Chen YY, Lin Q, Zhang YM, Yao H, Wei TB, Fan YQ, Guan XW, Gong GF, Zhou Q. Rationally introduce AIE into chemosensor: A novel and efficient way to achieving ultrasensitive multi-guest sensing.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019;
218:263-270. [PMID:
31003051 DOI:
10.1016/j.saa.2019.04.014]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Recently, ultrasensitive detection and multi-guest sensing have received extensive attention due to their high sensitivity and efficiency. Herein, we report a novel approach to achieve ultrasensitive detection of multi-analyte. This approach is concluded as "rationally introduce Aggregation-Induced Emission (AIE) into chemosensor". According to this approach, by rationally introducing self-assembly moiety, the obtained chemosensor DNS could serve as a novel AIEgen and show strong AIE in DMSO/H2O (water fraction 80%) binary solution. Interestingly, a simple fluorescent sensor array based on the DNS has been developed. This sensor array could selectively sense Fe3+, Al3+, H2PO4- and L-Arg in water solution. More importantly, this sensor array shows ultrasensitive detection for Fe3+, Al3+ and L-Arg. The LODs of the sensor array for Fe3+, Al3+ and L-Arg are in the range of 3.54×10-9M to 9.42×10-9M. Moreover, H2PO4- could realize the reversible detection of Fe3+ in the DMSO/H2O (water fraction 80%) solution. Meanwhile, DNS-based test papers and thin films were prepared, which could serve as test kits for convenient detection Fe3+, Al3+, and L-Arg in water. In addition, they could also act as efficient erasable fluorescent display materials.
Collapse