMC7410187 DOI: 10.1093/jxb/eraa233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 05/27/2023]
Abstract
Phospholipid signaling plays an important role in plant immune responses against phytopathogenic bacteria in Nicotiana benthamiana. Here, we isolated two phospholipase C2 (PLC2) orthologs in the N. benthamiana genome, designated as PLC2-1 and 2-2. Both NbPLC2-1 and NbPLC2-2 were expressed in most tissues and were induced by infiltration with bacteria and flg22. NbPLC2-1 and NbPLC2-2 (NbPLC2s) double-silenced plants showed a moderately reduced growth phenotype. The induction of the hypersensitive response was not affected, but bacterial growth and the appearance of bacterial wilt were accelerated in NbPLC2s-silenced plants when they were challenged with a virulent strain of Ralstonia solanacearum that was compatible with N. benthamiana. NbPLC2s-silenced plants showed reduced expression levels of NbPR-4, a marker gene for jasmonic acid signaling, and decreased jasmonic acid and jasmonoyl-L-isoleucine contents after inoculation with R. solanacearum. The induction of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes was reduced in NbPLC2s-silenced plants after infiltration with R. solanacearum or Pseudomonas fluorescens. Accordingly, the resistance induced by flg22 was compromised in NbPLC2s-silenced plants. In addition, the expression of flg22-induced PTI marker genes, the oxidative burst, stomatal closure, and callose deposition were all reduced in the silenced plants. Thus, NbPLC2s might have important roles in pre- and post-invasive defenses, namely in the induction of PTI.
Collapse
|
research-article |
5 |
10 |
8
|
Li FL, Chen X, Luo HM, Meiners SJ, Kong CH. Root-secreted (-)-loliolide modulates both belowground defense and aboveground flowering in Arabidopsis and tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:964-975. [PMID: 36342376 DOI: 10.1093/jxb/erac439] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Plant defense, growth, and reproduction can be modulated by chemicals emitted from neighboring plants, mainly via volatile aboveground signals. However, belowground signals and their underlying control mechanisms are largely unknown. Here, we experimentally demonstrate that the root-secreted carotenoid (-)-loliolide mediates both defensive and reproductive responses in wild-type Arabidopsis, a carotenoid-deficient Arabidopsis mutant (szl1-1), and tobacco (Nicotiana benthamiana). Wild-type Arabidopsis plants flower later than szl1-1, and they secrete (-)-loliolide into the soil, whereas szl1-1 roots do not. When Arabidopsis and tobacco occur together, wild-type Arabidopsis induces nicotine production and defense-related gene expression in tobacco, whereas szl1-1 impairs this induction but accelerates tobacco flowering. Furthermore, nicotine production and the expression of the key genes involved in nicotine biosynthesis (QPT, PMT1), plant defense (CAT1, SOD1, PR-2a, PI-II, TPI), and flowering (AP1, LFY, SOC1, FT3, FLC) are differently regulated by incubation with wild-type Arabidopsis and szl1-1 root exudates or (-)-loliolide. In particular, (-)-loliolide up-regulated flowering suppressors (FT3 and FLC) and transiently down-regulated flowering stimulators (AP1 and SOC1), delaying tobacco flowering. Therefore, root-secreted (-)-loliolide modulates plant belowground defense and aboveground flowering, yielding critical insights into plant-plant signaling interactions.
Collapse
|
|
2 |
10 |
9
|
Jongedijk E, Müller S, van Dijk ADJ, Schijlen E, Champagne A, Boutry M, Levisson M, van der Krol S, Bouwmeester H, Beekwilder J. Novel routes towards bioplastics from plants: elucidation of the methylperillate biosynthesis pathway from Salvia dorisiana trichomes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3052-3065. [PMID: 32090266 PMCID: PMC7260718 DOI: 10.1093/jxb/eraa086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Plants produce a large variety of highly functionalized terpenoids. Functional groups such as partially unsaturated rings and carboxyl groups provide handles to use these compounds as feedstock for biobased commodity chemicals. For instance, methylperillate, a monoterpenoid found in Salvia dorisiana, may be used for this purpose, as it carries both an unsaturated ring and a methylated carboxyl group. The biosynthetic pathway of methylperillate in plants is still unclear. In this work, we identified glandular trichomes from S. dorisiana as the location of biosynthesis and storage of methylperillate. mRNA from purified trichomes was used to identify four genes that can encode the pathway from geranyl diphosphate towards methylperillate. This pathway includes a (-)-limonene synthase (SdLS), a limonene 7-hydroxylase (SdL7H, CYP71A76), and a perillyl alcohol dehydrogenase (SdPOHDH). We also identified a terpene acid methyltransferase, perillic acid O-methyltransferase (SdPAOMT), with homology to salicylic acid OMTs. Transient expression in Nicotiana benthamiana of these four genes, in combination with a geranyl diphosphate synthase to boost precursor formation, resulted in production of methylperillate. This demonstrates the potential of these enzymes for metabolic engineering of a feedstock for biobased commodity chemicals.
Collapse
|
research-article |
5 |
7 |
10
|
Chase MW, Samuel R, Leitch AR, Guignard MS, Conran JG, Nollet F, Fletcher P, Jakob A, Cauz-Santos LA, Vignolle G, Dodsworth S, Christenhusz MJM, Buril MT, Paun O. Down, then up: non-parallel genome size changes and a descending chromosome series in a recent radiation of the Australian allotetraploid plant species, Nicotiana section Suaveolentes (Solanaceae). ANNALS OF BOTANY 2023; 131:123-142. [PMID: 35029647 PMCID: PMC9904355 DOI: 10.1093/aob/mcac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/11/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. METHODS We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. KEY RESULTS RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. CONCLUSIONS The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.
Collapse
|
research-article |
2 |
5 |
11
|
Takagi K, Tasaki K, Komori H, Katou S. Hypersensitivity-Related Genes HSR201 and HSR203J Are Regulated by Calmodulin-Binding Protein 60-Type Transcription Factors and Required for Pathogen Signal-Induced Salicylic Acid Synthesis. PLANT & CELL PHYSIOLOGY 2022; 63:1008-1022. [PMID: 35671166 DOI: 10.1093/pcp/pcac074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Salicylic acid (SA) plays a key role in plant resistance to pathogens. In Arabidopsis, the isochorismate synthase pathway mainly contributes to pathogen-induced SA synthesis, and the expression of SA synthesis genes is activated by two calmodulin (CaM)-binding protein 60 (CBP60)-type transcription factors, CBP60g and SARD1. In tobacco, the mechanisms underlying SA synthesis remain largely unknown. SA production is induced by wounding in tobacco plants in which the expression of two stress-related mitogen-activated protein kinases is suppressed. Using this phenomenon, we identified genes whose expression is associated with SA synthesis. One of the genes, NtCBP60g, showed 23% amino acid sequence identity with CBP60g. Transient overexpression of NtCBP60g as well as NtSARD1, a tobacco homolog of SARD1, induced SA accumulation in Nicotiana benthamiana leaves. NtCBP60g and NtSARD1 bound CaM, and CaM enhanced SA accumulation induced by NtCBP60g and NtSARD1. Conversely, mutations in NtCBP60g and NtSARD1 that abolished CaM binding reduced their ability to induce SA. Expression profiling and promoter analysis identified two hypersensitivity-related genes, HSR201 and HSR203J as the targets of NtCBP60g and NtSARD1. Virus-induced gene silencing of both NtCBP60g and NtSARD1 homologs compromised SA accumulation and the expression of HSR201 and HSR203J homologs, which were induced by a pathogen-derived elicitor in N. benthamiana leaves. Moreover, elicitor-induced SA accumulation was compromised by silencing of the HSR201 homolog and the HSR203J homolog. These results suggested that HSR201 and HSR203J are regulated by NtCBP60g and NtSARD1 and are required for elicitor-induced SA synthesis.
Collapse
|
|
3 |
4 |
12
|
Erickson JL, Prautsch J, Reynvoet F, Niemeyer F, Hause G, Johnston IG, Schattat MH. Stromule Geometry Allows Optimal Spatial Regulation of Organelle Interactions in the Quasi-2D Cytoplasm. PLANT & CELL PHYSIOLOGY 2024; 65:618-630. [PMID: 37658689 PMCID: PMC11094753 DOI: 10.1093/pcp/pcad098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
In plant cells, plastids form elongated extensions called stromules, the regulation and purposes of which remain unclear. Here, we quantitatively explore how different stromule structures serve to enhance the ability of a plastid to interact with other organelles: increasing the effective space for interaction and biomolecular exchange between organelles. Interestingly, electron microscopy and confocal imaging showed that the cytoplasm in Arabidopsis thaliana and Nicotiana benthamiana epidermal cells is extremely thin (around 100 nm in regions without organelles), meaning that inter-organelle interactions effectively take place in 2D. We combine these imaging modalities with mathematical modeling and new in planta experiments to demonstrate how different stromule varieties (single or multiple, linear or branching) could be employed to optimize different aspects of inter-organelle interaction capacity in this 2D space. We found that stromule formation and branching provide a proportionally higher benefit to interaction capacity in 2D than in 3D. Additionally, this benefit depends on optimal plastid spacing. We hypothesize that cells can promote the formation of different stromule architectures in the quasi-2D cytoplasm to optimize their interaction interface to meet specific requirements. These results provide new insight into the mechanisms underlying the transition from low to high stromule numbers, the consequences for interaction with smaller organelles, how plastid access and plastid to nucleus signaling are balanced and the impact of plastid density on organelle interaction.
Collapse
|
research-article |
1 |
3 |
13
|
Ludman M, Szalai G, Janda T, Fátyol K. Hierarchical contribution of Argonaute proteins to antiviral protection. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6760-6772. [PMID: 37603044 PMCID: PMC10662219 DOI: 10.1093/jxb/erad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Antiviral RNAi is the main protective measure employed by plants in the fight against viruses. The main steps of this process have been clarified in recent years, primarily relying on the extensive genetic resources of Arabidopsis thaliana. Our knowledge of viral diseases of crops, however, is still limited, mainly due to the fact that A. thaliana is a non-host for many agriculturally important viruses. In contrast, Nicotiana benthamiana has an unparalleled susceptibility to viruses and, since it belongs to the Solanaceae family, it is considered an adequate system for modeling infectious diseases of crops such as tomatoes. We used a series of N. benthamiana mutants created by genome editing to analyze the RNAi response elicited by the emerging tomato pathogen, pepino mosaic virus (PepMV). We uncovered hierarchical roles of several Argonaute proteins (AGOs) in anti-PepMV defense, with the predominant contribution of AGO2. Interestingly, the anti-PepMV activities of AGO1A, AGO5, and AGO10 only become apparent when AGO2 is mutated. Taken together, our results prove that hierarchical actions of several AGOs are needed for the plant to build effective anti-PepMV resistance. The genetic resources created here will be valuable assets for analyzing RNAi responses triggered by other agriculturally important pathogenic viruses.
Collapse
|
research-article |
2 |
|
14
|
Hino Y, Inada T, Yoshioka M, Yoshioka H. NADPH oxidase-mediated sulfenylation of cysteine derivatives regulates plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4641-4654. [PMID: 38577861 DOI: 10.1093/jxb/erae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Reactive oxygen species (ROS) are rapidly generated during plant immune responses by respiratory burst oxidase homolog (RBOH), which is a plasma membrane-localized NADPH oxidase. Although regulatory mechanisms of RBOH activity have been well documented, the ROS-mediated downstream signaling is unclear. We here demonstrated that ROS sensor proteins play a central role in ROS signaling via oxidative post-translational modification of cysteine residues, sulfenylation. To detect protein sulfenylation, we used dimedone, which specifically and irreversibly binds to sulfenylated proteins. The sulfenylated proteins were labeled by dimedone in Nicotiana benthamiana leaves, and the conjugates were detected by immunoblot analyses. In addition, a reductant dissociated H2O2-induced conjugates, suggesting that cysteine persulfide and/or polysulfides are involved in sulfenylation. These sulfenylated proteins were continuously increased during both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in a RBOH-dependent manner. Pharmacological inhibition of ROS sensor proteins by dimedone perturbated cell death, ROS accumulation induced by INF1 and MEK2DD, and defense against fungal pathogens. On the other hand, Rpi-blb2-mediated ETI responses were enhanced by dimedone. These results suggest that the sulfenylation of cysteine and its derivatives in various ROS sensor proteins are important events downstream of the RBOH-dependent ROS burst to regulate plant immune responses.
Collapse
|
|
1 |
|
15
|
Moreira CJS, Escórcio R, Bento A, Bjornson M, Herold L, Tomé AS, Martins C, Fanuel M, Martins I, Bakan B, Zipfel C, Silva Pereira C. Cutin-derived oligomers induce hallmark plant immune responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5146-5161. [PMID: 38824407 PMCID: PMC11350081 DOI: 10.1093/jxb/erae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
The cuticle constitutes the outermost defensive barrier of most land plants. It comprises a polymeric matrix-cutin, surrounded by soluble waxes. Moreover, the cuticle constitutes the first line of defense against pathogen invasion, while also protecting the plant from many abiotic stresses. Aliphatic monomers in cutin have been suggested to act as immune elicitors in plants. This study analyses the potential of cutin oligomers to activate rapid signaling outputs reminiscent of pattern-triggered immunity in the model plant Arabidopsis. Cutin oligomeric mixtures led to Ca2+ influx and mitogen-activated protein kinase activation. Comparable responses were measured for cutin, which was also able to induce a reactive oxygen species burst. Furthermore, cutin oligomer treatment resulted in a unique transcriptional reprogramming profile, having many archetypal features of pattern-triggered immunity. Targeted spectroscopic and spectrometric analyses of the cutin oligomers suggest that the elicitor compounds consist mostly of two up to three 10,16-dihydroxyhexadecanoic acid monomers linked together through ester bonds. This study demonstrates that cutin breakdown products can act as inducers of early plant immune responses. Further investigation is needed to understand how cutin breakdowns are perceived and to explore their potential use in agriculture.
Collapse
|
research-article |
1 |
|
16
|
White ARF, Kane A, Ogawa S, Shirasu K, Nelson DC. Dominant-Negative KAI2d Paralogs Putatively Attenuate Strigolactone Responses in Root Parasitic Plants. PLANT & CELL PHYSIOLOGY 2024; 65:1969-1982. [PMID: 39275795 DOI: 10.1093/pcp/pcae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
Many root parasitic plants in the Orobanchaceae use host-derived strigolactones (SLs) as germination cues. This adaptation facilitates attachment to a host and is particularly important for the success of obligate parasitic weeds that cause substantial crop losses globally. Parasite seeds sense SLs through 'divergent' KARRIKIN INSENSITIVE2 (KAI2d)/HYPOSENSITIVE TO LIGHT α/β-hydrolases that have undergone substantial duplication and diversification in Orobanchaceae genomes. After germination, chemotropic growth of parasite roots toward a SL source also occurs in some species. We investigated which of the seven KAI2d genes found in a facultative hemiparasite, Phtheirospermum japonicum, may enable chemotropic responses to SLs. To do so, we developed a triple mutant Nbd14a,b kai2i line of Nicotiana benthamiana in which SL-induced degradation of SUPPRESSOR OF MORE AXILLARY GROWTH2 (MAX2) 1 (SMAX1), an immediate downstream target of KAI2 signaling, is disrupted. In combination with a transiently expressed, ratiometric reporter of SMAX1 protein abundance, this mutant forms a system for the functional analysis of parasite KAI2d proteins in a plant cellular context. Using this system, we unexpectedly found three PjKAI2d proteins that do not trigger SMAX1 degradation in the presence of SLs. Instead, these PjKAI2d proteins inhibit the perception of low SL concentrations by SL-responsive PjKAI2d in a dominant-negative manner that depends upon an active catalytic triad. Similar dominant-negative KAI2d paralogs were identified in an obligate hemiparasitic weed, Striga hermonthica. These proteins suggest a mechanism for attenuating SL signaling in parasites, which might be used to enhance the perception of shallow SL gradients during root growth toward a host or to restrict germination responses to specific SLs.
Collapse
|
|
1 |
|
17
|
Kotera Y, Asai Y, Okano S, Tokutake Y, Hosomi A, Saito K, Yonekura S, Katou S. Peroxisomal Localization of Benzyl Alcohol O-Benzoyltransferase HSR201 is Mediated by a Non-canonical Peroxisomal Targeting Signal and Required for Salicylic Acid Biosynthesis. PLANT & CELL PHYSIOLOGY 2024; 65:2054-2065. [PMID: 39471420 DOI: 10.1093/pcp/pcae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/01/2024]
Abstract
The phytohormone salicylic acid (SA) regulates plant responses to various types of environmental stress, particularly pathogen infections. We previously revealed that the benzyl alcohol O-benzoyltransferase HSR201 was required for pathogen signal-induced SA synthesis, and its overexpression together with NtCNL, encoding a cinnamate-coenzyme A ligase, was sufficient for the production of significant amounts of SA in tobacco. We herein examined the subcellular localization of HSR201 and found that it fused to a yellow fluorescent protein localized in peroxisomes. Most peroxisomal matrix proteins possess peroxisomal targeting signal type-1 (PTS1) located at the extreme C-terminus or PTS2 located at the N-terminus; however, a bioinformatics analysis failed to identify similar signals for HSR201. Deletion and mutation analyses of HSR201 identified one essential (extreme C-terminal Leu460) and three important (Ile455, Ile456 and Ala459) amino acid residues for its peroxisomal localization. The virus-induced gene silencing (VIGS) of PEX5, a PTS1 receptor, but not PEX7, a PTS2 receptor, compromised the peroxisomal targeting of HSR201 in Nicotiana benthamiana. When overexpressed with NtCNL, HSR201 mutants with reduced or non-peroxisomal targeting induced lower SA levels than the wild type; however, these mutations did not affect the protein stability or activity of HSR201. VIGS of the HSR201 homolog compromised pathogen signal-induced SA accumulation in N. benthamiana, which was complemented by the HSR201 wild type, but not the mutant with non-peroxisomal targeting. These results suggest that the peroxisomal localization of HSR201 is mediated by a non-canonical PTS1 and required for SA biosynthesis.
Collapse
|
|
1 |
|
18
|
Takasato S, Bando T, Ohnishi K, Tsuzuki M, Hikichi Y, Kiba A. Phosphatidylinositol-phospholipase C3 negatively regulates the hypersensitive response via complex signaling with MAP kinase, phytohormones, and reactive oxygen species in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4721-4735. [PMID: 37191942 PMCID: PMC10433933 DOI: 10.1093/jxb/erad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
Phospholipid signaling plays important roles in plant immune responses. Here, we focused on two phospholipase C3 (PLC3) orthologs in the Nicotiana benthamiana genome, NbPLC3-1 and NbPLC3-2. We generated NbPLC3-1 and NbPLC3-2-double-silenced plants (NbPLC3s-silenced plants). In NbPLC3s-silenced plants challenged with Ralstonia solanacearum 8107, induction of hypersensitive response (HR)-related cell death and bacterial population reduction was accelerated, and the expression level of Nbhin1, a HR marker gene, was enhanced. Furthermore, the expression levels of genes involved in salicylic acid and jasmonic acid signaling drastically increased, reactive oxygen species production was accelerated, and NbMEK2-induced HR-related cell death was also enhanced. Accelerated HR-related cell death was also observed by bacterial pathogens Pseudomonas cichorii, P. syringae, bacterial AvrA, oomycete INF1, and TMGMV-CP with L1 in NbPLC3s-silenced plants. Although HR-related cell death was accelerated, the bacterial population was not reduced in double NbPLC3s and NbCoi1-suppressed plants nor in NbPLC3s-silenced NahG plants. HR-related cell death acceleration and bacterial population reduction resulting from NbPLC3s-silencing were compromised by the concomitant suppression of either NbPLC3s and NbrbohB (respiratory oxidase homolog B) or NbPLC3s and NbMEK2 (mitogen activated protein kinase kinase 2). Thus, NbPLC3s may negatively regulate both HR-related cell death and disease resistance through MAP kinase- and reactive oxygen species-dependent signaling. Disease resistance was also regulated by NbPLC3s through jasmonic acid- and salicylic acid-dependent pathways.
Collapse
|
research-article |
2 |
|
19
|
Zhu F, Cao MY, Zhu PX, Zhang QP, Lam HM. Non-specific LIPID TRANSFER PROTEIN 1 enhances immunity against tobacco mosaic virus in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5236-5254. [PMID: 37246636 DOI: 10.1093/jxb/erad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small, cysteine-rich proteins that play significant roles in biotic and abiotic stress responses; however, the molecular mechanism of their functions against viral infections remains unclear. In this study, we employed virus-induced gene-silencing and transgenic overexpression to functionally analyse a type-I nsLTP in Nicotiana benthamiana, NbLTP1, in the immunity response against tobacco mosaic virus (TMV). NbLTP1 was inducible by TMV infection, and its silencing increased TMV-induced oxidative damage and the production of reactive oxygen species (ROS), compromised local and systemic resistance to TMV, and inactivated the biosynthesis of salicylic acid (SA) and its downstream signaling pathway. The effects of NbLTP1-silencing were partially restored by application of exogenous SA. Overexpressing NbLTP1 activated genes related to ROS scavenging to increase cell membrane stability and maintain redox homeostasis, confirming that an early ROS burst followed by ROS suppression at the later phases of pathogenesis is essential for resistance to TMV infection. The cell-wall localization of NbLTP1 was beneficial to viral resistance. Overall, our results showed that NbLTP1 positively regulates plant immunity against viral infection through up-regulating SA biosynthesis and its downstream signaling component, NONEXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), which in turn activates pathogenesis-related genes, and by suppressing ROS accumulation at the later phases of viral pathogenesis.
Collapse
|
|
2 |
|
20
|
Hermanowicz P, Łabuz J. Hyperspectral imaging for chloroplast movement detection. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:882-898. [PMID: 39329458 PMCID: PMC11805589 DOI: 10.1093/jxb/erae407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
We employed hyperspectral imaging to detect chloroplast positioning and assess its influence on common vegetation indices. In low blue light, chloroplasts move to cell walls perpendicular to the direction of the incident light. In high blue light, chloroplasts exhibit the avoidance response, moving to cell walls parallel to the light direction. Irradiation with high light resulted in significant changes in leaf reflectance and the shape of the reflectance spectrum. Using mutants with disrupted chloroplast movements, we found that blue light-induced changes in the reflectance spectrum are mostly due to chloroplast relocations. We trained machine learning methods in the classification of leaves according to the chloroplast positioning, based on the reflectance spectra. The convolutional network showed low levels of misclassification of leaves irradiated with high light even when different species were used for training and testing, suggesting that reflectance spectra may be used to detect chloroplast avoidance in heterogeneous vegetation. We also examined the correlation between chloroplast positioning and values of indices of normalized-difference type for various combinations of wavelengths and identified an index sensitive to chloroplast positioning. We found that values of some of the vegetation indices, including those sensitive to the carotenoid levels, may be altered due to chloroplast rearrangements.
Collapse
|
research-article |
1 |
|
21
|
Ishikawa K, Kodama Y. Bilirubin Distribution in Plants at the Subcellular and Tissue Levels. PLANT & CELL PHYSIOLOGY 2024; 65:762-769. [PMID: 38466577 PMCID: PMC11138361 DOI: 10.1093/pcp/pcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
In heterotrophs, heme degradation produces bilirubin, a tetrapyrrole compound that has antioxidant activity. In plants, heme is degraded in plastids and is believed to be converted to phytochromobilin rather than bilirubin. Recently, we used the bilirubin-inducible fluorescent protein UnaG to reveal that plants produce bilirubin via a non-enzymatic reaction with NADPH. In the present study, we used an UnaG-based live imaging system to visualize bilirubin accumulation in Arabidopsis thaliana and Nicotiana benthamiana at the organelle and tissue levels. In chloroplasts, bilirubin preferentially accumulated in the stroma, and the stromal bilirubin level increased upon dark treatment. Investigation of intracellular bilirubin distribution in leaves and roots showed that it accumulated mostly in plastids, with low levels detected in the cytosol and other organelles, such as peroxisomes, mitochondria and the endoplasmic reticulum. A treatment that increased bilirubin production in chloroplasts decreased the bilirubin level in peroxisomes, implying that a bilirubin precursor is transported between the two organelles. At the cell and tissue levels, bilirubin showed substantial accumulation in the root elongation region but little or none in the root cap and guard cells. Intermediate bilirubin accumulation was observed in other shoot and root tissues, with lower levels in shoot tissues. Our data revealed the distribution of bilirubin in plants, which has implications for the transport and physiological function of tetrapyrroles.
Collapse
|
research-article |
1 |
|
22
|
Huang C, Toyokura K, Murakami EI, Ishiwata A, Kurotani KI, Notaguchi M. Nicotiana benthamiana VASCULAR-RELATED NAC-DOMAIN7-2 (NbVND7-2) has a role in xylem formation during interfamily grafting. JOURNAL OF EXPERIMENTAL BOTANY 2025:eraf074. [PMID: 39987463 DOI: 10.1093/jxb/eraf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 02/25/2025]
Abstract
VASCULAR-RELATED NAC-DOMAIN7 (VND7) is a transcription factor gene that plays a critical role in xylem differentiation. The ectopic expression of VND7 induces the formation of secondary cell walls with spiral patterns in multiple plant cell types. In the present study, we have identified four homologs of VND7 in Nicotiana benthamiana and assigned them the names NbVND7-1 to NbVND7-4. Particularly, NbVND7-1 and NbVND7-2 were highly expressed during N. benthamiana and Arabidopsis thaliana (Nb/At) interfamily grafting. Analysis of the promoter GUS reporter lines of NbVND7 genes elucidated the expression of NbVND7-1 and NbVND7-2 in xylem tissues of intact and grafted plants, and those of NbVND7-3 and NbVND7-4 in internal phloem tissues. Gene network analysis revealed the downstream genes of each NbVND7 homolog and highlighted the association of NbVND7-1 and NbVND7-2 with xylem formation. A 𝛽-estradiol-inducible system for NbVND7-2 demonstrated that NbVND7-2 promotes ectopic xylem vessel differentiation in N. benthamiana seedlings and in the stem tissues at graft junction. Induction of NbVND7-2 at graft junction enhanced ectopic xylem formation in the callus tissues proliferated at graft boundary, accelerated the initiation of water transport from stock to scion, and enhanced scion stem growth after grafting. This study revealed a role of NbVND7 genes in xylem formation that can enhance Nicotiana interfamily grafting.
Collapse
|
|
1 |
|
23
|
Ihara Y, Wakamatsu T, Yokoyama M, Maezawa D, Ohta H, Shimojima M. Developing a platform for production of the oxylipin KODA in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3044-3052. [PMID: 35560188 PMCID: PMC9113317 DOI: 10.1093/jxb/erab557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/27/2021] [Indexed: 05/08/2023]
Abstract
KODA (9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid) is a plant oxylipin involved in recovery from stress. As an agrichemical, KODA helps maintain crop production under various environmental stresses. In plants, KODA is synthesized from α-linolenic acids via 9-lipoxygenase (9-LOX) and allene oxide synthase (AOS), although the amount is usually low, except in the free-floating aquatic plant Lemna paucicostata. To improve KODA biosynthetic yield in other plants such as Nicotiana benthamiana and Arabidopsis thaliana, we developed a system to overproduce KODA in vivo via ectopic expression of L. paucicostata 9-LOX and AOS. The transient expression in N. benthamiana showed that the expression of these two genes is sufficient to produce KODA in leaves. However, stable expression of 9-LOX and AOS (with consequent KODA production) in Arabidopsis plants succeeded only when the two proteins were targeted to plastids or the endoplasmic reticulum/lipid droplets. Although only small amounts of KODA could be detected in crude leaf extracts of transgenic Nicotiana or Arabidopsis plants, subsequent incubation of the extracts increased KODA abundance over time. Therefore, KODA production in transgenic plants stably expressing 9-LOX and AOS requires specific sub-cellular localization of these two enzymes and incubation of crude leaf extracts, which liberates α-linolenic acid via breakdown of endogenous lipids.
Collapse
|
research-article |
3 |
|
24
|
Multhoff J, Niemeier JO, Zheng K, Lim MSS, Barreto P, Niebisch JM, Ischebeck T, Schwarzländer M. In vivo biosensing of subcellular pyruvate pools reveals photosynthesis-dependent metabolite dynamics in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7254-7266. [PMID: 39301927 DOI: 10.1093/jxb/erae398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Pyruvate is central to metabolism across biology. It acts as a metabolic hub linking major pathways including glycolysis, the Krebs cycle, fermentation, and synthesis of amino acids, fatty acids, isoprenoids, and nucleotides. Even though the central role of pyruvate is well established biochemically, there is a remarkable gap in our understanding of how pyruvate levels behave within cells, where pyruvate is distributed across different compartments. Moreover, differential changes in pyruvate pools may occur rapidly upon changes in metabolic fluxes. Recently, this problem has been addressed by the development of a genetically encoded pyruvate biosensor to provide first insights into the pyruvate dynamics in animal cells. Here, we established in vivo biosensing of pyruvate in plants. We provided advanced characterization of the biosensor properties and demonstrated the functionality of the sensor in the cytosol, the mitochondria, and the chloroplasts of Nicotiana benthamiana epidermal cells. Finally, we harnessed the tool to investigate the impact of photosynthesis on pyruvate with unprecedented spatial and temporal resolution, revealing pronounced changes in subcellular pyruvate pools. While highlighting the current limitations of the biosensor, this study provides proof-of-concept for how the dynamics and regulation of central carbon metabolites can be revealed in living plant tissues.
Collapse
|
|
1 |
|
25
|
Koyama R, Suzuki A, Ohnishi K, Hikichi Y, Kiba A. Lipid transfer protein VAS inhibits the hypersensitive response via reactive oxygen species signaling in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1285-1299. [PMID: 39921679 PMCID: PMC11850974 DOI: 10.1093/jxb/erae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Lipid transfer proteins (LTPs) are small cysteine-rich soluble proteins that affect flower and seed development, cuticular wax deposition, and biotic and abiotic stress responses. We isolated an LTP-encoding gene homologous to LTPVAS in Nicotiana benthamiana and designated it LTP-VASCULAR TISSUE SIZE (NbLTPVAS). This gene was expressed in seeds, leaves, roots, and stems. Additionally, NbLTPVAS expression was induced by hypersensitive response (HR)-inducing agents. Cell death was accelerated and the phytopathogenic bacterial population decreased significantly in NbLTPVAS-silenced plants infected with the incompatible Ralstonia solanacearum strain 8107. The expression of HR marker gene hin1 in NbLTPVAS-silenced plants was markedly induced by R. solanacearum 8107, indicative of the acceleration of HR. HR cell death in NbLTPVAS-silenced plants was also promoted by the Agrobacterium-mediated expression of HR-inducing proteins including INF1, AvrA, and PopP1. Excessive production of reactive oxygen species (ROS) was detected in NbLTPVAS-silenced plants. The expression of NbrbohB (encoding a ROS-generating enzyme) also increased in NbLTPVAS-silenced plants, but the expression of the antioxidant enzyme-encoding genes NbSOD and NbAPX decreased. The silencing of both NbLTPVAS and NbrbohB adversely affected HR induction. Moreover, NbLTPVAS was secreted into the intercellular washing fluid. The transient expression of the full-length NbLTPVAS induced the expression of antioxidant genes, attenuated ROS production, and suppressed the induction of HR cell death. This is the first functional analysis of LTPVAS in plant-microbe interactions. Our study provides novel insights into the role of NbLTPVAS as a negative regulator of HR via ROS homeostasis in N. benthamiana.
Collapse
|
research-article |
1 |
|