1
|
Singh N, Srivastava G, Talat M, Raghubanshi H, Srivastava ON, Kayastha AM. Cicer α-galactosidase immobilization onto functionalized graphene nanosheets using response surface method and its applications. Food Chem 2013; 142:430-8. [PMID: 24001862 DOI: 10.1016/j.foodchem.2013.07.079] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/28/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
Cicer α-galactosidase was immobilized onto functionalized graphene with immobilization efficiency of 84% using response surface methodology (Box-Behnken design). The immobilized enzyme had higher thermal stability than the soluble one, attractive for industrial applications. Immobilization of the enzyme lowered the Km to 1/3rd compared to the soluble enzyme. Raffinose family oligosaccharides (RFOs) are mainly responsible for flatulence by taking soybean derived food products. The immobilized enzyme can be used effectively for the hydrolysis of RFOs. After ten successive runs, the immobilized enzyme still retained approximately 60% activity, with soybean RFOs. The easy availability of enzyme source, ease of its immobilization on matrices, non-toxicity, increased stability of immobilized enzyme and effective hydrolysis of RFOs increase the Cicer α-galactosidase application in food processing industries.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
48 |
2
|
Wang H, Shi P, Luo H, Huang H, Yang P, Yao B. A thermophilic α-galactosidase from Neosartorya fischeri P1 with high specific activity, broad substrate specificity and significant hydrolysis ability of soymilk. BIORESOURCE TECHNOLOGY 2014; 153:361-364. [PMID: 24360500 DOI: 10.1016/j.biortech.2013.11.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
An extracellular α-galactosidase (Gal27A) with high specific activity of 423Umg(-1) was identified in thermophilic Neosartorya fischeri P1. Its coding gene (1680bp) was cloned and functionally expressed in Pichia pastoris. Sequence analysis indicated that deduced Gal27A contains a catalytic domain of glycoside hydrolase family 27. The native and recombinant enzymes shared some similar properties, such as pH optima at 4.5, temperature optima at 60-70°C, resistance to most chemicals and saccharides, and great abilities to degrade raffinose and stachyose in soymilk. Considering the high yield (3.1gL(-1)) in P. pastoris, recombinant rGal27A is more favorable for industrial applications. This is the first report on purification and gene cloning of Neosartorya α-galactosidase.
Collapse
|
|
11 |
40 |
3
|
Thermus thermophilus as source of thermozymes for biotechnological applications: homologous expression and biochemical characterization of an α-galactosidase. Microb Cell Fact 2017; 16:28. [PMID: 28193276 PMCID: PMC5307791 DOI: 10.1186/s12934-017-0638-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/25/2017] [Indexed: 11/17/2022] Open
Abstract
Background The genus Thermus, which has been considered for a long time as a fruitful source of biotechnological relevant enzymes, has emerged more recently as suitable host to overproduce thermozymes. Among these, α-galactosidases are widely used in several industrial bioprocesses that require high working temperatures and for which thermostable variants offer considerable advantages over their thermolabile counterparts. Results Thermus thermophilus HB27 strain was used for the homologous expression of the TTP0072 gene encoding for an α-galactosidase (TtGalA). Interestingly, a soluble and active histidine-tagged enzyme was produced in larger amounts (5 mg/L) in this thermophilic host than in Escherichia coli (0.5 mg/L). The purified recombinant enzyme showed an optimal activity at 90 °C and retained more than 40% of activity over a broad range of pH (from 5 to 8). Conclusions TtGalA is among the most thermoactive and thermostable α-galactosidases discovered so far, thus pointing to T. thermophilus as cell factory for the recombinant production of biocatalysts active at temperature values over 90 °C. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0638-4) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
8 |
35 |
4
|
Li Q, Loman AA, Coffman AM, Ju LK. Soybean hull induced production of carbohydrases and protease among Aspergillus and their effectiveness in soy flour carbohydrate and protein separation. J Biotechnol 2017; 248:35-42. [PMID: 28315372 DOI: 10.1016/j.jbiotec.2017.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 11/29/2022]
Abstract
Soybean hull consists mainly of three major plant carbohydrates, i.e., cellulose, hemicellulose and pectin. It is inexpensive and a good potential substrate for carbohydrase production because it is capable of inducing a complete spectrum of activities to hydrolyze complex biomass. Aspergillus is known for carbohydrase production but no studies have evaluated and compared, among Aspergillus species and strains, the soybean hull induced production of various carbohydrases. In this study, A. aculeatus, A. cinnamomeus, A. foetidus, A. phoenicis and 11 A. niger strains were examined together with T. reesei Rut C30, another known carbohydrase producer. The carbohydrases evaluated included pectinase, polygalacturonase, xylanase, cellulase, α-galactosidase and sucrase. Growth morphology and pH profiles were also followed. Among Aspergillus strains, morphology was found to correlate with both carbohydrase production and pH decrease profile. Filamentous strains gave higher carbohydrase production while causing slower pH decrease. The enzyme broths produced were also tested for separation of soy flour carbohydrate and protein. Defatted soy flour contains about 53% protein and 32% carbohydrate. The enzymatic treatment can increase protein content and remove indigestible oligo-/poly-saccharides, and improve use of soy flour in feed and food. Protease production by different strains was therefore also compared for minimizing protein degradation. A. niger NRRL 322 and A. foetidus NRRL 341 were found to be the most potent strains that produced maximal carbohydrases and minimal protease under soybean hull induction.
Collapse
|
|
8 |
26 |
5
|
Wang C, Wang H, Ma R, Shi P, Niu C, Luo H, Yang P, Yao B. Biochemical characterization of a novel thermophilic α-galactosidase from Talaromyces leycettanus JCM12802 with significant transglycosylation activity. J Biosci Bioeng 2015; 121:7-12. [PMID: 26087712 DOI: 10.1016/j.jbiosc.2015.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/13/2015] [Accepted: 04/26/2015] [Indexed: 11/26/2022]
Abstract
Thermophilic α-galactosidases have great potentials in biotechnological and medicinal applications due to their high-temperature activity and specific stability. In this study, a novel α-galactosidase gene of glycoside hydrolase family 27 (aga27A) was cloned from Talaromyces leycettanus JCM12802 and successfully expressed in Pichia pastoris GS115. Purified recombinant Aga27A (rAga27A) was thermophilic and thermotolerant, exhibiting the maximum activity at 70°C and retaining stability at 65°C. Like most fungal α-galactosidases, rAga27A had an acidic pH optimum (pH 4.0) but retained stability over a boarder pH range (pH 3.0-11.0) at 70°C. Moreover, the enzyme exhibited strong resistance to most metal ions and chemicals tested (except for Ag(+) and SDS) and great tolerance to galactose (19 mM). The preferable transglycosylation capacity of rAga27A with various substrates further widens its application spectrum. Thus rAga27A with excellent enzymatic properties will be ideal for applications in various industries, especially for the synthesis of galactooligosaccharides.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
24 |
6
|
Aulitto M, Fusco FA, Fiorentino G, Bartolucci S, Contursi P, Limauro D. A thermophilic enzymatic cocktail for galactomannans degradation. Enzyme Microb Technol 2017; 111:7-11. [PMID: 29421040 DOI: 10.1016/j.enzmictec.2017.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 11/26/2022]
Abstract
The full utilization of hemicellulose sugars (pentose and exose) present in lignocellulosic material, is required for an efficient bio-based fuels and chemicals production. Two recombinant thermophilic enzymes, an endo-1,4-β-mannanase from Dictyoglomus turgidum (DturCelB) and an α-galactosidase from Thermus thermophilus (TtGalA), were assayed at 80 °C, to assess their heterosynergystic association on galactomannans degradation, particularly abundant in hemicellulose. The enzymes were tested under various combinations simultaneously and sequentially, in order to estimate the optimal conditions for the release of reducing sugars. The results showed that the most efficient degree of synergy was obtained in simultaneous assay with a protein ratio of 25% of DturCelB and 75% of TtGalA, using Locust bean gum as substrate. On the other hand, the mechanism of action was demonstrated through the sequential assays, i.e. when TtGalA acting as first to enhance the subsequent hydrolysis performed by DturCelB. The synergistic association between the thermophilic enzymes herein described has an high potential application to pre-hydrolyse the lignocellulosic biomasses right after the pretreatment, prior to the conventional saccharification step.
Collapse
|
Journal Article |
8 |
23 |
7
|
Xu H, Qin Y, Huang Z, Liu Z. Characterization and site-directed mutagenesis of an α-galactosidase from the deep-sea bacterium Bacillus megaterium. Enzyme Microb Technol 2014; 56:46-52. [PMID: 24564902 DOI: 10.1016/j.enzmictec.2014.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
Abstract
A novel gene (BmelA) (1323bp) encoding an α-galactosidase of 440 amino acids was cloned from the deep-sea bacterium Bacillus megaterium and the protein was expressed in Escherichia coli BL21 (DE3) with an estimated molecular mass of about 45 kDa by SDS-PAGE. The enzyme belongs to glycoside hydrolase family 4, with the highest identity (74%) to α-galactosidase Mel4A from Bacillus halodurans among the characterized α-galactosidases. The recombinant BmelA displayed its maximum activity at 35 °C and pH 8.5-9.0 in 50 mM Tris-HCl buffer, and could hydrolyze different substrates with the Km values against p-nitrophenyl-α-D-galactopyranoside (pNP-α-Gal), raffinose and stachyose being 1.02±0.02, 2.24±0.11 and 3.42±0.17 mM, respectively. Besides, 4 mutants (I38 V, I38A, I38F and Q84A) were obtained by site-directed mutagenesis based on molecular modeling and sequence alignment. The kinetic analysis indicated that mutants I38 V and I38A exhibited a 1.7- and 1.4-fold increase over the wild type enzyme in catalytic efficiency (k(cat)/K(m)) against pNP-α-Gal, respectively, while mutant I38F showed a 3.5-fold decrease against pNP-α-Gal and mutant Q84A almost completely lost its activity. All the results suggest that I38 and Q84 sites play a vital role in enzyme activity probably due to their steric and polar effects on the predicted "tunnel" structure and NAD+ binding to the enzyme.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
20 |
8
|
Álvarez-Cao ME, Cerdán ME, González-Siso MI, Becerra M. Optimization of Saccharomyces cerevisiae α-galactosidase production and application in the degradation of raffinose family oligosaccharides. Microb Cell Fact 2019; 18:172. [PMID: 31601209 PMCID: PMC6786279 DOI: 10.1186/s12934-019-1222-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND α-Galactosidases are enzymes that act on galactosides present in many vegetables, mainly legumes and cereals, have growing importance with respect to our diet. For this reason, the use of their catalytic activity is of great interest in numerous biotechnological applications, especially those in the food industry directed to the degradation of oligosaccharides derived from raffinose. The aim of this work has been to optimize the recombinant production and further characterization of α-galactosidase of Saccharomyces cerevisiae. RESULTS The MEL1 gene coding for the α-galactosidase of S. cerevisiae (ScAGal) was cloned and expressed in the S. cerevisiae strain BJ3505. Different constructions were designed to obtain the degree of purification necessary for enzymatic characterization and to improve the productive process of the enzyme. ScAGal has greater specificity for the synthetic substrate p-nitrophenyl-α-D-galactopyranoside than for natural substrates, followed by the natural glycosides, melibiose, raffinose and stachyose; it only acts on locust bean gum after prior treatment with β-mannosidase. Furthermore, this enzyme strongly resists proteases, and shows remarkable activation in their presence. Hydrolysis of galactose bonds linked to terminal non-reducing mannose residues of synthetic galactomannan-oligosaccharides confirms that ScAGal belongs to the first group of α-galactosidases, according to substrate specificity. Optimization of culture conditions by the statistical model of Response Surface helped to improve the productivity by up to tenfold when the concentration of the carbon source and the aeration of the culture medium was increased, and up to 20 times to extend the cultivation time to 216 h. CONCLUSIONS ScAGal characteristics and improvement in productivity that have been achieved contribute in making ScAGal a good candidate for application in the elimination of raffinose family oligosaccharides found in many products of the food industry.
Collapse
|
research-article |
6 |
17 |
9
|
Wang J, Yang X, Yang Y, Liu Y, Piao X, Cao Y. Characterization of a protease-resistant α-galactosidase from Aspergillus oryzae YZ1 and its application in hydrolysis of raffinose family oligosaccharides from soymilk. Int J Biol Macromol 2020; 158:708-720. [PMID: 32387605 DOI: 10.1016/j.ijbiomac.2020.04.256] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
The α-galactosidase gene (galC) was cloned from Aspergillus oryzae YZ1 and expressed in Pichia pastoris. The galC (2319 bp) containing two introns encoded a protein of 726 amino acids. The activity of the α-galactosidase (GalC) increased 1-fold after coding sequence optimization. Purified GalC exhibited a single protein band (100 kDa) in SDS-PAGE. The optimum pH and temperature of GalC were pH 4.66 and 50 °C, respectively. Like many GH36 family α-galactosidases, GalC displayed its activities towards raffinose and stachyose. The Km values for pNPG, raffinose and stachyose were 2.16, 4.63 and 8.54 mM, respectively. The GalC retained about 90% activity within the pH range 3.0-8.0. The activity of GalC was inhibited by Cu2+, while Ca2+ increased the enzyme activity. Different concentrations of glucose, mannose, galactose, xylose and sucrose slightly affected the activity of GalC. The GalC displayed strong resistance to trypsin, α-chymotrypsin, and proteinase K. Under simulated gastric conditions, GalC maintained most of its native activity after pepsin treatment for 3 h. The GalC could also effectively degrade raffinose and stachyose in soymilk. The GalC with high hydrolysis efficiency towards raffinose family oligosaccharides (RFOs) and strong resistance to proteases is considered to have great potential in food and feed industries.
Collapse
|
|
5 |
16 |
10
|
Fuller M, Mellett N, Hein LK, Brooks DA, Meikle PJ. Absence of α-galactosidase cross-correction in Fabry heterozygote cultured skin fibroblasts. Mol Genet Metab 2015; 114:268-73. [PMID: 25468650 DOI: 10.1016/j.ymgme.2014.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 11/26/2022]
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder resulting from deficiency of α-galactosidase A (GLA). Traditionally, heterozygotes were considered asymptomatic carriers of FD, but it is now apparent that the asymptomatic female carrier is the exception and most heterozygotes suffer significant multisystemic disease. To determine why the process of cross-correction does not occur effectively in FD heterozygotes, we investigated GLA production and secretion in cultured skin fibroblasts as well as GLA levels in plasma. The maturation of GLA was similar in FD heterozygotes and control fibroblasts, confirming that both produce the 46kDa mature form; the same as that present in control plasma. However, the proportion of GLA secreted into the culture media was substantially less than eight other lysosomal proteins. Artificial generation of FD heterozygotes in cellulo, along with another lysosomal storage disorder, mucopolysaccharidosis type II, revealed no cross-correction in the FD system, whereas MPS II fibroblasts were able to cross-correct. In plasma, GLA was present as the 46kDa mature form, which lacks the mannose 6-phosphorylated moiety and is not able to be efficiently endocytosed by affected cells. Our evidence shows that fibroblasts secrete minimal amounts of GLA and consequently normal fibroblasts are unable to cross-correct FD fibroblasts. We suggest that symptomatic FD heterozygotes arise due to the secretion of primarily the mature form, with only small amounts of the mannose 6-phosphorylated form of GLA from unaffected cells. This limits capacity for enzyme cross correction of affected cells, despite uptake of exogenous recombinant GLA.
Collapse
|
|
10 |
15 |
11
|
Gajdhane SB, Bhagwat PK, Dandge PB. Response surface methodology-based optimization of production media and purification of α-galactosidase in solid-state fermentation by Fusarium moniliforme NCIM 1099. 3 Biotech 2016; 6:260. [PMID: 28330332 PMCID: PMC5148754 DOI: 10.1007/s13205-016-0575-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/23/2016] [Indexed: 11/30/2022] Open
Abstract
Response surface methodology was used to enhance the production of α-galactosidase from Fusarium moniliforme NCIM 1099 in solid-state fermentation. Plackett–Burman design was employed for selection of critical media constituents which were optimized by central composite rotatable design. Wheat bran, peptone and FeSO4·7H2O were identified as significant medium components using PB design. Further CCRD optimized medium components as wheat bran; 4.62 μg, peptone; 315.42 μg, FeSO4·7H2O; 9.04 μg. RSM methodological optimization increased the enzyme production from 13.17 to 207.33 U/g showing 15.74-fold enhancement. The α-galactosidase was purified by 70% fractionation followed by DEAE anion exchange column chromatography which yields 23.33% with 28.68-fold purification. The molecular weight of α-galactosidase was 57 kDa which was determined by SDS-PAGE analysis. Purified enzyme has optimum pH of 4.0 and was found to be stable in wide pH range of 3.0–9.0. Its optimum temperature was 50 °C, whereas its activity remains above 50% up to 2 h at 75 °C. Hg2+ was found to be a potent inhibitor and Mg2+ acted as an activator of enzyme. No significant change was observed in enzyme activity for galactose concentration, ranging from 1 to 100 mM. The Km values of enzyme for substrates p-nitrophenyl-α-d-galactopyranoside, melibiose and raffinose were 0.20, 1.36, and 3.66 mM, respectively. Low Km and stability to various physiological conditions of enzyme represents its potential which can be exploited in various industrial applications.
Collapse
|
Journal Article |
9 |
14 |
12
|
Ye F, Geng XR, Xu LJ, Chang MC, Feng CP, Meng JL. Purification and characterization of a novel protease-resistant GH27 α-galactosidase from Hericium erinaceus. Int J Biol Macromol 2018; 120:2165-2174. [PMID: 30195005 DOI: 10.1016/j.ijbiomac.2018.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023]
Abstract
A novel 57-kDa acidic α-galactosidase designated as HEG has been purified from the dry fruiting bodies of Hericium erinaceus. The isolation protocol involved ion-exchange chromatography and gel filtration on a Superdex75 column. The purification fold and specific activity were 1251 and 46 units/mg, respectively. A BLAST search of internal peptide sequences obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis suggested that the enzyme belonged to the GH27 family. The activity of the enzyme reached its maximum at a pH of 6.0 or at 60 °C. The enzyme was stable within an acidic pH range of 2.2-7.0 and in a narrow temperature range. The enzyme was strongly inhibited by Zn2+, Fe3+, Ag+ ions and SDS. The Lineweaver-Burk plot suggested that the mode of inhibition by galactose and melibiose were of a mixed type. N-bromosuccinimide drastically decreased the activity of the enzyme, whereas diethylpyrocarbonate and carbodiimide strengthened the activity slightly. Moreover, the isolated enzyme displayed remarkable resistance to acid proteases, neutral proteases and pepsin. The enzyme could also hydrolyse oligosaccharides and polysaccharides. In addition, acidic protease promoted the hydrolysis of RFOs by HEG. The Km values of the enzyme towards pNPGal, raffinose and stachyose were 0.36 mM, 40.07 mM and 54.71 mM, respectively. These favourable properties increase the potential of the enzyme in the food industry and animal feed applications.
Collapse
|
Journal Article |
7 |
13 |
13
|
Chen X, Wang X, Liu Y, Zhang R, Zhang L, Zhan R, Wang S, Wang K. Biochemical analyses of a novel thermostable GH5 endo β-1,4-mannanase with minor β-1,4-glucosidic cleavage activity from Bacillus sp. KW1 and its synergism with a commercial α-galactosidase on galactomannan hydrolysis. Int J Biol Macromol 2020; 166:778-788. [PMID: 33144255 DOI: 10.1016/j.ijbiomac.2020.10.235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/07/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022]
Abstract
A novel GH5 endo-1,4-β-mannanase (BaMan5A) was identified from Bacillus sp. KW1, it shares the highest sequence identity (86%) with another characterized Bacillus endo-1,4-β-mannanase. The recombinant BaMan5A displayed maximum activity at pH 7.0 and 70 °C, it was stable at a broad pH range (pH 3.5-11.0) after 12-h incubation at 25 °C, and exhibited good thermostability, retaining about 100% and 85% activity after incubating at 60 °C for 12 h and 65 °C for 8 h, respectively. The results of polysaccharide hydrolysis revealed that the enzyme can only hydrolyze mannan substrates, including carob galactomannan, konjac glucomannan, 1,4-β-D-mannan, locust bean gum, and guar gum, yielding mannose, mannobiose, mannotriose, and some other oligosaccharides. The best substrate was carob galactomannan, the corresponding specific activity and Km value were 10,886 μmol/min/μmol and 3.31 mg/mL, respectively. Interestingly, BaMan5A was capable to hydrolyze both manno-oligosaccharides and cello-oligosaccharides, including mannotetraose, mannopentaose, mannohexaose, cellopentaose and cellohexaose. Furthermore, BaMan5A acted synergistically with a commercial α-galactosidase (CbAgal) on galactomannan depolymerization, a best synergy degree of 1.58 was achieved after optimizing enzyme ratios. This study not only expands the diversity of Bacillus GH5 β-mannanase, but also discloses the potential of BaMan5A in industrial application.
Collapse
|
Journal Article |
5 |
13 |
14
|
A thermophilic fungal GH36 α-galactosidase from Lichtheimia ramosa and its synergistic hydrolysis of locust bean gum. Carbohydr Res 2020; 491:107911. [PMID: 32217360 DOI: 10.1016/j.carres.2020.107911] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
A novel GH36 α-galactosidase gene (LrAgal36A) from Lichtheimia ramosa was synthesized and highly expressed in Pichia pastoris. The enzyme titer and protein yield for high-density fermentation in a 5 L fermentor were up to 953.6 U mL-1 and 4.36 g L-1. Purified recombinant LrAgal36A showed the maximum activity at pH 6.0 and 65 °C and was thermostable with a half-life of 70 min at 60 °C. LrAgal36A displayed the highest specific activity (353.17 ± 4.19 U mg-1) toward p-nitrophenyl-α-d-galactopyranoside (pNPGal) followed by galacto-oligosaccharides and could act slightly on galactomannans. The Km and catalytic efficiency (kcat/Km) of LrAgal36A for pNPGal were 0.33 mM and 1569.50 mM-1 s-1, respectively. LrAgal36A and GH5 β-mannanase from L. ramosa showed a significant synergistic effect on the degradation of locust bean gum (LBG), resulting in release more reducing sugars (1.56 folds) and galactose (7.6 folds) by simultaneous or sequential reactions. Due to its hydrolysis properties, LrAgal36A might have potential applications in the area of pulp biobleaching, feed and food processing.
Collapse
|
|
5 |
12 |
15
|
Li Q, Ray CS, Callow NV, Loman AA, Islam SMM, Ju LK. Aspergillus niger production of pectinase and α-galactosidase for enzymatic soy processing. Enzyme Microb Technol 2020; 134:109476. [PMID: 32044023 DOI: 10.1016/j.enzmictec.2019.109476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
Soybean is a most promising sustainable protein source for feed and food to help meet the protein demand of the rapidly rising global population. To enrich soy protein, the environment-friendly enzymatic processing requires multiple carbohydrases including cellulase, xylanase, pectinase, α-galactosidase and sucrase. Besides enriched protein, the processing adds value by generating monosaccharides that are ready feedstock for biofuel/bioproducts. Aspergillus could produce the required carbohydrases, but with deficient pectinase and α-galactosidase. Here we address this critical technological gap by focused evaluation of the suboptimal productivity of pectinase and α-galactosidase. A carbohydrases-productive strain A. niger (NRRL 322) was used with soybean hull as inducing substrate. Temperatures at 20 °C, 25 °C and 30 °C were found to affect cell growth on sucrose with an Arrhenius-law activation energy of 28.7 kcal/mol. The 30 °C promoted the fastest cell growth (doubling time = 2.1 h) and earliest enzyme production, but it gave lower final enzyme yield due to earlier carbon-source exhaustion. The 25 °C gave the highest enzyme yield. pH conditions also strongly affected enzyme production. Fermentations made with initial pH of 6 or 7 were most productive, e.g., giving 1.9- to 2.3-fold higher pectinase and 2.2- to 2.3-fold higher α-galactosidase after 72 h, compared to the fermentation with a constant pH 4. Further, pH must be kept above 2.6 to avoid limitation in pectinase production and, in the later substrate-limiting stage, kept below 5.5 to avoid pectinase degradation. α-Galactosidase production always followed the pectinase production with a 16-24 h lag; presumably, the former relied on pectin hydrolysis for inducers generation. Optimal enzyme production requires controlling the transient availability of inducers.
Collapse
|
|
5 |
12 |
16
|
Guo Y, Song Y, Qiu Y, Shao X, Wang H, Song Y. Purification of thermostable α-galactosidase from Irpex lacteus and its use for hydrolysis of oligosaccharides. J Basic Microbiol 2016; 56:448-58. [PMID: 26946959 DOI: 10.1002/jobm.201500668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
A monomeric α-galactosidase (ILGI) from the mushroom Irpex lacteus was purified 94.19-fold to electrophoretic homogeneity. ILGI exhibited a specific activity of 18.36 U mg(-1) and demonstrated a molecular mass of 60 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). ILGI was optimally active at 80 °C and pH 5.0, and it was stable over a temperature range of 4-70 °C and a wide pH range of 2.0-12.0. ILGI was completely inactivated by Ag(+) and Hg(2+) ions and N-bromosuccinimide (NBS). Moreover, ILGI exhibited good resistance to proteases. Galactose acted as a noncompetitive inhibitor with Ki and Kis of 3.34 and 0.29 mM, respectively. The α-galactosidase presented a broad substrate specificity, which included p-nitrophenyl α-D-galactopyranoside (pNPGal), melibiose, stachyose, and raffinose with Km values of 1.27, 3.24, 7.1, and 22.12 mM, correspondingly. ILGI exhibited efficient and complete hydrolysis to raffinose and stachyose. The aforementioned features of this enzyme suggest its potential value in food and feed industries.
Collapse
|
|
9 |
11 |
17
|
Álvarez-Cao ME, Rico-Díaz A, Cerdán ME, Becerra M, González-Siso MI. Valuation of agro-industrial wastes as substrates for heterologous production of α-galactosidase. Microb Cell Fact 2018; 17:137. [PMID: 30176892 PMCID: PMC6122717 DOI: 10.1186/s12934-018-0988-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/28/2018] [Indexed: 01/07/2023] Open
Abstract
Background The recycling of agro-industrial wastes is at present limited by the availability of efficient and low-cost enzyme cocktails. The use of these materials as culture media to produce the enzymes can contribute to the profitability of the recycling process and to the circular economy. The aim of this work is the construction of a recombinant yeast strain efficient to grow in mixed whey (residue of cheese making) and beet molasses (residue of sugar manufacture) as culture medium, and to produce heterologous α-galactosidase, an enzyme with varied industrial applications and wide market. Results The gene MEL1, encoding the α-galactosidase of Saccharomyces cerevisiae, was integrated (four copies) in the LAC4 locus of the Kluyveromyces lactis industrial strain GG799. The constructed recombinant strain produces high levels of extracellular α-galactosidase under the control of the LAC4 promoter, inducible by lactose and galactose, and the native MEL1 secretion signal peptide. K. lactis produces natively beta-galactosidase and invertase thus metabolizing the sugars of whey and molasses. A culture medium based on whey and molasses was statistically optimized, and then the cultures scaled-up at laboratory level, thus obtaining 19 U/mL of heterologous α-galactosidase with a productivity of 0.158 U/L h, which is the highest value reported hitherto from a cheap waste-based medium. Conclusions A K. lactis recombinant strain was constructed and a sustainable culture medium, based on a mixture of cheese whey and beet molasses, was optimized for high productivity of S. cerevisiae α-galactosidase, thus contributing to the circular economy by producing a heterologous enzyme from two agro-industrial wastes. Electronic supplementary material The online version of this article (10.1186/s12934-018-0988-6) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
7 |
10 |
18
|
An JL, Zhang WX, Wu WP, Chen GJ, Liu WF. Characterization of a highly stable α-galactosidase from thermophilic Rasamsonia emersonii heterologously expressed in a modified Pichia pastoris expression system. Microb Cell Fact 2019; 18:180. [PMID: 31647018 PMCID: PMC6813122 DOI: 10.1186/s12934-019-1234-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background Structurally stable α-galactosidases are of great interest for various biotechnological applications. More thermophilic α-galactosidases with high activity and structural stability have therefore to be mined and characterized. On the other hand, few studies have been performed to prominently enhance the AOX1 promoter activity in the commonly used Pichia pastoris system, in which production of some heterologous proteins are insufficient for further study. Results ReGal2 encoding a thermoactive α-galactosidase was identified from the thermophilic (hemi)cellulolytic fungus Rasamsonia emersonii. Significantly increased production of ReGal2 was achieved when ReGal2 was expressed in an engineered Pastoris pichia expression system with a modified AOX1 promoter and simultaneous fortified expression of Mxr1 that is involved in transcriptionally activating AOX1. Purified ReGal2 exists as an oligomer and has remarkable thermo-activity and thermo-tolerance, exhibiting maximum activity of 935 U/mg towards pNPGal at 80 °C and retaining full activity after incubation at 70 °C for 60 h. ReGal2 is insensitive to treatments by many metal ions and exhibits superior tolerance to protein denaturants. Moreover, ReGal2 efficiently hydrolyzed stachyose and raffinose in soybeans at 70 °C in 3 h and 24 h, respectively. Conclusion A modified P. pichia expression system with significantly enhanced AOX1 promoter activity has been established, in which ReGal2 production is markedly elevated to facilitate downstream purification and characterization. Purified ReGal2 exhibited prominent features in thermostability, catalytic activity, and resistance to protein denaturants. ReGal2 thus holds great potential in relevant biotechnological applications.
Collapse
|
|
6 |
7 |
19
|
Martínez RF, Jenkinson SF, Nakagawa S, Kato A, Wormald MR, Fleet GWJ, Hollinshead J, Nash RJ. Isolation from Stevia rebaudiana of DMDP acetic acid, a novel iminosugar amino acid: synthesis and glycosidase inhibition profile of glycine and β-alanine pyrrolidine amino acids. Amino Acids 2019; 51:991-998. [PMID: 31079215 DOI: 10.1007/s00726-019-02730-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/21/2019] [Indexed: 11/27/2022]
Abstract
DMDP acetic acid [N-carboxymethyl-2,5-dideoxy-2,5-imino-D-mannitol] 5 from Stevia rebaudiana is the first isolated natural amino acid derived from iminosugars bearing an N-alkyl acid side chain; it is clear from GCMS studies that such derivatives with acetic and propionic acids are common in a broad range of plants including mulberry, Baphia, and English bluebells, but that they are very difficult to purify. Reaction of unprotected pyrrolidine iminosugars with aqueous glyoxal gives the corresponding N-acetic acids in very high yield; Michael addition of both pyrrolidine and piperidine iminosugars and that of polyhydroxylated prolines to tert-butyl acrylate give the corresponding N-propionic acids in which the amino group of β-alanine is incorporated into the heterocyclic ring. These easy syntheses allow the identification of this new class of amino acid in plant extracts and provide pure samples for biological evaluation. DMDP N-acetic and propionic acids are potent α-galactosidase inhibitors in contrast to potent β-galactosidase inhibition by DMDP.
Collapse
|
|
6 |
7 |
20
|
Lee J, Park I, Cho J. Immobilization of the Antarctic Bacillus sp. LX-1 α-Galactosidase on Eudragit L-100 for the Production of a Functional Feed Additive. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:552-7. [PMID: 25049822 PMCID: PMC4093379 DOI: 10.5713/ajas.2012.12557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/11/2012] [Accepted: 12/02/2012] [Indexed: 11/27/2022]
Abstract
Partially purified α-galactosidase from Bacillus sp. LX-1 was non-covalently immobilized on a reversibly soluble-insoluble polymer, Eudragit L-100, and an immobilization efficiency of 0.93 was obtained. The optimum pH of the free and immobilized enzyme was 6.5 to 7.0 and 7.0, respectively, while there was no change in optimum temperature between the free and immobilized α-galactosidase. The immobilized α-galactosidase was reutilized six times without significant loss in activity. The immobilized enzyme showed good storage stability at 37°C, retaining about 50% of its initial activity even after 18 d at this temperature, while the free enzyme was completely inactivated. The immobilization of α-galactosidase from Bacillus sp. LX-1 on Eudragit L-100 may be a promising strategy for removal of α-galacto-oligosaccharides such as raffinose and stachyose from soybean meal and other legume in feed industry.
Collapse
|
Journal Article |
11 |
7 |
21
|
Yiğit NO, Koca SB, Didinen BI, Diler I. Effect of β-Mannanase and α-Galactosidase Supplementation to Soybean Meal Based Diets on Growth, Feed Efficiency and Nutrient Digestibility of Rainbow Trout, Oncorhynchus mykiss (Walbaum). ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:700-5. [PMID: 25050005 PMCID: PMC4093198 DOI: 10.5713/ajas.2013.13616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/02/2013] [Accepted: 02/18/2014] [Indexed: 11/27/2022]
Abstract
A 12-week feeding trial was conducted with 87 g rainbow trout to evaluate the effects on growth performances, feed efficiency and nutrient digestibility of adding β-mannanase and α-galactosidase enzymes, solely or in combination. Seven diets were prepared by adding β-mannanase, α-galactosidase and mixed enzyme at two different levels (1 g/kg and 2 g/kg) to control diet (without enzyme) including soybean meal. Mixed enzymes (1 g/kg, 2 g/kg) were prepared by adding β-mannanase and α-galactosidase at the same doses (0.5+0.5 g/kg and 1+1 g/kg). At the end of the experiment, addition of β-mannanase, α-galactosidase and mixed enzyme to diet containing 44% soybean meal had no significant effects on growth performance and gain:feed (p>0.05). In addition, adding β-mannanase, α-galactosidase and mixed enzyme in different rations to trout diets had no affect on nutrient digestibility and body composition (p>0.05).
Collapse
|
|
11 |
7 |
22
|
Joseph JE, Mary PR, Haritha KV, Panwar D, Kapoor M. Soluble and Cross-Linked Aggregated Forms of α-Galactosidase from Vigna mungo Immobilized on Magnetic Nanocomposites: Improved Stability and Reusability. Appl Biochem Biotechnol 2020; 193:238-256. [PMID: 32894388 DOI: 10.1007/s12010-020-03408-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/12/2020] [Indexed: 01/17/2023]
Abstract
α-Galactosidases hold immense potential due to their biotechnological applications in various industrial and functional food sectors. In the present study, soluble and covalently cross-linked aggregated forms of a low molecular weight, thermo-labile α-galactosidase from Vigna mungo (VM-αGal) seeds were immobilized onto chitosan-coated magnetic nanoparticles for improved stability and repeated usage by magnetic separation. Parameters like precipitants (type, amount, and ratio), glutaraldehyde concentration, and enzyme load were optimized for the preparation of chitosan-coated magnetic nanocomposites of cross-linked VM-αGal (VM-αGal-MC) and VM-αGal (VM-αGal-M) resulted in 100% immobilization efficiency. Size and morphology of VM-αGal-M were studied through dynamic light scattering (DLS) and scanning electron microscopy (SEM), while Fourier transform infrared spectroscopy (FTIR) was used to study the chemical composition of VM-αGal-MC and VM-αGal-M. VM-αGal-MC and VM-αGal-M were found more active in a broad range of pH (3-8) and displayed optimal temperatures up to 25 °C higher than VM-αGal. Addition of non-ionic detergents (except Tween-40) improved VM-αGal-MC activity by up to 44% but negatively affected VM-αGal-M activity. Both VM-αGal-MC (15% residual activity after 21 min at 85 °C, Ed 92.42 kcal/mol) and VM-αGal-M (69.0% residual activity after 10 min at 75 °C, Ed 39.87 kcal/mol) showed remarkable thermal stability and repeatedly hydrolyzed the substrate for 10 cycles.
Collapse
|
Journal Article |
5 |
5 |
23
|
Borisova AS, Ivanen DR, Bobrov KS, Eneyskaya EV, Rychkov GN, Sandgren M, Kulminskaya AA, Sinnott ML, Shabalin KA. α-Galactobiosyl units: thermodynamics and kinetics of their formation by transglycosylations catalysed by the GH36 α-galactosidase from Thermotoga maritima. Carbohydr Res 2014; 401:115-21. [PMID: 25486100 DOI: 10.1016/j.carres.2014.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
Broad regioselectivity of α-galactosidase from Thermotoga maritima (TmGal36A) is a limiting factor for application of the enzyme in the directed synthesis of oligogalactosides. However, this property can be used as a convenient tool in studies of thermodynamics of a glycosidic bond. Here, a novel approach to energy difference estimation is suggested. Both transglycosylation and hydrolysis of three types of galactosidic linkages were investigated using total kinetics of formation and hydrolysis of pNP-galactobiosides catalysed by monomeric glycoside hydrolase family 36 α-galactosidase from T. maritima, a retaining exo-acting glycoside hydrolase. We have estimated transition state free energy differences between the 1,2- and 1,3-linkage (ΔΔG(‡)0 values were equal 5.34 ± 0.85 kJ/mol) and between 1,6-linkage and 1,3-linkage (ΔΔG(‡)0=1.46 ± 0.23 kJ/mol) in pNP-galactobiosides over the course of the reaction catalysed by TmGal36A. Using the free energy difference for formation and hydrolysis of glycosidic linkages (ΔΔG(‡)F-ΔΔG(‡)H), we found that the 1,2-linkage was 2.93 ± 0.47 kJ/mol higher in free energy than the 1,3-linkage, and the 1,6-linkage 4.44 ± 0.71 kJ/mol lower.
Collapse
|
|
11 |
5 |
24
|
Yang L, Shi G, Tao Y, Lai C, Li X, Zhou M, Yong Q. The Increase of Incomplete Degradation Products of Galactomannan Production by Synergetic Hydrolysis of β-Mannanase and α-Galactosidase. Appl Biochem Biotechnol 2020; 193:405-416. [PMID: 33015742 DOI: 10.1007/s12010-020-03430-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 11/27/2022]
Abstract
An integrated process to increase the yield of incomplete degradation products of galactomannan (GalM) especially for galactomanno-oligosaccharides (GalMOS) was suggested. Trichoderma reesei employed Avicel or GalMOS as a carbon source to produce β-mannanase or α-galactosidase independently, with a result of 3.78 ± 0.12 U/mL of β-mannanase activity and 2.45 ± 0.06 U/mL of α-galactosidase activity which were obtained, respectively. GalM in Sesbania seed was hydrolyzed simultaneously by a mixture of crude enzyme with β-mannanase and α-galactosidase at a dosage of 20 U/g GalM and 15 U/g GalM, respectively; the yields of incomplete degradation products of GalM (IDP-GalM) and GalMOS were 78.84% ± 3.14% and 30.94% ± 0.38%, respectively, which was beneficial to improve the biological activity of the incomplete degradation products. The role of α-galactosidase addition in mixture enzymes is to remove the galactose substituents from mannan backbone of GalM and alleviate the steric hindrance of β-mannanase hydrolysis.
Collapse
|
Journal Article |
5 |
4 |
25
|
Shin YJ, Woo SH, Jeong HM, Kim JS, Ko DS, Jeong DW, Lee JH, Shim JH. Characterization of novel α-galactosidase in glycohydrolase family 97 from Bacteroides thetaiotaomicron and its immobilization for industrial application. Int J Biol Macromol 2020; 152:727-734. [PMID: 32092418 DOI: 10.1016/j.ijbiomac.2020.02.232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 02/05/2023]
Abstract
Bacteroides thetaiotaomicron (B. thetaiotaomicron), which resides in the human intestinal tract, has a number of carbohydrate enzymes, including glycoside hydrolase (GH) family 97. Only a few GH 97 enzymes have been characterized to date. In this study, a novel α-galactosidase (Bt_3294) was cloned from B. thetaiotaomicron, expressed in Escherichia coli, and purified using affinity chromatography. This novel enzyme showed optimal activity at 60 °C and pH 7.0. Enzyme activity was reduced by 94.4% and 95.7% in the presence of 5 mM Ca2+ and Fe2+, respectively. It is interesting that Bt_3294 specifically hydrolyzed shorter α-galactosyl oligosaccharides, such as melibiose and raffinose. The D-values of Bt_3294 at 40 °C and 50 °C were about 107 and 6 min, respectively. After immobilization of Bt_3294, the D-values at 40 °C and 50 °C were about 37.6 and 29.7 times higher than those of the free enzyme, respectively. As a practical application, the immobilized Bt_3294 was used to hydrolyze raffinose family oligosaccharides (RFOs) in soy milk, decreasing the RFOs by 98.9%.
Collapse
|
Journal Article |
5 |
4 |