1
|
Yoong SL, Wong BS, Zhou QL, Chin CF, Li J, Venkatesan T, Ho HK, Yu V, Ang WH, Pastorin G. Enhanced cytotoxicity to cancer cells by mitochondria-targeting MWCNTs containing platinum(IV) prodrug of cisplatin. Biomaterials 2013; 35:748-59. [PMID: 24140044 DOI: 10.1016/j.biomaterials.2013.09.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/11/2013] [Indexed: 12/11/2022]
Abstract
Among the arsenal of nano-materials, carbon nanotubes (CNTs) are becoming more prominent due to favorable attributes including their unique shape, which promotes cellular-uptake, and large aspect-ratio that facilitates functionalization of bioactive molecules on their surface. In this study, multi-walled carbon nanotubes (MWCNTs) were functionalized with either mitochondrial-targeting fluorescent rhodamine-110 (MWCNT-Rho) or non-targeting fluorescein (MWCNT-Fluo). Despite structural similarities, MWCNT-Rho associated well with mitochondria (ca. 80% co-localization) in contrast to MWCNT-Fluo, which was poorly localized (ca. 21% co-localization). Additionally, MWCNT-Rho entrapping platinum(IV) pro-drug of cisplatin (PtBz) displayed enhanced potency (IC50 = 0.34 ± 0.07 μM) compared to a construct based on MWCNT-Fluo (IC50 ≥ 2.64 μM). Concurrently, preliminary in vitro toxicity evaluation revealed that empty MWCNT-Rho neither decreased cell viability significantly nor interfered with mitochondrial membrane-potential, while seemingly being partially expelled from cells. Due to its targeting capability and apparent lack of cytotoxicity, MWCNT-Rho complex was used to co-encapsulate PtBz and a chemo-potentiator, 3-bromopyruvate (BP), and the resulting MWCNT-Rho(PtBz+BP) construct demonstrated superior efficacy over PtBz free drug in several cancer cell lines tested. Importantly, a 2-fold decrease in mitochondrial potential was observed, implying that mitochondrial targeting of compounds indeed incurred additional intended damage to mitochondria.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
73 |
2
|
Sprowl-Tanio S, Habowski AN, Pate KT, McQuade MM, Wang K, Edwards RA, Grun F, Lyou Y, Waterman ML. Lactate/pyruvate transporter MCT-1 is a direct Wnt target that confers sensitivity to 3-bromopyruvate in colon cancer. Cancer Metab 2016; 4:20. [PMID: 27729975 PMCID: PMC5046889 DOI: 10.1186/s40170-016-0159-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/12/2016] [Indexed: 12/21/2022] Open
Abstract
Background There is increasing evidence that oncogenic Wnt signaling directs metabolic reprogramming of cancer cells to favor aerobic glycolysis or Warburg metabolism. In colon cancer, this reprogramming is due to direct regulation of pyruvate dehydrogenase kinase 1 (PDK1) gene transcription. Additional metabolism genes are sensitive to Wnt signaling and exhibit correlative expression with PDK1. Whether these genes are also regulated at the transcriptional level, and therefore a part of a core metabolic gene program targeted by oncogenic WNT signaling, is not known. Results Here, we identify monocarboxylate transporter 1 (MCT-1; encoded by SLC16A1) as a direct target gene supporting Wnt-driven Warburg metabolism. We identify and validate Wnt response elements (WREs) in the proximal SLC16A1 promoter and show that they mediate sensitivity to Wnt inhibition via dominant-negative LEF-1 (dnLEF-1) expression and the small molecule Wnt inhibitor XAV939. We also show that WREs function in an independent and additive manner with c-Myc, the only other known oncogenic regulator of SLC16A1 transcription. MCT-1 can export lactate, the byproduct of Warburg metabolism, and it is the essential transporter of pyruvate as well as a glycolysis-targeting cancer drug, 3-bromopyruvate (3-BP). Using sulforhodamine B (SRB) assays to follow cell proliferation, we tested a panel of colon cancer cell lines for sensitivity to 3-BP. We observe that all cell lines are highly sensitive and that reduction of Wnt signaling by XAV939 treatment does not synergize with 3-BP, but instead is protective and promotes rapid recovery. Conclusions We conclude that MCT-1 is part of a core Wnt signaling gene program for glycolysis in colon cancer and that modulation of this program could play an important role in shaping sensitivity to drugs that target cancer metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s40170-016-0159-3) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
9 |
63 |
3
|
Pietzke M, Zasada C, Mudrich S, Kempa S. Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics. Cancer Metab 2014; 2:9. [PMID: 25035808 PMCID: PMC4101711 DOI: 10.1186/2049-3002-2-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/23/2014] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Cellular metabolism is highly dynamic and continuously adjusts to the physiological program of the cell. The regulation of metabolism appears at all biological levels: (post-) transcriptional, (post-) translational, and allosteric. This regulatory information is expressed in the metabolome, but in a complex manner. To decode such complex information, new methods are needed in order to facilitate dynamic metabolic characterization at high resolution. RESULTS Here, we describe pulsed stable isotope-resolved metabolomics (pSIRM) as a tool for the dynamic metabolic characterization of cellular metabolism. We have adapted gas chromatography-coupled mass spectrometric methods for metabolomic profiling and stable isotope-resolved metabolomics. In addition, we have improved robustness and reproducibility and implemented a strategy for the absolute quantification of metabolites. CONCLUSIONS By way of examples, we have applied this methodology to characterize central carbon metabolism of a panel of cancer cell lines and to determine the mode of metabolic inhibition of glycolytic inhibitors in times ranging from minutes to hours. Using pSIRM, we observed that 2-deoxyglucose is a metabolic inhibitor, but does not directly act on the glycolytic cascade.
Collapse
|
research-article |
11 |
38 |
4
|
Karthikeyan S, Potter JJ, Geschwind JF, Sur S, Hamilton JP, Vogelstein B, Kinzler KW, Mezey E, Ganapathy-Kanniappan S. Deregulation of energy metabolism promotes antifibrotic effects in human hepatic stellate cells and prevents liver fibrosis in a mouse model. Biochem Biophys Res Commun 2015; 469:463-9. [PMID: 26525850 DOI: 10.1016/j.bbrc.2015.10.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
Liver fibrosis and cirrhosis result from uncontrolled secretion and accumulation of extracellular matrix (ECM) proteins by hepatic stellate cells (HSCs) that are activated by liver injury and inflammation. Despite the progress in understanding the biology liver fibrogenesis and the identification of potential targets for treating fibrosis, development of an effective therapy remains elusive. Since an uninterrupted supply of intracellular energy is critical for the activated-HSCs to maintain constant synthesis and secretion of ECM, we hypothesized that interfering with energy metabolism could affect ECM secretion. Here we report that a sublethal dose of the energy blocker, 3-bromopyruvate (3-BrPA) facilitates phenotypic alteration of activated LX-2 (a human hepatic stellate cell line), into a less-active form. This treatment-dependent reversal of activated-LX2 cells was evidenced by a reduction in α-smooth muscle actin (α-SMA) and collagen secretion, and an increase in activity of matrix metalloproteases. Mechanistically, 3-BrPA-dependent antifibrotic effects involved down-regulation of the mitochondrial metabolic enzyme, ATP5E, and up-regulation of glycolysis, as evident by elevated levels of lactate dehydrogenase, lactate production and its transporter, MCT4. Finally, the antifibrotic effects of 3-BrPA were validated in vivo in a mouse model of carbon tetrachloride-induced liver fibrosis. Results from histopathology & histochemical staining for collagen and α-SMA substantiated that 3-BrPA promotes antifibrotic effects in vivo. Taken together, our data indicate that sublethal, metronomic treatment with 3-BrPA blocks the progression of liver fibrosis suggesting its potential as a novel therapeutic for treating liver fibrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
30 |
5
|
Hexokinase II inhibition by 3-bromopyruvate sensitizes myeloid leukemic cells K-562 to anti-leukemic drug, daunorubicin. Biosci Rep 2019; 39:BSR20190880. [PMID: 31506393 PMCID: PMC6757186 DOI: 10.1042/bsr20190880] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/19/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
An increased metabolic flux towards Warburg phenotype promotes survival, proliferation and causes therapeutic resistance, in leukemic cells. Hexokinase-II (HK-II) is expressed predominantly in cancer cells, which promotes Warburg metabolic phenotype and protects the cancer cells from drug-induced apoptosis. The HK-II inhibitor 3- Bromopyruvate (3-BP) dissociates HK-II from mitochondrial complex, which leads to enhanced sensitization of leukemic cells to anti-leukemic drugs. In the present study, we analyzed the Warburg characteristics viz. HK-II expression, glucose uptake, endogenous reactive oxygen species (ROS) level of leukemic cell lines K-562 and THP-1 and then investigated if 3-BP can sensitize the leukemic cells K-562 to anti-leukemic drug Daunorubicin (DNR). We found that both K-562 and THP-1 cells have multi-fold high levels of HK-II, glucose uptake and endogenous ROS with respect to normal PBMCs. The combined treatment (CT) of 3-BP and DNR showed synergistic effect on the growth inhibition (GI) of K-562 and THP-1 cells. This growth inhibitory effect was attributed to 3-BP induced S-phase block and DNR induced G2/M block, resulted in reduced proliferation due to CT. Further, CT resulted in low HK-II level in mitochondrial fraction, high intracellular calcium and elevated apoptosis as compared with individual treatment of DNR and 3-BP. Moreover, CT caused enhanced DNA damage and hyperpolarized mitochondria, leading to cell death. Taken together, these results suggest that 3-BP synergises the anticancer effects of DNR in the chronic myeloid leukemic cell K-562, and may act as an effective adjuvant to anti-leukemic chemotherapy.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
29 |
6
|
Jae HJ, Chung JW, Park HS, Lee MJ, Lee KC, Kim HC, Yoon JH, Chung H, Park JH. The antitumor effect and hepatotoxicity of a hexokinase II inhibitor 3-bromopyruvate: in vivo investigation of intraarterial administration in a rabbit VX2 hepatoma model. Korean J Radiol 2010; 10:596-603. [PMID: 19885316 PMCID: PMC2770822 DOI: 10.3348/kjr.2009.10.6.596] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 05/15/2009] [Indexed: 12/29/2022] Open
Abstract
Objective The purpose of this study was to compare the antitumor effect and hepatotoxicity of an intraarterial delivery of low-dose and high-dose 3-bromopyruvate (3-BrPA) and those of a conventional Lipiodol-doxorubicin emulsion in a rabbit VX2 hepatoma model. Materials and Methods This experiment was approved by the animal care committee at our institution. VX2 carcinoma was implanted in the livers of 36 rabbits. Transcatheter intraarterial administration was performed using low dose 3-BrPA (25 mL in a 1 mM concentration, n = 10), high dose 3-BrPA (25 mL in a 5 mM concentration, n = 10) and Lipiodol-doxorubicin emulsion (1.6 mg doxorubicin/ 0.4 mL Lipiodol, n = 10), and six rabbits were treated with normal saline alone as a control group. One week later, the proportion of tumor necrosis was calculated based on histopathologic examination. The hepatotoxicity was evaluated by biochemical analysis. The differences between these groups were statistically assessed with using Mann-Whitney U tests and Kruskal-Wallis tests. Results The tumor necrosis rate was significantly higher in the high dose group (93% ± 7.6 [mean ± SD]) than that in the control group (48% ± 21.7) (p = 0.0002), but the tumor necrosis rate was not significantly higher in the low dose group (62% ± 20.0) (p = 0.2780). However, the tumor necrosis rate of the high dose group was significantly lower than that of the Lipiodol-doxorubicin treatment group (99% ± 2.7) (p = 0.0015). The hepatotoxicity observed in the 3-BrPA groups was comparable to that of the Lipiodol-doxorubicin group. Conclusion Even though intraarterial delivery of 3-BrPA shows a dose-related antitumor effect, single session treatment seems to have limited efficacy when compared with the conventional method.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
27 |
7
|
Wen J, Luo Y, Gao H, Zhang L, Wang X, Huang J, Shang T, Zhou D, Wang D, Wang Z, Li P, Wang Z. Mitochondria-targeted nanoplatforms for enhanced photodynamic therapy against hypoxia tumor. J Nanobiotechnology 2021; 19:440. [PMID: 34930284 PMCID: PMC8686264 DOI: 10.1186/s12951-021-01196-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Photodynamic therapy (PDT) is a promising therapeutic modality that can convert oxygen into cytotoxic reactive oxygen species (ROS) via photosensitizers to halt tumor growth. However, hypoxia and the unsatisfactory accumulation of photosensitizers in tumors severely diminish the therapeutic effect of PDT. In this study, a multistage nanoplatform is demonstrated to overcome these limitations by encapsulating photosensitizer IR780 and oxygen regulator 3-bromopyruvate (3BP) in poly (lactic-co-glycolic acid) (PLGA) nanocarriers. Results The as-synthesized nanoplatforms penetrated deeply into the interior region of tumors and preferentially remained in mitochondria due to the intrinsic characteristics of IR780. Meanwhile, 3BP could efficiently suppress oxygen consumption of tumor cells by inhibiting mitochondrial respiratory chain to further improve the generation of ROS. Furthermore, 3BP could abolish the excessive glycolytic capacity of tumor cells and lead to the collapse of ATP production, rendering tumor cells more susceptible to PDT. Successful tumor inhibition in animal models confirmed the therapeutic precision and efficiency. In addition, these nanoplatforms could act as fluorescence (FL) and photoacoustic (PA) imaging contrast agents, effectuating imaging-guided cancer treatment. Conclusions This study provides an ideal strategy for cancer therapy by concurrent oxygen consumption reduction, oxygen-augmented PDT, energy supply reduction, mitochondria-targeted/deep-penetrated nanoplatforms and PA/FL dual-modal imaging guidance/monitoring. It is expected that such strategy will provide a promising alternative to maximize the performance of PDT in preclinical/clinical cancer treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01196-6.
Collapse
|
|
4 |
24 |
8
|
3-Bromopyruvate and sodium citrate induce apoptosis in human gastric cancer cell line MGC-803 by inhibiting glycolysis and promoting mitochondria-regulated apoptosis pathway. Biochem Biophys Res Commun 2016; 475:37-43. [PMID: 27163639 DOI: 10.1016/j.bbrc.2016.04.151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022]
Abstract
Cancer cells are mainly dependent on glycolysis to generate adenosine triphosphate (ATP) and intermediates required for cell growth and proliferation. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Our previously studies had found that both 3-bromopyruvate (BP) and sodium citrate (SCT) can inhibit tumor growth and proliferation in vitro and in vivo. However, the mechanism involved in the BP and SCT mediated antitumor activity is not entirely clear. In this work, it is demonstrated that BP inhibits the enzyme hexokinase (HK) activity and SCT suppresses the phosphofructokinase (PFK) activity respectively, both the two agents decrease viability, ATP generation and lactate content in the human gastric cancer cell line MGC-803. These effects are directly correlated with blockage of glycolysis. Furthermore, BP and SCT can induce the characteristic manifestations of mitochondria-regulated apoptosis, such as down-regulation of anti-apoptosis proteins Bcl-2 and Survivin, up-regulation of pro-apoptosis protein Bax, activation of caspase-3, as well as leakage of cytochrome c (Cyt-c). In summary, our results provided evidences that BP and SCT inhibit the MGC-803 cells growth and proliferation might be correlated with inhibiting glycolysis and promoting mitochondria-regulated apoptosis.
Collapse
|
Journal Article |
9 |
23 |
9
|
Sun X, Sun G, Huang Y, Hao Y, Tang X, Zhang N, Zhao L, Zhong R, Peng Y. 3-Bromopyruvate regulates the status of glycolysis and BCNU sensitivity in human hepatocellular carcinoma cells. Biochem Pharmacol 2020; 177:113988. [PMID: 32330495 DOI: 10.1016/j.bcp.2020.113988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Chloroethylnitrosoureas (CENUs) are bifunctional antitumor alkylating agents, which exert their antitumor activity through inducing the formation of dG-dC interstrand crosslinks (ICLs) within DNA double strand. However, the complex process of tumor biology enables tumor cells to escape the killing triggered by CENUs, as for instance with the detoxifying activity of O6-methylguanine DNA methyltransferase (MGMT) to accomplish DNA damage repair. Considering the fact that most tumor cells highly depend on aerobic glycolysis to provide energy for survival even in the presence of oxygen (Warburg effect), inhibition of aerobic glycolysis may be an attractive strategy to overcome the resistance and improve the chemotherapeutic effects of CENUs. Especially, 3-bromopyruvate (3-BrPA), a small molecule alkylating agent, has been emerged as an effective glycolytic inhibitor (energy blocker) in cancer treatment. In view of its tumor specificity and inhibition on cellular multiple targets, it is likely to reduce the chemoresistance when chemotherapeutic drugs are combined with 3-BrPA. In this study, we investigated the effects of 3-BrPA on the chemosensitivity of two human hepatocellular carcinoma (HCC) cell lines to the cytotoxic effects of l,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and the underlying molecular mechanism. The sensitivity of SMMC-7721 and HepG2 cells to BCNU was significantly increased by 2 h pretreatment with micromolar dosage of 3-BrPA. Moreover, 3-BrPA decreased the cellular ATP and GSH levels, and extracellular lactate excreted by tumor cells, and the effects were more effective when 3-BrPA was combined with BCNU. Cellular hexokinase-II (HK-II) activity was also reduced after exposure to the treatment of 3-BrPA plus BCNU. Based on the above results, the effects of 3-BrPA on the formation of dG-dC ICLs induced by BCNU was investigated by stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The results indicated that BCNU produced higher levels of dG-dC ICLs in SMMC-7721 and HepG2 cells pretreated with 3-BrPA compared to that without 3-BrPA pretreatment. Notably, in MGMT-deficient HepG2 cells, the levels of dG-dC ICLs were significantly higher than MGMT-proficient SMMC-7721 cells. In general, these findings revealed that 3-BrPA, as an effective glycolytic inhibitor, may be considered as a potential clinical chemosensitizer to optimize the therapeutic index of CENUs.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
22 |
10
|
Glick M, Biddle P, Jantzi J, Weaver S, Schirch D. The antitumor agent 3-bromopyruvate has a short half-life at physiological conditions. Biochem Biophys Res Commun 2014; 452:170-3. [PMID: 25152397 DOI: 10.1016/j.bbrc.2014.08.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 01/02/2023]
Abstract
Clinical research is currently exploring the validity of the anti-tumor candidate 3-bromopyruvate (3-BP) as a novel treatment for several types of cancer. However, recent publications have overlooked rarely-cited earlier work about the instability of 3-BP and its decay to 3-hydroxypyruvate (3-HP) which have obvious implications for its mechanism of action against tumors, how it is administered, and for precautions when preparing solutions of 3-BP. This study found the first-order decay rate of 3-BP at physiological temperature and pH has a half-life of only 77 min. Lower buffer pH decreases the decay rate, while choice of buffer and concentration do not affect it. A method for preparing more stable solutions is also reported.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
21 |
11
|
Galina A. Mitochondria: 3-bromopyruvate vs. mitochondria? A small molecule that attacks tumors by targeting their bioenergetic diversity. Int J Biochem Cell Biol 2014; 54:266-71. [PMID: 24842108 DOI: 10.1016/j.biocel.2014.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/03/2014] [Accepted: 05/10/2014] [Indexed: 01/11/2023]
Abstract
Enhanced glycolysis, the classic bioenergetic phenotype of cancer cells was described by Otto Warburg approximately 90 years ago. However, the Warburg hypothesis does not necessarily imply mitochondrial dysfunction. The alkyl-halogen, 3-bromopyruvate (3BP), would not be expected to have selective targets for cancer therapy due to its high potential reactivity toward many SH side groups. Contrary to predictions, 3BP interferes with glycolysis and oxidative phosphorylation in cancer cells without side effects in normal tissues. The mitochondrial hexokinase II has been claimed as the main target. This "Organelle in focus" article presents a historical view of the use of 3BP in biochemistry and its effects on ATP-producing pathways of cancer cells. I will discuss how the alkylated enzymes contribute to the cooperative collapse of mitochondria and apoptosis. Perspectives for targeting 3BP to bioenergetics enzymes for cancer treatment will be considered.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
20 |
12
|
Sadowska-Bartosz I, Szewczyk R, Jaremko L, Jaremko M, Bartosz G. Anticancer agent 3-bromopyruvic acid forms a conjugate with glutathione. Pharmacol Rep 2015; 68:502-5. [PMID: 26922560 DOI: 10.1016/j.pharep.2015.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/10/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND 3-Bromopyruvic acid (3-BP), a glycolytic inhibitor and a promising anticancer compound, induces oxidative stress and depletes cells of glutathione (GSH). The causes of GSH loss remain unclear. The aim of this study was to ascertain whether 3-BP forms a conjugate with glutathione. METHODS GSH was incubated with various amounts of 3-BP and the extent of reaction was titrated with (1)H NMR and (1)H-(1)H NMR. The reaction outcome was identified by MS/MS. Intracellular formation of the conjugate was assessed in cells treated with 3-BP and 3-BP((13)C) and analyzed using the targeted LC-MS/MS method in negative ionization MRM mode. RESULTS 3-BP was found to react with GSH in a 1:1 ratio forming an S-conjugate. The same conjugate was formed intracellularly in erythrocytes and MCF-7 cells. CONCLUSIONS 3-BP reacts with GSH in the absence of cells and intracellularly. This reaction appears to be the main cause of GSH loss in 3-BP treated cells.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
20 |
13
|
Rieber M, Strasberg-Rieber M. p53 inactivation decreases dependence on estrogen/ERK signalling for proliferation but promotes EMT and susceptility to 3-bromopyruvate in ERα+ breast cancer MCF-7 cells. Biochem Pharmacol 2014; 88:169-77. [PMID: 24486524 DOI: 10.1016/j.bcp.2014.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/08/2014] [Accepted: 01/17/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Most breast cancers express the estrogen receptor alpha (ERα(+)), harbor wt TP53, depend on estrogen/ERK signalling for proliferation, and respond to anti-estrogens. However, concomittant activation of the epidermal growth factor receptor (EGFR)/MEK pathway promotes resistance by decreasing estrogen dependence. Previously, we showed that retroviral transduction of mutant p53 R175H into wt TP53 ERα(+) MCF-7 cells induces epidermal growth factor (EGF)-independent proliferation, activation of the EGF receptor (p-EGFR) and some characteristics of epithelial-mesenchymal transition (EMT). PURPOSE To investigate whether p53 inactivation augments ERα(+) cell proliferation in response to restrictive estradiol, chemical MEK inhibition or metabolic inhibitors. RESULTS Introduction of mutant p53 R175H lowered expression of p53-dependent PUMA and p21WAF1, decreased E-cadherin and cytokeratin 18 associated with EMT, but increased the % of proliferating ERα(+)/Ki67 cells, diminishing estrogen dependence. These cells also exhibited higher proliferation in the presence of MEK-inhibitor UO126, reciprocally correlating with preferential susceptibility to the pyruvate analog 3-bromopyruvate (3-BrPA) without a comparable response to 2-deoxyglucose. p53 siRNA silencing by electroporation in wt TP53 MCF-7 cells also decreased estrogen dependence and response to MEK inhibition, while also conferring susceptibility to 3-BrPA. CONCLUSIONS (a) ERα(+) breast cancer cells dysfunctional for TP53 which proliferate irrespective of low estrogen and chemical MEK inhibition are likely to increase metabolic consumption becoming increasingly susceptible to 3-BrPA; (b) targeting the pyruvate pathway may improve response to endocrine therapy in ERα(+) breast cancer with p53 dysfunction.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
15 |
14
|
Pichla M, Sroka J, Pienkowska N, Piwowarczyk K, Madeja Z, Bartosz G, Sadowska-Bartosz I. Metastatic prostate cancer cells are highly sensitive to 3-bromopyruvic acid. Life Sci 2019; 227:212-223. [PMID: 30928407 DOI: 10.1016/j.lfs.2019.03.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
Abstract
AIMS 3-Bromopyruvate (3-BP), an alkylating agent and a glycolytic inhibitor, is a promising anticancer agent, which can be efficient also against multidrug-resistant cancer cells. The aim of this study was to examine how 3-BP affects the survival and mobility of rat (MAT-LyLu and AT-2) and human (DU-145 and PC-3) metastatic prostate cancer cell lines. MAIN METHODS Cytotoxicity was estimated with Neutral Red. Cell mobility was analyzed by time-lapse microscopic monitoring of trajectories of individual cells at 5-min intervals for 6h. ATP was estimated with luciferin/luciferase and glutathione (GSH) with o-phthalaldehyde. Actin cytoskeleton was visualized with phalloidin conjugated with Atto-488. KEY FINDINGS All metastatic prostate cell lines studied were very sensitive to 3-BP (IC50 of 4-26μM). 3-Bromopyruvate drastically reduced cell movement even at concentrations of 5-10μM after 1h treatment. This compound depleted also cellular ATP and GSH, and disrupted actin cytoskeleton. SIGNIFICANCE The data obtained suggest that 3-BP can potentially be useful for treatment of metastatic prostate cancer and, especially, be efficient in limiting metastasis.
Collapse
|
Journal Article |
6 |
14 |
15
|
Petricciuolo M, Davidescu M, Fettucciari K, Gatticchi L, Brancorsini S, Roberti R, Corazzi L, Macchioni L. The efficacy of the anticancer 3-bromopyruvate is potentiated by antimycin and menadione by unbalancing mitochondrial ROS production and disposal in U118 glioblastoma cells. Heliyon 2020; 6:e05741. [PMID: 33364504 PMCID: PMC7753915 DOI: 10.1016/j.heliyon.2020.e05741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/06/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming of tumour cells sustains cancer progression. Similar to other cancer cells, glioblastoma cells exhibit an increased glycolytic flow, which encourages the use of antiglycolytics as an effective complementary therapy. We used the antiglycolytic 3-bromopyruvate (3BP) as a metabolic modifier to treat U118 glioblastoma cells and investigated the toxic effects and the conditions to increase drug effectiveness at the lowest concentration. Cellular vitality was not affected by 3BP concentrations lower than 40 μM, although p-Akt dephosphorylation, p53 degradation, and ATP reduction occurred already at 30 μM 3BP. ROS generated in mitochondria were enhanced at 30 μM 3BP, possibly by unbalancing their generation and their disposal because of glutathione peroxidase inhibition. ROS triggered JNK and ERK phosphorylation, and cyt c release outside mitochondria, not accompanied by caspases-9 and -3 activation, probably due to 3BP-dependent alkylation of cysteine residues at caspase-9 catalytic site. To explore the possibility of sensitizing cells to 3BP treatment, we exploited 3BP effects on mitochondria by using 30 μM 3BP in association with antimycin A or menadione concentrations that in themselves exhibit poor toxicity. 3BP effect on cyt c release and cell vitality loss was potentiated due the greater oxidative stress induced by antimycin or menadione association with 3BP, supporting a preeminent role of mitochondrial ROS in 3BP toxicity. Indeed, the scavenger of mitochondrial superoxide MitoTEMPO counteracted 3BP-induced cyt c release and weakened the potentiating effect of 3BP/antimycin association. In conclusion, the biochemical mechanisms leading U118 glioblastoma cells to viability loss following 3BP treatment rely on mitochondrial ROS-dependent pathways. Their potentiation at low 3BP concentrations is consistent with the goal to minimize the toxic effect of the drug towards non-cancer cells.
Collapse
|
|
5 |
13 |
16
|
Protective and recuperative effects of 3-bromopyruvate on immunological, hepatic and renal homeostasis in a murine host bearing ascitic lymphoma: Implication of niche dependent differential roles of macrophages. Biomed Pharmacother 2018; 99:970-985. [PMID: 29689702 DOI: 10.1016/j.biopha.2018.01.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
3-bromopyruvate (3-BP) possesses promising antineoplastic potential, however, its effects on immunological homeostasis vis a vis hepatic and renal functions in a tumor bearing host remain unclear. Therefore, the effect of 3-BP administration to a murine host bearing a progressively growing tumor of thymoma origin, designated as Dalton's lymphoma (DL), on immunological, renal and hepatic homeostasis was investigated. Administration of 3-BP (4 mg/kg) to the tumor bearing host reversed tumor growth associated thymic atrophy and splenomegaly, accompanied by altered cell survival and repertoire of splenic, bone marrow and tumor associated macrophages (TAM). TAM displayed augmented phagocytic, tumoricidal activities and production of IL-1 and TNF-α. 3-BP-induced activation of TAM was of indirect nature, mediated by IFN-γ. Blood count of T lymphocytes (CD4+ & CD8+) and NK cells showed a rise in 3-BP administered tumor bearing mice. Moreover, 3-BP administration triggered modulation of immunomodulatory cytokines in serum along with refurbished hepatic and renal functions. The study indicates the role of altered cytokines balance, site specific differential macrophage functions and myelopoiesis in restoration of lymphoid organ homeostasis in 3-BP administered tumor bearing host. These observations will have long lasting impact in understanding of alternate mechanisms underlying the antitumor action of 3-BP accompanying appraisal of safety issues for optimizing its antineoplastic actions.
Collapse
|
Journal Article |
7 |
12 |
17
|
Skaripa-Koukelli I, Hauton D, Walsby-Tickle J, Thomas E, Owen J, Lakshminarayanan A, Able S, McCullagh J, Carlisle RC, Vallis KA. 3-Bromopyruvate-mediated MCT1-dependent metabolic perturbation sensitizes triple negative breast cancer cells to ionizing radiation. Cancer Metab 2021; 9:37. [PMID: 34649623 PMCID: PMC8515664 DOI: 10.1186/s40170-021-00273-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/18/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) poses a serious clinical challenge as it is an aggressive form of the disease that lacks estrogen receptor, progesterone receptor, and ERBB2 (formerly HER2) gene amplification, which limits the treatment options. The Warburg phenotype of upregulated glycolysis in the presence of oxygen has been shown to be prevalent in TNBC. Elevated glycolysis satisfies the energy requirements of cancer cells, contributes to resistance to treatment by maintaining redox homeostasis and generating nucleotide precursors required for cell proliferation and DNA repair. Expression of the monocarboxylate transporter 1 (MCT1), which is responsible for the bidirectional transport of lactate, correlates with an aggressive phenotype and poor outcome in several cancer types, including breast cancer. In this study, 3-bromopyruvate (3BP), a lactate/pyruvate analog, was used to selectively target TNBC cells that express MCT1. METHODS The cytotoxicity of 3BP was tested in MTT assays using human TNBC cell lines: BT20 (MCT1+/MCT4-), MDA-MB-23 (MCT1-/MCT4+), and BT20 in which MCT1 was knocked down (siMCT1-BT20). The metabolite profile of 3BP-treated and 3BP-untreated cells was investigated using LC-MS/MS. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of BT20 and MDA-MB-231 cells treated with 3BP were measured using a Seahorse XF96 extracellular flux analyzer. The impact of ionizing radiation on cell survival, alone or in combination with 3BP pre-treatment, was evaluated using clonogenic assays. RESULTS Metabolomic analyses showed that 3BP causes inhibition of glycolysis, disturbance of redox homeostasis, decreased nucleotide synthesis, and was accompanied by a reduction in medium acidification. In addition, 3BP potentiated the cytotoxic effect of ionizing radiation, a treatment that is frequently used in the management of TNBC. CONCLUSIONS Overall, MCT1-mediated metabolic perturbation in combination with radiotherapy is shown to be a promising strategy for the treatment of glycolytic tumors such as TNBC, overcoming the selectivity challenges of targeting glycolysis with glucose analogs.
Collapse
|
research-article |
4 |
10 |
18
|
Guo Y, Liu X, Zhang Y, Qiu H, Ouyang F, He Y. 3-Bromopyruvate ameliorates pulmonary arterial hypertension by improving mitochondrial metabolism. Life Sci 2020; 256:118009. [PMID: 32603819 DOI: 10.1016/j.lfs.2020.118009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
AIMS Abnormal mitochondrial metabolism is an essential factor for excessive proliferation of pulmonary artery smooth muscle cells (PASMCs), which drives the pathological process of pulmonary arterial hypertension (PAH). 3-Bromopyruvate (3-BrPA) is an effective glycolytic inhibitor that improves mitochondrial metabolism, thereby repressing anomalous cell proliferation. MAIN METHODS An experimental PAH model was established by injection of monocrotaline (MCT) in male Sprague Dawley rats, following which rats were assigned to three groups: control, MCT, and 3-BrPA groups. Three days post injection of MCT, rats were treated with 3-BrPA or vehicle for 4 weeks. At the end of the study, hemodynamic data were measured to confirm PAH condition. Indicators of pulmonary arterial and right ventricular (RV) remodeling as well as the proliferative ability of PASMCs were assayed. Additionally, mitochondrial morphology and function, and antiglycolytic and antiproliferative pathways and genes were analyzed. KEY FINDINGS Treatment with 3-BrPA effectively improved pulmonary vascular remodeling and right ventricular function, inhibited PASMC proliferation, and preserved mitochondrial morphology and function. Besides, 3-BrPA treatment inhibited the PI3K/AKT/mTOR pathway and regulated the expression of antiproliferative genes in PASMCs. However, bloody ascites, bloating, and cirrhosis of organs were observed in some 3-BrPA treated rats. SIGNIFICANCE 3-BrPA acts as an important glycolytic inhibitor to improve energy metabolism and reverse the course of PAH. However, 3-BrPA is associated with side effects in MCT-induced rats, indicating that it should be caution in drug delivery dosage, and further studies are needed to evaluate this toxicological mechanism.
Collapse
|
Journal Article |
5 |
9 |
19
|
Ishiguro Y, Kobayashi M, Ideno M, Narumi K, Furugen A, Iseki K. Valproate sensitizes human glioblastoma cells to 3-bromopyruvate-induced cytotoxicity. Int J Pharm 2018; 551:97-102. [PMID: 30138705 DOI: 10.1016/j.ijpharm.2018.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/09/2018] [Accepted: 08/19/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most common brain tumor; however, no effective treatment for it is available yet. Monocarboxylate transporters, which are highly expressed in GBM, play a role in transporting antitumor agents, such as 3-bromopyruvate (3-BrPA). Valproate, primarily used to treat epilepsy, has been considered a possible treatment option for malignant GBM. In this study, we aimed to investigate the combined effects of 3-BrPA and valproate on GBM cell growth and elucidate the underlying mechanisms. Valproate enhanced 3-BrPA-induced cell death in T98G cells, used as a GBM model. Multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP) mRNA levels significantly increased after valproate treatment. 3-BrPA-induced cell death, which was enhanced by valproate, was inhibited in the presence of MK571, a MRP inhibitor, or Ko143, a BCRP inhibitor. In addition, treatment with 3-BrPA and valproate for 48 h reduced cellular ATP levels compared to those in the 3-BrPA alone treatment group. However, cellular ATP levels were recovered in the presence of MK571 or Ko143, compared to those in the 3-BrPA and valproate treatment groups. In conclusion, we suggested that valproate enhanced 3-BrPA-induced cell death. This might be attributable to the increase in cellular ATP consumption owing to valproate-induced MRP2 or BCRP expression.
Collapse
|
Journal Article |
7 |
8 |
20
|
Sołek P, Mytych J, Łannik E, Majchrowicz L, Koszła O, Koziorowska A, Koziorowski M. Cancer on-target: Selective enhancement of 3-bromopyruvate action by an electromagnetic field in vitro. Free Radic Biol Med 2022; 180:153-164. [PMID: 35063649 DOI: 10.1016/j.freeradbiomed.2022.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/25/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
Abstract
Cancer is one of the leading causes of death in the modern world. Nowadays, most often treatment methods used in clinical oncology are drug therapies applied as monotherapy or combined therapy. Additionally, recent studies focus on developing approaches with the use of a drug in combination with other factors, not only chemical, to improve the probability and magnitude of therapeutic responses and reduce the possibility of chemoresistance. Such a promising factor seems to be an electromagnetic field (EMF) application. Here, we tested the effect of continuous or pulsed EMF on human cancer cells of different origin treated or not with 3-bromopyruvate, a small and powerful alkylating agent with a broad spectrum of anticancer activities. We provide strong evidence suggesting that ELF-EMF potentiates the anti-cancer activity of 3BP in human cancer cells through inhibition of TNFα secretion leading to irreversible p21/p27-dependent G2/M cell cycle arrest and finally cancer cell death. Our findings suggest a novel approach combining pharmacotherapy with ELF-EMF. In conclusion, electromagnetic field seems to be a potential modulator of anti-cancer efficacy of 3BP while combined therapy offers off-target activity. These features contribute to the development of innovative therapeutic strategies for cancer treatment.
Collapse
|
|
3 |
8 |
21
|
Sadowska-Bartosz I, Grębowski J, Kępka E, Studzian M, Bartosz G, Pułaski Ł. ABCB1-overexpressing MDCK-II cells are hypersensitive to 3-bromopyruvic acid. Life Sci 2016; 162:138-44. [PMID: 27534909 DOI: 10.1016/j.lfs.2016.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 01/19/2023]
Abstract
AIMS Cancer cells, due to the Warburg effect, are more dependent on glycolysis than normal cells, so glycolytic inhibitor 3-bromopyruvic acid (3-BP) was proposed as a promising candidate for anticancer therapy. Overexpression of multidrug transporters is the main reason of resistance of cancer cells to chemotherapy. As the activity of multidrug transporters imposes an energetic burden on the cells, it can be expected that inhibition of ATP generation may exert a selective cytotoxicity to cells overexpressing multidrug transporters. The aim of this study was to compare the effect of 3-BP on the survival and ATP level in MDCK-II cells and MDCK-II cells overexpressing ABCB1 (Pgp) or ABCG2 (BCRP). MAIN METHODS Cell survival was measured with resazurin and with neutral red. ATP level was assayed with luciferin/luciferase kit. Luteolin transport was measured by an original method described in the paper. KEY FINDINGS 3-BP (10-200μM) induced a decrease of ATP level after 1-h incubation in all cell lines studied, more drastically in ABCB1-overexpressing cells. 50 and 200μM 3-BP significantly decreased cell viability; the effect was more pronounced for ABCB1-overexpressing cells. PSC833, inhibitor of ABCB1, ameliorated the toxic effect of 3-BP on MDCK-II ABCB1 cells and MDCK-II cells. 3-BP inhibited luteolin transport in MDCK-II ABCG2 cells. SIGNIFICANCE These results indicate that 3-BP shows selective toxicity against ABCB1- but not ABCG2-overexpressing cells, apparently due to enhanced ATP depletion but in a manner independent of the transport activity of Pgp, suggesting a novel mechanism of hypersensitivity of ABCB1-overexpressing cells to 3-BP.
Collapse
|
Journal Article |
9 |
8 |
22
|
Effect of methyl jasmonate and 3-bromopyruvate combination therapy on mice bearing the 4 T1 breast cancer cell line. J Bioenerg Biomembr 2020; 52:103-111. [PMID: 31960257 DOI: 10.1007/s10863-019-09811-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022]
Abstract
Cancer cells apply the Warburg pathway to meet their increased metabolic demands caused by their rapid growth and proliferation and also creates an acidic environment to promote cancer cell invasion. 3-bromopyruvate (3-BrP) as an anti-cancer agent disrupts glycolytic pathway. Moreover, one of the mechanism of actions of Methyl Jasmonate (MJ) is interference in glycolysis. Hence, the aim of this study was to evaluate MJ and 3-BrP interaction. MTT assay was used to determine IC50 and synergistic concentrations. Combination index was applied to evaluate the drug- drug interaction. Human tumor xenograft breast cancer mice was used to evaluate drug efficacy in vivo. Tumor size was considered as a drug efficacy criterion. In addition to drug efficacy, probable side effects of these drugs including hepatotoxicity, renal failure, immunotoxicity, and losing weight were evaluated. Serum alanine aminotransferase and aspartate aminotransferase for hepatotoxicity, serum urea and creatinine level for the possibility of renal failure and changes in body weight were measured to evaluate drug toxicity. IL10 and TGFβ secretion in supernatant of isolated splenocytes from treated mice were assessed to check immunotoxicity. 3-BrP synergistically augmented the efficacy of MJ in the specific concentrations. This polytherapy was more effective than monotherapy of 3-BrP, MJ, and also surprisingly cyclophosphamide as a routine treatment for breast cancer in the tumor bearing mice. These results have been shown by decrease in tumor volume and increase of tumor growth inhibition percentage. This combination therapy didn't have any noticeable side effects on kidney, liver, and immune system and body weight.
Collapse
|
Journal Article |
5 |
8 |
23
|
Yu H, Zhu J, Chang L, Liang C, Li X, Wang W. 3-Bromopyruvate decreased kidney fibrosis and fibroblast activation by suppressing aerobic glycolysis in unilateral ureteral obstruction mice model. Life Sci 2021; 272:119206. [PMID: 33577854 DOI: 10.1016/j.lfs.2021.119206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 01/26/2023]
Abstract
AIMS Enhanced aerobic glycolysis is a motivation of fibroblast-myofibroblast transdifferentiation (FMT), leading to kidney fibrosis. 3-Bromopyruvate (3-BrPA) is a glycolysis inhibitor and has fibrosis-protected effect in liver. This study aims to explore the effects of 3-BrPA on aerobic glycolysis and kidney fibrosis in a unilateral ureteral obstruction (UUO) mice model and transforming growth factor-β1(TGF-β1)-stimulated normal rat kidney fibroblast (NRK49F) cell model in vitro. MAIN METHODS In vivo UUO mouse model and in vitro TGF-β1 stimulated cell model were built. Immunohistochemical staining, Western blots, Real-time PCR and fluorescence microscopy were employed to detect extra cellular matrix (ECM) synthesis, fibroblast activation, aerobic glycolysis switch and related signaling pathways. KEY FINDINGS HE and Masson's Trichrome staining showed that 3-BrPA substantially suppressed kidney injury and interstitial collagen production. 3-BrPA also attenuated ECM accumulation in a dose-dependent manner, as shown by immunohistochemistry staining, RT-PCR and western blot. Furthermore, 3-BrPA inhibited FMT, as indicated by α-SMA and PCNA immunofluorescence double staining. Additionally, the results of MTT assay indicated 3-BrPA prevented TGF-β1 induced fibroblasts proliferation in a time- and dose-dependent manner. Mechanistically, molecular docking results showed that 3-BrPA effectively decreased the aerobic glycolysis related enzymes Hexokinase-2 (HK-2), Lactate dehydrogenase A (LDHA) and Pyruvate kinase isozymes M2 (PKM-2), as well as inhibited IL-1 receptor-associated kinase 4 (IRAK4)/MYC protein levels. SIGNIFICANCE Our study highlighted that 3-BrPA is a potential reno-protective agent in kidney fibrosis through the inhibition of fibroblasts aerobic glycolysis might via IRAK4/MYC signal pathways.
Collapse
|
Journal Article |
4 |
5 |
24
|
3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma. Tumour Biol 2015; 37:3543-8. [PMID: 26453119 DOI: 10.1007/s13277-015-3884-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022] Open
Abstract
The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively.
Collapse
|
|
10 |
4 |
25
|
Gomes MT, Paes-Vieira L, Gomes-Vieira AL, Cosentino-Gomes D, da Silva APP, Giarola NLL, Da Silva D, Sola-Penna M, Galina A, Meyer-Fernandes JR. 3-Bromopyruvate: A new strategy for inhibition of glycolytic enzymes in Leishmania amazonensis. Exp Parasitol 2021; 229:108154. [PMID: 34481863 DOI: 10.1016/j.exppara.2021.108154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
The compound 3-bromopyruvate (3-BrPA) is well-known and studies from several researchers have demonstrated its involvement in tumorigenesis. It is an analogue of pyruvic acid that inhibits ATP synthesis by inhibiting enzymes from the glycolytic pathway and oxidative phosphorylation. In this work, we investigated the effect of 3-BrPA on energy metabolism of L. amazonensis. In order to verify the effect of 3-BrPA on L. amazonensis glycolysis, we measured the activity level of three glycolytic enzymes located at different points of the pathway: (i) glucose kinases, step 1, (ii) glyceraldehyde 3-phosphate dehydrogenase (GAPDH), step 6, and (iii) enolase, step 9. 3-BrPA, in a dose-dependent manner, significantly reduced the activity levels of all the enzymes. In addition, 3-BrPA treatment led to a reduction in the levels of phosphofruto-1-kinase (PFK) protein, suggesting that the mode of action of 3-BrPA involves the downregulation of some glycolytic enzymes. Measurement of ATP levels in promastigotes of L. amazonensis showed a significant reduction in ATP generation. The O2 consumption was also significantly inhibited in promastigotes, confirming the energy depletion effect of 3-BrPA. When 3-BrPA was added to the cells at the beginning of growth cycle, it significantly inhibited L. amazonensis proliferation in a dose-dependent manner. Furthermore, the ability to infect macrophages was reduced by approximately 50% when promastigotes were treated with 3-BrPA. Taken together, these studies corroborate with previous reports which suggest 3-BrPA as a potential drug against pathogenic microorganisms that are reliant on glucose catabolism for ATP supply.
Collapse
|
|
4 |
3 |