1
|
Curry CJ, Rosenfeld JA, Grant E, Gripp KW, Anderson C, Aylsworth AS, Saad TB, Chizhikov VV, Dybose G, Fagerberg C, Falco M, Fels C, Fichera M, Graakjaer J, Greco D, Hair J, Hopkins E, Huggins M, Ladda R, Li C, Moeschler J, Nowaczyk MJM, Ozmore JR, Reitano S, Romano C, Roos L, Schnur RE, Sell S, Suwannarat P, Svaneby D, Szybowska M, Tarnopolsky M, Tervo R, Tsai ACH, Tucker M, Vallee S, Wheeler FC, Zand DJ, Barkovich AJ, Aradhya S, Shaffer LG, Dobyns WB. The duplication 17p13.3 phenotype: analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes. Am J Med Genet A 2013; 161A:1833-52. [PMID: 23813913 DOI: 10.1002/ajmg.a.35996] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/31/2013] [Indexed: 11/11/2022]
Abstract
Chromosome 17p13.3 is a gene rich region that when deleted is associated with the well-known Miller-Dieker syndrome. A recently described duplication syndrome involving this region has been associated with intellectual impairment, autism and occasional brain MRI abnormalities. We report 34 additional patients from 21 families to further delineate the clinical, neurological, behavioral, and brain imaging findings. We found a highly diverse phenotype with inter- and intrafamilial variability, especially in cognitive development. The most specific phenotype occurred in individuals with large duplications that include both the YWHAE and LIS1 genes. These patients had a relatively distinct facial phenotype and frequent structural brain abnormalities involving the corpus callosum, cerebellar vermis, and cranial base. Autism spectrum disorders were seen in a third of duplication probands, most commonly in those with duplications of YWHAE and flanking genes such as CRK. The typical neurobehavioral phenotype was usually seen in those with the larger duplications. We did not confirm the association of early overgrowth with involvement of YWHAE and CRK, or growth failure with duplications of LIS1. Older patients were often overweight. Three variant phenotypes included cleft lip/palate (CLP), split hand/foot with long bone deficiency (SHFLD), and a connective tissue phenotype resembling Marfan syndrome. The duplications in patients with clefts appear to disrupt ABR, while the SHFLD phenotype was associated with duplication of BHLHA9 as noted in two recent reports. The connective tissue phenotype did not have a convincing critical region. Our experience with this large cohort expands knowledge of this diverse duplication syndrome.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
48 |
2
|
Blazejewski SM, Bennison SA, Smith TH, Toyo-Oka K. Neurodevelopmental Genetic Diseases Associated With Microdeletions and Microduplications of Chromosome 17p13.3. Front Genet 2018; 9:80. [PMID: 29628935 PMCID: PMC5876250 DOI: 10.3389/fgene.2018.00080] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/24/2023] Open
Abstract
Chromosome 17p13.3 is a region of genomic instability that is linked to different rare neurodevelopmental genetic diseases, depending on whether a deletion or duplication of the region has occurred. Chromosome microdeletions within 17p13.3 can result in either isolated lissencephaly sequence (ILS) or Miller-Dieker syndrome (MDS). Both conditions are associated with a smooth cerebral cortex, or lissencephaly, which leads to developmental delay, intellectual disability, and seizures. However, patients with MDS have larger deletions than patients with ILS, resulting in additional symptoms such as poor muscle tone, congenital anomalies, abnormal spasticity, and craniofacial dysmorphisms. In contrast to microdeletions in 17p13.3, recent studies have attracted considerable attention to a condition known as a 17p13.3 microduplication syndrome. Depending on the genes involved in their microduplication, patients with 17p13.3 microduplication syndrome may be categorized into either class I or class II. Individuals in class I have microduplications of the YWHAE gene encoding 14-3-3ε, as well as other genes in the region. However, the PAFAH1B1 gene encoding LIS1 is never duplicated in these patients. Class I microduplications generally result in learning disabilities, autism, and developmental delays, among other disorders. Individuals in class II always have microduplications of the PAFAH1B1 gene, which may include YWHAE and other genetic microduplications. Class II microduplications generally result in smaller body size, developmental delays, microcephaly, and other brain malformations. Here, we review the phenotypes associated with copy number variations (CNVs) of chromosome 17p13.3 and detail their developmental connection to particular microdeletions or microduplications. We also focus on existing single and double knockout mouse models that have been used to study human phenotypes, since the highly limited number of patients makes a study of these conditions difficult in humans. These models are also crucial for the study of brain development at a mechanistic level since this cannot be accomplished in humans. Finally, we emphasize the usefulness of the CRISPR/Cas9 system and next generation sequencing in the study of neurodevelopmental diseases.
Collapse
|
Review |
7 |
46 |
3
|
Lesca G, Moizard MP, Bussy G, Boggio D, Hu H, Haas SA, Ropers HH, Kalscheuer VM, Des Portes V, Labalme A, Sanlaville D, Edery P, Raynaud M, Lespinasse J. Clinical and neurocognitive characterization of a family with a novel MED12 gene frameshift mutation. Am J Med Genet A 2013; 161A:3063-71. [PMID: 24039113 DOI: 10.1002/ajmg.a.36162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/08/2013] [Indexed: 11/07/2022]
Abstract
FG syndrome, Lujan syndrome, and Ohdo syndrome, the Maat-Kievit-Brunner type, have been described as distinct syndromes with overlapping non-specific features and different missense mutations of the MED12 gene have been reported in all of them. We report a family including 10 males and 1 female affected with profound non-specific intellectual disability (ID) which was linked to a 30-cM region extending from Xp11.21 (ALAS2) to Xq22.3 (COL4A5). Parallel sequencing of all X-chromosome exons identified a frameshift mutation (c.5898dupC) of MED12. Mutated mRNA was not affected by non-sense mediated RNA decay and induced an additional abnormal isoform due to activation of cryptic splice-sites in exon 41. Dysmorphic features common to most affected males were long narrow face, high forehead, flat malar area, high nasal bridge, and short philtrum. Language was absent or very limited. Most patients had a friendly personality. Cognitive impairment, varying from borderline to profound ID was similarly observed in seven heterozygous females. There was no correlation between cognitive function and X-chromosome inactivation profiles in blood cells. The severe degree of ID in male patients, as well as variable cognitive impairment in heterozygous females suggests that the duplication observed in the present family may have a more severe effect on MED12 function than missense mutations. In a cognitively impaired male from this family, who also presented with tall stature and dysmorphism and did not have the MED12 mutation, a 600-kb duplication at 17p13.3 including the YWHAE gene, was found in a mosaic state.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
32 |
4
|
Human Herpesvirus 6B Induces Hypomethylation on Chromosome 17p13.3, Correlating with Increased Gene Expression and Virus Integration. J Virol 2017; 91:JVI.02105-16. [PMID: 28298607 DOI: 10.1128/jvi.02105-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/03/2017] [Indexed: 12/21/2022] Open
Abstract
Human herpesvirus 6B (HHV-6B) is a neurotropic betaherpesvirus that achieves latency by integrating its genome into host cell chromosomes. Several viruses can induce epigenetic modifications in their host cells, but no study has investigated the epigenetic modifications induced by HHV-6B. This study analyzed methylation with an Illumina 450K array, comparing HHV-6B-infected and uninfected Molt-3 T cells 3 days postinfection. Bisulfite pyrosequencing was used to validate the Illumina results and to investigate methylation over time in vitro Expression of genes was investigated using quantitative PCR (qPCR), and virus integration was investigated with PCR. A total of 406 CpG sites showed a significant HHV-6B-induced change in methylation in vitro Remarkably, 86% (351/406) of these CpGs were located <1 Mb from chromosomal ends and were all hypomethylated in virus-infected cells. This was most evident at chromosome 17p13.3, where HHV-6B had induced CpG hypomethylation after 2 days of infection, possibly through TET2, which was found to be upregulated by the virus. In addition, virus-induced cytosine hydroxymethylation was observed. Genes located in the hypomethylated region at 17p13.3 showed significantly upregulated expression in HHV-6B-infected cells. A temporal experiment revealed HHV-6B integration in Molt-3 cell DNA 3 days after infection. The telomere at 17p has repeatedly been described as an integration site for HHV-6B, and we show for the first time that HHV-6B induces hypomethylation in this region during acute infection, which may play a role in the integration process, possibly by making the DNA more accessible.IMPORTANCE The ability to establish latency in the host is a hallmark of herpesviruses, but the mechanisms differ. Human herpesvirus 6B (HHV-6B) is known to establish latency through integration of its genome into the telomeric regions of host cells, with the ability to reactivate. Our study is the first to show that HHV-6B specifically induces hypomethylated regions close to the telomeres and that integrating viruses may use the host methylation machinery to facilitate their integration process. The results from this study contribute to knowledge of HHV-6B biology and virus-host interaction. This in turn will lead to further progress in our understanding of the underlying mechanisms by which HHV-6B contributes to pathological processes and may have important implications in both disease prevention and treatment.
Collapse
|
Journal Article |
8 |
20 |
5
|
Takahashi T, Konishi H, Kozaki K, Osada H, Saji S, Takahashi T, Takahashi T. Molecular analysis of a Myc antagonist, ROX/Mnt, at 17p13.3 in human lung cancers. Jpn J Cancer Res 1998; 89:347-51. [PMID: 9617337 PMCID: PMC5921813 DOI: 10.1111/j.1349-7006.1998.tb00569.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The chromosome region 17p13 is known to be frequently deleted in lung cancers. We recently showed the presence of an independent, commonly deleted region at 17p13.3, suggesting that in addition to p53 at 17p13.1 an as-yet-unidentified tumor suppressor gene may reside in this telomeric region. Interestingly, the chromosomal location of a recently isolated novel myc antagonist gene, termed ROX/Mnt, coincides exactly with the centromeric border of the commonly deleted region at 17p13.3 in lung cancers. In conjunction with the generally acknowledged roles of myc genes in the pathogenesis of lung cancers, these findings led us to investigate whether ROX/Mnt is altered in lung cancers. Despite an extensive search for alterations in 52 lung cancer specimens. somatic mutations of ROX/Mnt could not be identified. We conclude that ROX/Mnt itself is not a frequent target for 17p13.3 deletions in lung cancers and that further explorations are required to identify the putative tumor suppressor gene at 17p13.3.
Collapse
|
research-article |
27 |
16 |
6
|
Tsuchiya E, Tanigami A, Ishikawa Y, Nishida K, Hayashi M, Tokuchi Y, Hashimoto T, Okumura S, Tsuchiya S, Nakagawa K. Three new regions on chromosome 17p13.3 distal to p53 with possible tumor suppressor gene involvement in lung cancer. Jpn J Cancer Res 2000; 91:589-96. [PMID: 10874210 PMCID: PMC5926396 DOI: 10.1111/j.1349-7006.2000.tb00986.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We investigated loss of heterozygosity (LOH) at the distal portion of the p53 gene on the short arm of chromosome 17 in lung cancers in order to search for new tumor suppressor genes. The roles of the putative genes were also studied in terms of pathological features. One hundred and forty-five resected non-small cell lung cancers were examined for LOH using 11 markers mapped on, and distal to the p53 locus, and deletion maps were constructed. Four commonly deleted regions were found: one from TP53 to ENO3, where the p53 gene resides, and three others from ENO3 to D17S1566, D17S379 to D17S1574 and distal to ABR, with LOH frequencies almost the same as, or higher than, at the TP53 locus. Examination of the relationship between LOH of the latter three regions and histopathological parameters of adenocarcinomas (genetically negative for p53 mutation) revealed allelic losses on D17S379 to be associated with advanced lesions, while D17S513 was more frequently deleted in poorly differentiated tumors. These results indicate that new tumor suppressor gene(s) may reside on these three distinctly deleted regions on chromosome 17p13.3 distal to the p53 gene in lung cancer, with possible roles in progression and differentiation of adenocarcinomas.
Collapse
|
research-article |
25 |
15 |
7
|
Perumal N, Kanchan RK, Doss D, Bastola N, Atri P, Chirravuri-Venkata R, Thapa I, Vengoji R, Maurya SK, Klinkebiel D, Talmon GA, Nasser MW, Batra SK, Mahapatra S. MiR-212-3p functions as a tumor suppressor gene in group 3 medulloblastoma via targeting nuclear factor I/B (NFIB). Acta Neuropathol Commun 2021; 9:195. [PMID: 34922631 PMCID: PMC8684142 DOI: 10.1186/s40478-021-01299-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
Haploinsufficiency of chromosome 17p and c-Myc amplification distinguish group 3 medulloblastomas which are associated with early metastasis, rapid recurrence, and swift mortality. Tumor suppressor genes on this locus have not been adequately characterized. We elucidated the role of miR-212-3p in the pathophysiology of group 3 tumors. First, we learned that miR-212-3p undergoes epigenetic silencing by histone modifications in group 3 tumors. Restoring its expression reduced cancer cell proliferation, migration, colony formation, and wound healing in vitro and attenuated tumor burden and improved survival in vivo. MiR-212-3p also triggered c-Myc destabilization and degradation, leading to elevated apoptosis. We then isolated an oncogenic target of miR-212-3p, i.e. NFIB, a nuclear transcription factor implicated in metastasis and recurrence in various cancers. Increased expression of NFIB was confirmed in group 3 tumors and associated with poor survival. NFIB silencing reduced cancer cell proliferation, migration, and invasion. Concurrently, reduced medullosphere formation and stem cell markers (Nanog, Oct4, Sox2, CD133) were noted. These results substantiate the tumor-suppressive role of miR-212-3p in group 3 MB and identify a novel oncogenic target implicated in metastasis and tumor recurrence.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
5 |
8
|
Kucharczyk M, Jezela-Stanek A, Gieruszczak-Bialek D, Kugaudo M, Cieslikowska A, Pelc M, Krajewska-Walasek M. Oculocutaneous albinism in a patient with 17p13.2-pter duplication - a review on the molecular syndromology of 17p13 duplication. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:333-7. [PMID: 25690523 DOI: 10.5507/bp.2015.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/15/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Chromosomal duplications involving 17p13.3 have recently been defined as a new distinctive syndrome with several diagnosed patients. Some variation is known to occur in the breakpoints of the duplicated region and, consequently, in the phenotype as well. AIMS We report on a patient, the fifth to our knowledge, a 4-year-old girl with a pure de novo subtelomeric 17p13.2-pter duplication. She presents all of the facial features described so far for this duplication and in addition, a unilateral palmar transversal crease and oculocutaneous albinism which has not been reported previously. METHODS A detailed molecular description of the reported aberration and correlation with the observed phenotypical features based on a literature review. We discuss the possible molecular etiology of albinism in regard to the mode of inheritance. CONCLUSION The new data provided here may be useful for further genotype correlations in syndromes with oculocutaneous albinism, especially of autosomal dominant inheritance.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
2 |
9
|
Vittas S, Bisba M, Christopoulou G, Apostolakopoulou L, Pons R, Constantoulakis P. A Case of Class I 17p13.3 Microduplication Syndrome with Unilateral Hearing Loss. Genes (Basel) 2023; 14:1333. [PMID: 37510238 PMCID: PMC10379727 DOI: 10.3390/genes14071333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
17p13 is a chromosomal region characterized by genomic instability due to high gene density leading to multiple deletion and duplication events. 17p13.3 microduplication syndrome is a rare condition, reported only in 40 cases worldwide, which is found in the Miller-Dieker chromosomal region, presenting a wide range of phenotypic manifestations. Usually, the duplicated area is de novo and varies in size from 1.8 to 4.0 Mbp. Critical genes for this region are PAFAH1B1 (#601545), YWHAE (#605066), and CRK (#164762). 17p13.3 microduplication syndrome can be categorized into two classes (Class I and Class II) based on the genes that are present in the duplicated area, which lead to different phenotypes. In this report, we present a new case of Class I 17p13.3 microduplication syndrome that presents with unilateral sensorineural hearing loss. Oligonucleotide and SNP array comparative genomic hybridization (a-CGH) analysis revealed a duplication of approximately 121 Kbp on chromosome 17p13.3, which includes YWHAE and CRK genes. Whole-exome sequencing (WES) analysis confirmed the duplication. Our patient has common clinical symptoms of Class I 17p13.3 microduplication syndrome, and in addition, she has unilateral sensorineural hearing loss. Interestingly, WES analysis did not detect any mutations in genes that are associated with hearing loss. The above findings lead us to propose that hearing loss is a manifestation of 17p13.3 duplication syndrome.
Collapse
|
Case Reports |
2 |
|