1
|
Ilyas SI, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013; 145:1215-29. [PMID: 24140396 PMCID: PMC3862291 DOI: 10.1053/j.gastro.2013.10.013] [Citation(s) in RCA: 954] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 12/13/2022]
Abstract
Cholangiocarcinomas (CCAs) are hepatobiliary cancers with features of cholangiocyte differentiation; they can be classified anatomically as intrahepatic CCA (iCCA), perihilar CCA (pCCA), or distal CCA. These subtypes differ not only in their anatomic location, but in epidemiology, origin, etiology, pathogenesis, and treatment. The incidence and mortality of iCCA has been increasing over the past 3 decades, and only a low percentage of patients survive until 5 years after diagnosis. Geographic variations in the incidence of CCA are related to variations in risk factors. Changes in oncogene and inflammatory signaling pathways, as well as genetic and epigenetic alterations and chromosome aberrations, have been shown to contribute to the development of CCA. Furthermore, CCAs are surrounded by a dense stroma that contains many cancer-associated fibroblasts, which promotes their progression. We have gained a better understanding of the imaging characteristics of iCCAs and have developed advanced cytologic techniques to detect pCCAs. Patients with iCCAs usually are treated surgically, whereas liver transplantation after neoadjuvant chemoradiation is an option for a subset of patients with pCCAs. We review recent developments in our understanding of the epidemiology and pathogenesis of CCA, along with advances in classification, diagnosis, and treatment.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
954 |
2
|
Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J Gastroenterol 2018; 24:1679-1707. [PMID: 29713125 PMCID: PMC5922990 DOI: 10.3748/wjg.v24.i16.1679] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are caused by different etiological agents, mainly alcohol consumption, viruses, drug intoxication or malnutrition. Frequently, liver diseases are initiated by oxidative stress and inflammation that lead to the excessive production of extracellular matrix (ECM), followed by a progression to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that some natural products display hepatoprotective properties. Naringenin is a flavonoid with antioxidant, antifibrogenic, anti-inflammatory and anticancer properties that is capable of preventing liver damage caused by different agents. The main protective effects of naringenin in liver diseases are the inhibition of oxidative stress, transforming growth factor (TGF-β) pathway and the prevention of the transdifferentiation of hepatic stellate cells (HSC), leading to decreased collagen synthesis. Other effects include the inhibition of the mitogen activated protein kinase (MAPK), toll-like receptor (TLR) and TGF-β non-canonical pathways, the inhibition of which further results in a strong reduction in ECM synthesis and deposition. In addition, naringenin has shown beneficial effects on nonalcoholic fatty liver disease (NAFLD) through the regulation of lipid metabolism, modulating the synthesis and oxidation of lipids and cholesterol. Moreover, naringenin protects from HCC, since it inhibits growth factors such as TGF-β and vascular endothelial growth factor (VEGF), inducing apoptosis and regulating MAPK pathways. Naringenin is safe and acts by targeting multiple proteins. However, it possesses low bioavailability and high intestinal metabolism. In this regard, formulations, such as nanoparticles or liposomes, have been developed to improve naringenin bioavailability. We conclude that naringenin should be considered in the future as an important candidate in the treatment of different liver diseases.
Collapse
|
Review |
7 |
232 |
3
|
Philip B, Roland CL, Daniluk J, Liu Y, Chatterjee D, Gomez SB, Ji B, Huang H, Wang H, Fleming JB, Logsdon CD, Cruz-Monserrate Z. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology 2013; 145:1449-58. [PMID: 23958541 PMCID: PMC3873752 DOI: 10.1053/j.gastro.2013.08.018] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), but it is not clear how obesity contributes to pancreatic carcinogenesis. The oncogenic form of KRAS is expressed during early stages of PDAC development and is detected in almost all of these tumors. However, there is evidence that mutant KRAS requires an additional stimulus to activate its full oncogenic activity and that this stimulus involves the inflammatory response. We investigated whether the inflammation induced by a high-fat diet, and the accompanying up-regulation of cyclooxygenase-2 (COX2), increases Kras activity during pancreatic carcinogenesis in mice. METHODS We studied mice with acinar cell-specific expression of KrasG12D (LSL-Kras/Ela-CreERT mice) alone or crossed with COX2 conditional knockout mice (COXKO/LSL-Kras/Ela-CreERT). We also studied LSL-Kras/PDX1-Cre mice. All mice were fed isocaloric diets with different amounts of fat, and a COX2 inhibitor was administered to some LSL-Kras/Ela-CreERT mice. Pancreata were collected from mice and analyzed for Kras activity, levels of phosphorylated extracellular-regulated kinase, inflammation, fibrosis, pancreatic intraepithelial neoplasia (PanIN), and PDACs. RESULTS Pancreatic tissues from LSL-Kras/Ela-CreERT mice fed high-fat diets (HFDs) had increased Kras activity, fibrotic stroma, and numbers of PanINs and PDACs than LSL-Kras/Ela-CreERT mice fed control diets; the mice fed the HFDs also had shorter survival times than mice fed control diets. Administration of a COX2 inhibitor to LSL-Kras/Ela-CreERT mice prevented these effects of HFDs. We also observed a significant reduction in survival times of mice fed HFDs. COXKO/LSL-Kras/Ela-CreERT mice fed HFDs had no evidence for increased numbers of PanIN lesions, inflammation, or fibrosis, as opposed to the increases observed in LSL-Kras/Ela-CreERT mice fed HFDs. CONCLUSIONS In mice, an HFD can activate oncogenic Kras via COX2, leading to pancreatic inflammation and fibrosis and development of PanINs and PDAC. This mechanism might be involved in the association between risk for PDAC and HFDs.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
191 |
4
|
Scheibe K, Kersten C, Schmied A, Vieth M, Primbs T, Carlé B, Knieling F, Claussen J, Klimowicz AC, Zheng J, Baum P, Meyer S, Schürmann S, Friedrich O, Waldner MJ, Rath T, Wirtz S, Kollias G, Ekici AB, Atreya R, Raymond EL, Mbow ML, Neurath MF, Neufert C. Inhibiting Interleukin 36 Receptor Signaling Reduces Fibrosis in Mice With Chronic Intestinal Inflammation. Gastroenterology 2019; 156:1082-1097.e11. [PMID: 30452921 DOI: 10.1053/j.gastro.2018.11.029] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Intestinal fibrosis is a long-term complication in inflammatory bowel diseases (IBD) that frequently results in functional damage, bowel obstruction, and surgery. Interleukin (IL) 36 is a group of cytokines in the IL1 family with inflammatory effects. We studied the expression of IL36 and its receptor, interleukin 1 receptor like 2 (IL1RL2 or IL36R) in the development of intestinal fibrosis in human tissues and mice. METHODS We obtained intestinal tissues from 92 patients with Crohn's disease (CD), 48 patients with ulcerative colitis, and 26 patients without inflammatory bowel diseases (control individuals). Tissues were analyzed by histology to detect fibrosis and by immunohistochemistry to determine the distribution of fibroblasts and levels of IL36R ligands. Human and mouse fibroblasts were incubated with IL36 or control medium, and transcriptome-wide RNA sequences were analyzed. Mice were given neutralizing antibodies against IL36R, and we studied intestinal tissues from Il1rl2-/- mice; colitis and fibrosis were induced in mice by repetitive administration of DSS or TNBS. Bone marrow cells were transplanted from Il1rl2-/- to irradiated wild-type mice and intestinal tissues were analyzed. Antibodies against IL36R were applied to mice with established chronic colitis and fibrosis and intestinal tissues were studied. RESULTS Mucosal and submucosal tissue from patients with CD or ulcerative colitis had higher levels of collagens, including type VI collagen, compared with tissue from control individuals. In tissues from patients with fibrostenotic CD, significantly higher levels of IL36A were noted, which correlated with high numbers of activated fibroblasts that expressed α-smooth muscle actin. IL36R activation of mouse and human fibroblasts resulted in expression of genes that regulate fibrosis and tissue remodeling, as well as expression of collagen type VI. Il1rl2-/- mice and mice given injections of an antibody against IL36R developed less severe colitis and fibrosis after administration of DSS or TNBS, but bone marrow cells from Il1rl2-/- mice did not prevent induction of colitis and fibrosis. Injection of antibodies against IL36R significantly reduced established fibrosis in mice with chronic intestinal inflammation. CONCLUSION We found higher levels of IL36A in fibrotic intestinal tissues from patients with IBD compared with control individuals. IL36 induced expression of genes that regulate fibrogenesis in fibroblasts. Inhibition or knockout of the IL36R gene in mice reduces chronic colitis and intestinal fibrosis. Agents designed to block IL36R signaling could be developed for prevention and treatment of intestinal fibrosis in patients with IBD.
Collapse
|
|
6 |
161 |
5
|
Wang H, Wang B, Zhang A, Hassounah F, Seow Y, Wood M, Ma F, Klein JD, Price SR, Wang XH. Exosome-Mediated miR-29 Transfer Reduces Muscle Atrophy and Kidney Fibrosis in Mice. Mol Ther 2019; 27:571-583. [PMID: 30711446 DOI: 10.1016/j.ymthe.2019.01.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Our previous study showed that miR-29 attenuates muscle wasting in chronic kidney disease. Other studies found that miR-29 has anti-fibrosis activity. We hypothesized that intramuscular injection of exosome-encapsulated miR-29 would counteract unilateral ureteral obstruction (UUO)-induced muscle wasting and renal fibrosis. We used an engineered exosome vector, which contains an exosomal membrane protein gene Lamp2b that was fused with the targeting peptide RVG (rabies viral glycoprotein peptide). RVG directs exosomes to organs that express the acetylcholine receptor, such as kidney. The intervention of Exo/miR29 increased muscle cross-sectional area and decreased UUO-induced upregulation of TRIM63/MuRF1 and FBXO32/atrogin-1. Interestingly, renal fibrosis was partially depressed in the UUO mice with intramuscular injection of Exo/miR29. This was confirmed by decreased TGF-β, alpha-smooth muscle actin, fibronectin, and collagen 1A1 in the kidney of UUO mice. When we used fluorescently labeled Exo/miR29 to trace the Exo/miR route in vivo and found that fluorescence was visible in un-injected muscle and in kidneys. We found that miR-29 directly inhibits YY1 and TGF-β3, which provided a possible mechanism for inhibition of muscle atrophy and renal fibrosis by Exo/miR29. We conclude that Exo/miR29 ameliorates skeletal muscle atrophy and attenuates kidney fibrosis by downregulating YY1 and TGF-β pathway proteins.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
141 |
6
|
Schlegel A, Graf R, Clavien PA, Dutkowski P. Hypothermic oxygenated perfusion (HOPE) protects from biliary injury in a rodent model of DCD liver transplantation. J Hepatol 2013; 59:984-91. [PMID: 23820408 DOI: 10.1016/j.jhep.2013.06.022] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/18/2013] [Accepted: 06/23/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The use of livers from donors after cardiac arrest (DCD) is increasing in many countries to overcome organ shortage. Due to additional warm ischemia before preservation, those grafts are at higher risk of failure and bile duct injury. Several competing rescue strategies by machine perfusion techniques have been developed with, however, unclear effects on biliary injury. We analyze the impact of an end-ischemic Hypothermic Oxygenated PErfusion (HOPE) approach applied only through the portal vein for 1h before graft implantation. METHODS Rat livers were subjected to 30-min in situ warm ischemia, followed by subsequent 4-h cold storage, mimicking DCD-organ procurement and conventional organ transport. Livers in the HOPE group underwent also passive cold storage for 4h, but were subsequently machine perfused for 1h before implantation. Outcome was tested by liver transplantation (LT) at 12h after implantation (n=10 each group) and after 4 weeks (n=10 each group), focusing on early reperfusion injury, immune response, and later intrahepatic biliary injury. RESULTS All animals survived after LT. However, reperfusion injury was significantly decreased by HOPE treatment as tested by hepatocyte injury, Kupffer cell activation, and endothelial cell activation. Recipients receiving non-perfused DCD livers disclosed less body weight gain, increased bilirubin, and severe intrahepatic biliary fibrosis. In contrast, HOPE treated DCD livers were protected from biliary injury, as detected by cholestasis parameter and histology. CONCLUSIONS We demonstrate in a DCD liver transplant model that end-ischemic hypothermic oxygenated perfusion is a powerful strategy for protection against biliary injury.
Collapse
|
|
12 |
137 |
7
|
Lunardi S, Muschel RJ, Brunner TB. The stromal compartments in pancreatic cancer: are there any therapeutic targets? Cancer Lett 2013; 343:147-55. [PMID: 24141189 DOI: 10.1016/j.canlet.2013.09.039] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant stromal response also known as a desmoplastic reaction. Pancreatic Stellate Cells have been identified as playing a key role in pancreatic cancer desmoplasia. There is accumulating evidence that the stroma contributes to tumour progression and to the low therapeutic response of PDAC patients. In this review we described the main actors of the desmoplastic reaction within PDAC and novel therapeutic approaches that are being tested to block the detrimental function of the stroma.
Collapse
|
Review |
12 |
130 |
8
|
Samarakoon R, Dobberfuhl AD, Cooley C, Overstreet JM, Patel S, Goldschmeding R, Meldrum KK, Higgins PJ. Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species. Cell Signal 2013; 25:2198-209. [PMID: 23872073 DOI: 10.1016/j.cellsig.2013.07.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/10/2013] [Indexed: 12/14/2022]
Abstract
While transforming growth factor-β (TGF-β1)-induced SMAD2/3 signaling is a critical event in the progression of chronic kidney disease, the role of non-SMAD mechanisms in the orchestration of fibrotic gene changes remains largely unexplored. TGF-β1/SMAD3 pathway activation in renal fibrosis (induced by ureteral ligation) correlated with epidermal growth factor receptor(Y845) (EGFR(Y845)) and p53(Ser15) phosphorylation and induction of disease causative target genes plasminogen activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF) prompting an investigation of the mechanistic involvement of EGFR and tumor suppressor p53 in profibrotic signaling. TGF-β1, PAI-1, CTGF, p53 and EGFR were co-expressed in the obstructed kidney localizing predominantly to the tubular and interstitial compartments. Indeed, TGF-β1 activated EGFR and p53 as well as SMAD2/3. Genetic deficiency of either EGFR or p53 or functional blockade with AG1478 or Pifithrin-α, respectively, effectively inhibited PAI-1and CTGF induction and morphological transformation of renal fibroblasts as did SMAD3 knockdown or pretreatment with the SMAD3 inhibitor SIS3. Reactive oxygen species (ROS)-dependent mechanisms initiated by TGF-β1 were critical for EGFR(Y845) and p53(Ser15) phosphorylation and target gene expression. The p22(Phox) subunit of NADPH oxidase was also elevated in the fibrotic kidney with an expression pattern similar to p53 and EGFR. EGF stimulation alone initiated, albeit delayed, c-terminal SMAD3 phosphorylation (that required the TGF-β1 receptor) and rapid ERK2 activation both of which are necessary for PAI-1 and CTGF induction in renal fibroblasts. These data highlight the extensive cross-talk among SMAD2/3, EGFR and p53 pathways essential for expression of TGF-β1-induced fibrotic target genes.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
124 |
9
|
Chang YC, Tsai CH, Lai YL, Yu CC, Chi WY, Li JJ, Chang WW. Arecoline-induced myofibroblast transdifferentiation from human buccal mucosal fibroblasts is mediated by ZEB1. J Cell Mol Med 2014; 18:698-708. [PMID: 24400868 PMCID: PMC4000120 DOI: 10.1111/jcmm.12219] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/27/2013] [Indexed: 12/22/2022] Open
Abstract
Oral submucous fibrosis (OSF) is considered as a pre-cancerous condition of the oral mucosa and is highly associated with habitual areca quid chewing. Arecoline is the major alkaloid in areca quid and is thought to be involved in the pathogenesis of OSF. Our previous studies have demonstrated that arecoline could induce epithelial–mesenchymal transition (EMT)-related factors in primary human buccal mucosal fibroblasts (BMFs). Therefore, we investigated the expression of zinc finger E-box binding homeobox 1 (ZEB1), which is a well-known transcriptional factor in EMT, in OSF tissues and its role in arecoline-induced myofibroblast transdifferentiation from BMFs. The expression of ZEB1, as well as the myofibroblast marker α-smooth muscle actin (α-SMA), was significantly increased in OSF tissues, respectively. With immunofluorescence analysis, arecoline induced the formation of α-SMA-positive stress fibres in BMFs expressing nuclear ZEB1. Arecoline also induced collagen contraction of BMFs in vitro. By chromatin immunoprecipitation, the binding of ZEB1 to the α-SMA promoter in BMFs was increased by arecoline. The promoter activity of α-SMA in BMFs was also induced by arecoline, while knockdown of ZEB1 abolished arecoline-induced α-SMA promoter activity and collagen contraction of BMFs. Long-term exposure of BMFs to arecoline induced the expression of fibrogenic genes and ZEB1. Silencing of ZEB1 in fibrotic BMFs from an OSF patient also suppressed the expression of α-SMA and myofibroblast activity. Inhibition of insulin-like growth factor receptor-1 could suppress arecoline-induced ZEB1 activation in BMFs. Our data suggest that ZEB1 may participate in the pathogenesis of areca quid–associated OSF by activating the α-SMA promoter and inducing myofibroblast transdifferentiation from BMFs.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
103 |
10
|
Rajasekaran S, Rajaguru P, Sudhakar Gandhi PS. MicroRNAs as potential targets for progressive pulmonary fibrosis. Front Pharmacol 2015; 6:254. [PMID: 26594173 PMCID: PMC4633493 DOI: 10.3389/fphar.2015.00254] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and devastating disorder. It is characterized by alveolar epithelial cell injury and activation, infiltration of inflammatory cells, initiation of epithelial mesenchymal transition (EMT), aberrant proliferation and activation of fibroblasts, exaggerated deposition of extracellular matrix (ECM) proteins, and finally leading to the destruction of lung parenchyma. MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that post-transcriptionally regulate gene expression in diverse biological and pathological processes, including cell proliferation, differentiation, apoptosis and metastasis. As a result, miRNAs have emerged as a major area of biomedical research with relevance to pulmonary fibrosis. In this context, the present review discusses specific patterns of dysregulated miRNAs in patients with IPF. Further, we discuss the current understanding of miRNAs involvement in regulating lung inflammation, TGF-β1-mediated EMT and fibroblast differentiation processes, ECM genes expression, and in the progression of lung fibrosis. The possible future directions that might lead to novel therapeutic strategies for the treatment of pulmonary fibrosis are also reviewed.
Collapse
|
Review |
10 |
89 |
11
|
Dunning S, Ur Rehman A, Tiebosch MH, Hannivoort RA, Haijer FW, Woudenberg J, van den Heuvel FAJ, Buist-Homan M, Faber KN, Moshage H. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2027-34. [PMID: 23871839 DOI: 10.1016/j.bbadis.2013.07.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND In chronic liver disease, hepatic stellate cells (HSCs) are activated, highly proliferative and produce excessive amounts of extracellular matrix, leading to liver fibrosis. Elevated levels of toxic reactive oxygen species (ROS) produced during chronic liver injury have been implicated in this activation process. Therefore, activated hepatic stellate cells need to harbor highly effective anti-oxidants to protect against the toxic effects of ROS. AIM To investigate the protective mechanisms of activated HSCs against ROS-induced toxicity. METHODS Culture-activated rat HSCs were exposed to hydrogen peroxide. Necrosis and apoptosis were determined by Sytox Green or acridine orange staining, respectively. The hydrogen peroxide detoxifying enzymes catalase and glutathione-peroxidase (GPx) were inhibited using 3-amino-1,2,4-triazole and mercaptosuccinic acid, respectively. The anti-oxidant glutathione was depleted by L-buthionine-sulfoximine and repleted with the GSH-analogue GSH-monoethylester (GSH-MEE). RESULTS Upon activation, HSCs increase their cellular glutathione content and GPx expression, while MnSOD (both at mRNA and protein level) and catalase (at the protein level, but not at the mRNA level) decreased. Hydrogen peroxide did not induce cell death in activated HSCs. Glutathione depletion increased the sensitivity of HSCs to hydrogen peroxide, resulting in 35% and 75% necrotic cells at 0.2 and 1mmol/L hydrogen peroxide, respectively. The sensitizing effect was abolished by GSH-MEE. Inhibition of catalase or GPx significantly increased hydrogen peroxide-induced apoptosis, which was not reversed by GSH-MEE. CONCLUSION Activated HSCs have increased ROS-detoxifying capacity compared to quiescent HSCs. Glutathione levels increase during HSC activation and protect against ROS-induced necrosis, whereas hydrogen peroxide-detoxifying enzymes protect against apoptotic cell death.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
88 |
12
|
Wang YS, Li SH, Guo J, Mihic A, Wu J, Sun L, Davis K, Weisel RD, Li RK. Role of miR-145 in cardiac myofibroblast differentiation. J Mol Cell Cardiol 2014; 66:94-105. [PMID: 24001939 DOI: 10.1016/j.yjmcc.2013.08.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/14/2013] [Accepted: 08/22/2013] [Indexed: 12/24/2022]
Abstract
Following a myocardial infarction (MI), fibroblasts differentiate to myofibroblasts, which possess some of the characteristics of smooth muscle cells (SMCs) and contribute to wound healing. Previous studies suggested that the miR-143/-145 cluster plays a critical role in SMC differentiation. Therefore, we determined whether miR-145 promoted differentiation of cardiac fibroblasts to myofibroblasts. Following coronary occlusion in mice, myocardial miR-145 expression was downregulated at 3 days but was restored at 7 days. In vitro studies showed that hypoxia also downregulated miR-145 in cardiac fibroblasts. The number of α-smooth muscle actin (α-SMA) positive cells in fibroblast cultures was employed to determine their transdifferentiation to cardiac myofibroblasts and was increased by 73.5% after transient transfection with miR-145. Ultrastructural analysis of α-SMA stress fibers revealed that ~95% of the α-SMA(+) cells treated with miR-145 organized their actin-filament bundles with a specific orientation compared to only 15% in the scrambled control group. This orientation of the SMA bundles and their integration with the filamentous actin fibers of the cytoskeleton permit infarct wound contraction. Structural and functional studies showed that miR-145 induced a myofibroblast phenotype, and miR-145 also potentiated the production of mature collagen by myofibroblasts. Repression of KLF5, a target of miR-145, was validated by a chimeric luciferase construct tagged with the full-length 3'-UTR of KLF5. A dramatic decrease in KLF5 and a corresponding increase in myocardin expression were observed after transfecting cultured fibroblasts with miR-145. Similar results were found in vivo: the transient decrease in miR-145 expression 3 days post-MI was associated with an increase in KLF5 and a decrease in myocardin. In addition, in vivo delivery of a miR-145 antagomir 1 day prior to and 2 and 6 days after MI decreased myofibroblast formation and increased scar size. The antagomir also reversed the suppressed expression of KLF5 protein in the scar region at day 7 after MI. In summary, we describe a novel association between miR-145 and fibroblast differentiation toward myofibroblasts. These observations provide a new approach to promote endogenous scar healing and contracture by stimulating the transdifferentiation of cardiac fibroblasts to myofibroblasts.
Collapse
|
|
11 |
82 |
13
|
Li Y, Zhang W, Gao J, Liu J, Wang H, Li J, Yang X, He T, Guan H, Zheng Z, Han S, Dong M, Han J, Shi J, Hu D. Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway. Stem Cell Res Ther 2016; 7:102. [PMID: 27484727 PMCID: PMC4970202 DOI: 10.1186/s13287-016-0356-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/06/2016] [Accepted: 06/29/2016] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Hypertrophic scars (HS) generally occur after injury to the deep layers of the dermis, resulting in functional deficiency for patients. Growing evidence has been identified that the supernatant of adipose tissue-derived stem cells (ADSCs) significantly ameliorates fibrosis of different tissues, but limited attention has been paid to its efficacy on attenuating skin fibrosis. In this study, we explored the effect and possible mechanism of ADSC-conditioned medium (ADSC-CM) on HS. METHOD Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting were used to detect the expression of collagen I (Col1), collagen III (Col3), and α-smooth muscle actin (α-SMA) after fibroblasts and cultured HS tissues were stimulated with ADSC-CM and p38 inhibitor/activator. Immunofluorescence staining was performed to test the expression of α-SMA. Masson's trichrome staining, hematoxylin and eosin (H&E) staining, and immunohistochemistry staining were carried out to assess the histological and pathological change of collagen in the BALB/c mouse excisional model. All data were analyzed by using SPSS17.0 software. Statistical analysis was performed by Student's t tests. RESULTS The in vitro and ex vivo study revealed ADSC-CM decreased the expression of Col1, Col3, and α-SMA. Together, thinner and orderly arranged collagen was manifested in HS tissues cultured with ADSC-CM. Dramatically, the assessed morphology showed an accelerated healing rate, less collagen deposition, and col1- and col3-positive cells in the ADSC-CM treated group. Importantly, the protein level of p-p38 was downregulated in a concentration-dependent manner in HS-derived fibroblasts with ADSC-CM treatment, which further decreased the expression of p-p38 after the application of its inhibitor, SB203580. SB203580 led to an obvious decline in the expression of Col1, Col3, and α-SMA in fibroblasts and cultured HS tissues and presented more ordered arrangement and thinner collagen fibers in BALB/c mice. Lastly, anisomycin, an agonist of p38, upregulated the expression of fibrotic proteins and revealed more disordered structure and denser collagen fibers. CONCLUSION This study demonstrated that ADSC-CM could decrease collagen deposition and scar formation in in vitro, ex vivo and in vivo experiments. The regulation of the p38/MAPK signaling pathway played an important role in the process. The application of ADSC-CM may provide a novel therapeutic strategy for HS treatment, and the anti-scarring effect can be achieved by inhibition of the p38/MAPK signaling pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
82 |
14
|
Yang JJ, Tao H, Hu W, Liu LP, Shi KH, Deng ZY, Li J. MicroRNA-200a controls Nrf2 activation by target Keap1 in hepatic stellate cell proliferation and fibrosis. Cell Signal 2014; 26:2381-9. [PMID: 25049078 DOI: 10.1016/j.cellsig.2014.07.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/09/2014] [Indexed: 01/19/2023]
Abstract
Hepatic fibrosis is a common final pathological process in the progression of liver disease, which is primarily due to oxidative stress. Nrf2 is known to coordinate induction of genes that encode antioxidant enzymes. Moreover, Nrf2 expression is largely regulated through the association of Nrf2 with Keap1, which results in cytoplasmic Nrf2 degradation. Conversely, little is known concerning the regulation of Keap1 expression. Although the function of miRNA-200a controls Keap1 gene expression has been discussed in many cancers and fibrotic diseases, its role in hepatic fibrosis is still poorly understood. By using miRNA mimic, we observed miRNA-200a silencing in activated hepatic stellate cell and demonstrated that upon re-expression, miRNA-200a targets the Keap1, and leading to Keap1 mRNA degradation. We find that treatment with miRNA-200a mimics, restored miRNA-200a expression and reduced Keap1 levels. This reduction in Keap1 levels corresponded with Nrf2 nuclear translocation and activation of Nrf2-dependent NQO1 gene transcription. Moreover, we found that Nrf2 activation inhibited the TGF-β1-independent growth of hepatic stellate cell. Finally, our study demonstrates that miRNA-200a regulates the Keap1/Nrf2 pathway in hepatic stellate cell and fibrosis, and we find that epigenetic therapy can restore miRNA-200a regulation of Keap1 expression, therefore reactivating the Nrf2-dependent antioxidant pathway in liver fibrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
73 |
15
|
Chang J, Lan T, Li C, Ji X, Zheng L, Gou H, Ou Y, Wu T, Qi C, Zhang Q, Li J, Gu Q, Wen D, Cao L, Qiao L, Ding Y, Wang L. Activation of Slit2-Robo1 signaling promotes liver fibrosis. J Hepatol 2015; 63:1413-1420. [PMID: 26264936 DOI: 10.1016/j.jhep.2015.07.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 07/20/2015] [Accepted: 07/31/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS The secretory protein Slit2 and its receptor Robo1 are believed to regulate cell growth and migration. Here, we aimed to determine whether Slit2-Robo1 signaling mediates the pathogenesis of liver fibrosis. METHODS Serum levels of Slit2 in patients with liver fibrosis were determined by ELISA. Liver fibrosis was induced in wild-type (WT), Slit2 transgenic (Slit2-Tg) and Robo1(+/-)Robo2(+/-) double heterozygotes (Robo1/2(+/-)) mice by carbon tetrachloride (CCl4). The functional contributions of Slit2-Robo1 signaling in liver fibrosis and activation of hepatic stellate cells (HSCs) were investigated using primary mouse HSCs and human HSC cell line LX-2. RESULTS Significantly increased serum Slit2 levels and hepatic expression of Slit2 and Robo1 were observed in patients with liver fibrosis. Compared to WT mice, Slit2-Tg mice were much more vulnerable to CCl4-induced liver injury and more readily develop liver fibrosis. Development of hepatic fibrosis in Slit2-Tg mice was associated with a stronger hepatic expression of collagen I and α-smooth muscle actin (α-SMA). However, liver injury and hepatic expression of collagen I and α-SMA were attenuated in CCl4-treated Robo1/2(+/-) mice in response to CCl4 exposure. In vitro, Robo1 neutralizing antibody R5 and Robo1 siRNA downregulated phosphorylation of Smad2, Smad3, PI3K, and AKT in HSCs independent of TGF-β1. R5 and Robo1 siRNA also inhibited the expression of α-SMA by HSCs. Finally, the protective effect of R5 on the CCl4-induced liver injury and fibrosis was further verified in mice. CONCLUSIONS Slit2-Robo1 signaling promotes liver injury and fibrosis through activation of HSCs.
Collapse
MESH Headings
- Animals
- Carbon Tetrachloride/toxicity
- Case-Control Studies
- Cell Line
- Cells, Cultured
- Female
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- Humans
- Intercellular Signaling Peptides and Proteins/deficiency
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Liver Cirrhosis/etiology
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Liver Cirrhosis, Experimental/etiology
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- Roundabout Proteins
- Slit Homolog 2 Protein
Collapse
|
|
10 |
71 |
16
|
Elbialy ZI, Assar DH, Abdelnaby A, Asa SA, Abdelhiee EY, Ibrahim SS, Abdel-Daim MM, Almeer R, Atiba A. RETRACTED: Healing potential of Spirulina platensis for skin wounds by modulating bFGF, VEGF, TGF-ß1 and α-SMA genes expression targeting angiogenesis and scar tissue formation in the rat model. Biomed Pharmacother 2021; 137:111349. [PMID: 33567349 DOI: 10.1016/j.biopha.2021.111349] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/16/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The journal was alerted to an associated PubPeer post in which suspected duplicated features were identified within Figure 4 B1, and the histological image in Figure 3 A1 appears to have been previously published in another article, as detailed here: https://pubpeer.com/publications/E5658B7B735FF993AA795A5F14C086. The journal performed independent analysis and identified additional suspected image duplications between the images of mice in Figure 1 A+B and images of mice in Figure 6 A+B from Elbialy et al., BMC Veterinary Research (2020). The journal requested the authors provide an explanation to these concerns and associated raw data, but this request was not satisfactorily fulfilled. The Editor-in-Chief assessed the case and decided to retract the article.
Collapse
|
Retracted Publication |
4 |
68 |
17
|
Deng YR, Ma HD, Tsuneyama K, Yang W, Wang YH, Lu FT, Liu CH, Liu P, He XS, Diehl AM, Gershwin ME, Lian ZX. STAT3-mediated attenuation of CCl4-induced mouse liver fibrosis by the protein kinase inhibitor sorafenib. J Autoimmun 2013; 46:25-34. [DOI: 10.1016/j.jaut.2013.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 12/19/2022]
|
|
12 |
68 |
18
|
Wei J, Shi Y, Hou Y, Ren Y, Du C, Zhang L, Li Y, Duan H. Knockdown of thioredoxin-interacting protein ameliorates high glucose-induced epithelial to mesenchymal transition in renal tubular epithelial cells. Cell Signal 2013; 25:2788-96. [PMID: 24041652 DOI: 10.1016/j.cellsig.2013.09.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 09/06/2013] [Indexed: 12/15/2022]
Abstract
Epithelial to mesenchymal transition (EMT) of tubular cells contributes to the renal accumulation of matrix protein that is associated with diabetic nephropathy. Both high glucose and transforming growth factor-β (TGF-β) are able to induce EMT in cell culture. In this study, we examined the role of the thioredoxin-interacting protein (TXNIP) on EMT induced by high glucose or TGF-β1 in HK-2 cells. EMT was assessed by the expression of α-smooth muscle actin (α-SMA) and E-cadherin and the induction of a myofibroblastic phenotype. High glucose (30mM) was shown to induce EMT at 72h. This was blocked by knockdown of TXNIP or antioxidant NAC. Meanwhile, we also found that knockdown of TXNIP or antioxidant NAC inhibited high glucose-induced generation of reactive oxygen species (ROS), phosphorylation of p38 MAPK and ERK1/2 and expression of TGF-β1. HK-2 cells that were exposed to TGF-β1 (4ng/ml) also underwent EMT. The expression of TXNIP gene and protein was increased in HK-2 cells treated with TGF-β1. Transfection with TXNIP shRNA was able to attenuate TGF-β1 induced-EMT. These results suggested that knockdown of TXNIP antagonized high glucose-induced EMT by inhibiting ROS production, activation of p38 MAPK and ERK1/2, and expression of TGF-β1, highlighting TXNIP as a potential therapy target for diabetic nephropathy.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
67 |
19
|
The intrahepatic signalling niche of hedgehog is defined by primary cilia positive cells during chronic liver injury. J Hepatol 2014; 60:143-51. [PMID: 23978713 DOI: 10.1016/j.jhep.2013.08.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/02/2013] [Accepted: 08/05/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS In vertebrates, canonical Hedgehog (Hh) pathway activation requires Smoothened (SMO) translocation to the primary cilium (Pc), followed by a GLI-mediated transcriptional response. In addition, a similar gene regulation occurs in response to growth factors/cytokines, although independently of SMO signalling. The Hh pathway plays a critical role in liver fibrosis/regeneration, however, the mechanism of activation in chronic liver injury is poorly understood. This study aimed to characterise Hh pathway activation upon thioacetamide (TAA)-induced chronic liver injury in vivo by defining Hh-responsive cells, namely cells harbouring Pc and Pc-localised SMO. METHODS C57BL/6 mice (wild-type or Ptc1(+/-)) were TAA-treated. Liver injury and Hh ligand/pathway mRNA and protein expression were assessed in vivo. SMO/GLI manipulation and SMO-dependent/independent activation of GLI-mediated transcriptional response in Pc-positive (Pc(+)) cells were studied in vitro. RESULTS In vivo, Hh activation was progressively induced following TAA. At the epithelial-mesenchymal interface, injured hepatocytes produced Hh ligands. Progenitors, myofibroblasts, leukocytes and hepatocytes were GLI2(+). Pc(+) cells increased following TAA, but only EpCAM(+)/GLI2(+) progenitors were Pc(+)/SMO(+). In vitro, SMO knockdown/hGli3-R overexpression reduced proliferation/viability in Pc(+) progenitors, whilst increased proliferation occurred with hGli1 overexpression. HGF induced GLI transcriptional activity independently of Pc/SMO. Ptc1(+/-) mice exhibited increased progenitor, myofibroblast and fibrosis responses. CONCLUSIONS In chronic liver injury, Pc(+) progenitors receive Hh ligand signals and process it through Pc/SMO-dependent activation of GLI-mediated transcriptional response. Pc/SMO-independent GLI activation likely occurs in Pc(-)/GLI2(+) cells. Increased fibrosis in Hh gain-of-function mice likely occurs by primary progenitor expansion/proliferation and secondary fibrotic myofibroblast expansion, in close contact with progenitors.
Collapse
|
|
11 |
66 |
20
|
Overexpression of c-myc in hepatocytes promotes activation of hepatic stellate cells and facilitates the onset of liver fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1765-75. [PMID: 23770341 DOI: 10.1016/j.bbadis.2013.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Liver fibrosis is a consequence of chronic liver injury and can further progress to hepatocellular carcinoma (HCC). Fibrogenesis involves activation of hepatic stellate cells (HSC) and proliferation of hepatocytes upon liver injury. HCC is frequently associated with overexpression of the proto-oncogene c-myc. However, the impact of c-myc for initiating pathological precursor stages such as liver fibrosis is poorly characterized. In the present study we thus investigated the impact of c-myc for liver fibrogenesis. METHODS Expression of c-myc was measured in biopsies of patients with liver fibrosis of different etiologies by quantitative real-time PCR (qPCR). Primary HSC were isolated from mice with transgenic overexpression of c-myc in hepatocytes (alb-myc(tg)) and wildtype (WT) controls and investigated for markers of cell cycle progression and fibrosis by qPCR and immunofluorescence microscopy. Liver fibrosis in WT and alb-myc(tg) mice was induced by repetitive CCl4 treatment. RESULTS We detected strong up-regulation of hepatic c-myc in patients with advanced liver fibrosis. In return, overexpression of c-myc in alb-myc(tg) mice resulted in increased liver collagen deposition and induction of α-smooth-muscle-actin indicating HSC activation. Primary HSC derived from alb-myc(tg) mice showed enhanced proliferation and accelerated transdifferentiation into myofibroblasts in vitro. Accordingly, fibrosis initiation in vivo after chronic CCl4 treatment was accelerated in alb-myc(tg) mice compared to controls. CONCLUSION Overexpression of c-myc is a novel marker of liver fibrosis in man and mice. We conclude that chronic induction of c-myc especially in hepatocytes has the potential to prime resident HSC for activation, proliferation and myofibroblast differentiation.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
65 |
21
|
Jung KJ, Jang HS, Kim JI, Han SJ, Park JW, Park KM. Involvement of hydrogen sulfide and homocysteine transsulfuration pathway in the progression of kidney fibrosis after ureteral obstruction. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1989-97. [PMID: 23846016 DOI: 10.1016/j.bbadis.2013.06.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/22/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S) produced by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) in the transsulfuration pathway of homocysteine plays a number of pathophysiological roles. Hyperhomocysteinemia is involved in kidney fibrosis. However, the role of H2S in kidney fibrosis remains to be defined. Here, we investigated the role of H2S and its acting mechanism in unilateral ureteral obstruction (UO)-induced kidney fibrosis in mice. UO decreased expressions of CBS and CSE in the kidney with decrease of H2S concentration. Treatment with sodium hydrogen sulfide (NaHS, a H2S producer) during UO reduced UO-induced oxidative stress with preservations of catalase, copper-zinc superoxide dismutase (CuZnSOD), and manganese superoxide dismutase (MnSOD) expression, and glutathione level. In addition, NaHS mitigated decreases of CBS and CSE expressions, and H2S concentration in the kidney. NaHS treatment attenuated UO-induced increases in levels of TGF-β1, activated Smad3, and activated NF-κB. This study provided the first evidence of involvement of the transsulfuration pathway and H2S in UO-induced kidney fibrosis, suggesting that H2S and its transsulfuration pathway may be a potential target for development of therapeutics for fibrosis-related diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
63 |
22
|
Fang L, Zhan S, Huang C, Cheng X, Lv X, Si H, Li J. TRPM7 channel regulates PDGF-BB-induced proliferation of hepatic stellate cells via PI3K and ERK pathways. Toxicol Appl Pharmacol 2013; 272:713-25. [PMID: 23958495 DOI: 10.1016/j.taap.2013.08.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/22/2013] [Accepted: 08/08/2013] [Indexed: 01/18/2023]
Abstract
TRPM7, a non-selective cation channel of the TRP channel superfamily, is implicated in diverse physiological and pathological processes including cell proliferation. Recently, TRPM7 has been reported in hepatic stellate cells (HSCs). Here, we investigated the contribution role of TRPM7 in activated HSC-T6 cell (a rat hepatic stellate cell line) proliferation. TRPM7 mRNA and protein were measured by RT-PCR and Western blot in rat model of liver fibrosis in vivo and PDGF-BB-activated HSC-T6 cells in vitro. Both mRNA and protein of TRPM7 were dramatically increased in CCl4-treated rat livers. Stimulation of HSC-T6 cells with PDGF-BB resulted in a time-dependent increase of TRPM7 mRNA and protein. However, PDGF-BB-induced HSC-T6 cell proliferation was inhibited by non-specific TRPM7 blocker 2-aminoethoxydiphenyl borate (2-APB) or synthetic siRNA targeting TRPM7, and this was accompanied by downregulation of cell cycle proteins, cyclin D1, PCNA and CDK4. Blockade of TRPM7 channels also attenuated PDGF-BB induced expression of myofibroblast markers as measured by the induction of α-SMA and Col1α1. Furthermore, the phosphorylation of ERK and AKT, associated with cell proliferation, decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TRPM7 channels contribute to perpetuated fibroblast activation and proliferation of PDGF-BB induced HSC-T6 cells via the activation of ERK and PI3K pathways. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
58 |
23
|
Wang X, Gong G, Yang W, Li Y, Jiang M, Li L. Antifibrotic activity of galangin, a novel function evaluated in animal liver fibrosis model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:288-295. [PMID: 23686009 DOI: 10.1016/j.etap.2013.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 05/08/2023]
Abstract
This study aimed to investigate the effects of galangin on liver fibrosis in rats induced by subcutaneous injection of carbon tetrachloride (CCl4). The administration of CCl4 to rats for 12 weeks caused significant increase of hyaluronic acid, laminin, alanine transaminase, aspartate transaminase and decrease of total protein, albumin in serum, while the influences could be reversed by galangin. Galangin markedly reduced hepatic malondialdehyde, hydroxyproline concentration, increased activities of liver superoxide dismutase, glutathione peroxidase compared with CCl4-treated rats. Histological results indicated that galangin alleviated liver damage. In addition, treatment with galangin significantly down-regulated expressions of α-smooth muscle actin and transforming growth factor β1. These results suggest galangin can inhibit liver fibrosis induced by CCl4 in rats, which was probably associated with its effect on removing oxygen free radicals, decreasing lipid peroxidation, as well as inhibiting hepatic stellate cells activation and proliferation.
Collapse
|
|
12 |
56 |
24
|
Perbellini F, Watson SA, Scigliano M, Alayoubi S, Tkach S, Bardi I, Quaife N, Kane C, Dufton NP, Simon A, Sikkel MB, Faggian G, Randi AM, Gorelik J, Harding SE, Terracciano CM. Investigation of cardiac fibroblasts using myocardial slices. Cardiovasc Res 2019; 114:77-89. [PMID: 29016704 PMCID: PMC5852538 DOI: 10.1093/cvr/cvx152] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Aims Cardiac fibroblasts (CFs) are considered the principal regulators of cardiac fibrosis. Factors that influence CF activity are difficult to determine. When isolated and cultured in vitro, CFs undergo rapid phenotypic changes including increased expression of α-SMA. Here we describe a new model to study CFs and their response to pharmacological and mechanical stimuli using in vitro cultured mouse, dog and human myocardial slices. Methods and results Unloading of myocardial slices induced CF proliferation without α-SMA expression up to 7 days in culture. CFs migrating onto the culture plastic support or cultured on glass expressed αSMA within 3 days. The cells on the slice remained αSMA(−) despite transforming growth factor-β (20 ng/ml) or angiotensin II (200 µM) stimulation. When diastolic load was applied to myocardial slices using A-shaped stretchers, CF proliferation was significantly prevented at Days 3 and 7 (P < 0.001). Conclusions Myocardial slices allow the study of CFs in a multicellular environment and may be used to effectively study mechanisms of cardiac fibrosis and potential targets.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
55 |
25
|
Elbialy ZI, Atiba A, Abdelnaby A, Al-Hawary II, Elsheshtawy A, El-Serehy HA, Abdel-Daim MM, Fadl SE, Assar DH. Collagen extract obtained from Nile tilapia (Oreochromis niloticus L.) skin accelerates wound healing in rat model via up regulating VEGF, bFGF, and α-SMA genes expression. BMC Vet Res 2020; 16:352. [PMID: 32972407 PMCID: PMC7513287 DOI: 10.1186/s12917-020-02566-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Collagen is the most abundant structural protein in the mammalian connective tissue and represents approximately 30% of animal protein. The current study evaluated the potential capacity of collagen extract derived from Nile tilapia skin in improving the cutaneous wound healing in rats and investigated the underlying possible mechanisms. A rat model was used, and the experimental design included a control group (CG) and the tilapia collagen treated group (TCG). Full-thickness wounds were conducted on the back of all the rats under general anesthesia, then the tilapia collagen extract was applied topically on the wound area of TCG. Wound areas of the two experimental groups were measured on days 0, 3, 6, 9, 12, and 15 post-wounding. The stages of the wound granulation tissues were detected by histopathologic examination and the expression of vascular endothelial growth factor (VEGF), and transforming growth factor (TGF-ß1) were investigated using immunohistochemistry. Moreover, relative gene expression analysis of transforming growth factor-beta (TGF-ß1), basic fibroblast growth factor (bFGF), and alpha-smooth muscle actin (α-SMA) were quantified by real-time qPCR. RESULTS The histopathological assessment showed noticeable signs of skin healing in TCG compared to CG. Immunohistochemistry results revealed remarkable enhancement in the expression levels of VEGF and TGF-β1 in TCG. Furthermore, TCG exhibited marked upregulation in the VEGF, bFGF, and α-SMA genes expression. These findings suggested that the topical application of Nile tilapia collagen extract can promote the cutaneous wound healing process in rats, which could be attributed to its stimulating effect on recruiting and activating macrophages to produce chemotactic growth factors, fibroblast proliferation, and angiogenesis. CONCLUSIONS The collagen extract could, therefore, be a potential biomaterial for cutaneous wound healing therapeutics.
Collapse
|
research-article |
5 |
51 |