Mikolajczyk T, Luba M, Pierozynski B, Kowalski IM, Wiczkowski W. The Influence of Solution pH on the Kinetics of Resorcinol Electrooxidation (Degradation) on Polycrystalline Platinum.
Molecules 2019;
24:E2309. [PMID:
31234459 PMCID:
PMC6631510 DOI:
10.3390/molecules24122309]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 11/17/2022] Open
Abstract
Electrochemical oxidation of resorcinol on a polycrystalline platinum electrode was investigated in five different solutions, namely 0.5 and 0.1 M H2SO4, 0.5 M Na2SO4, 0.5 and 0.1 M NaOH. The rates of electrochemical degradation of resorcinol were determined based on the obtained reaction parameters, such as resistance, capacitance and current-density. The electrochemical analyses (cyclic voltammetry and a.c. impedance spectroscopy) were carried-out by means of a three-compartment, Pyrex glass cell. These results showed that the electrochemical oxidation of resorcinol is strongly pH-dependent. In addition, the energy dispersive X-ray (EDX) spectroscopy technique was employed for Pt electrode surface characterization. Additionally, the quantitative determination of resorcinol removal was performed by means of instrumental high-performance liquid chromatography/mass spectrometry (HPLC/MS) methodology.
Collapse