Tan Y, Ouyang Y, Ma Z, Huang J, Tan C, Qiu J, Wu F. Mitochondrial Quality Control Systems in Septic AKI: Molecular Mechanisms and Therapeutic Implications.
Int J Med Sci 2025;
22:1852-1864. [PMID:
40225865 PMCID:
PMC11983313 DOI:
10.7150/ijms.107012]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/05/2025] [Indexed: 04/15/2025] Open
Abstract
Objectives: Despite significant advancements in medical treatments, the creation of a successful treatment strategy for acute kidney injury (AKI) remains a pressing concern. Given the well-documented clinical benefits of canagliflozin in renal protection, our research focused on exploring the possible therapeutic benefits of canagliflozin in treating AKI, with a focus on its underlying mechanisms of action. Methods: To induce AKI, we utilized lipopolysaccharide (LPS) in the presence of canagliflozin, allowing us to assess the drug's effects on kidney function and structure. Results: Our results indicate that canagliflozin lowered blood urea nitrogen and serum creatinine concentrations while enhancing tubular architecture in rodents with LPS-triggered septic AKI. It additionally diminished inflammation, oxidative damage, and tubular cell apoptosis. In vitro, canagliflozin maintained mitochondrial functionality in LPS-exposed HK-2 cells by stabilizing membrane potential, reducing ROS generation, and normalizing respiratory chain activity. Its benefits were facilitated through the AMPKα1/PGC1α/NRF1 axis, promoting mitochondrial regeneration. Importantly, blocking this pathway or employing AMPKα1-deficient animals negated canagliflozin's protective effects, highlighting the essential role of AMPKα1 in its kidney-protective mechanisms. Conclusion: Our investigation implies that canagliflozin might represent a viable treatment strategy for septic AKI, operating through the stimulation of the AMPKα1/PGC1α/NRF1 axis to preserve kidney performance and structural integrity. These findings warrant further investigation into the clinical potential of canagliflozin in this context.
Collapse