Magariño DE, Turel O, He Q. Bilateral intraparietal activation for number tasks in studies using an
adaptation paradigm: A meta-analysis.
Neuroscience 2022;
490:296-308. [PMID:
35276305 DOI:
10.1016/j.neuroscience.2022.02.024]
[Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/20/2022] [Indexed: 01/29/2023]
Abstract
Mathematical processing is important for professional successes. The Adaptation Paradigm has been widely used to study the brain underpinnings of mathematical processing. In this study, we aim at shedding light on an important component of mathematical processing, namely numerical cognition. To do so, we performed a meta-analysis using the Activation Likelihood Estimation method on studies that have employed the Adaptation Paradigm for examining numerical cognition. We found a bilateral Intraparietal Sulcus (IPS) activation in studies using both symbolic and non-symbolic stimuli formats. We also found a right lateralized brain activation for the non-symbolic condition and a left lateralized brain activation for the symbolic condition. These results imply that the Adaptation Paradigm likely targets numeric magnitude processing and confirms the potency of this paradigm to activate the Intraparietal Sulcus.
Collapse