Ruggieri R, Bianchi N, Gurrera D, Naccarato S, Borgese RF, Simone AD, Sicignano G, Stavrev P, Stavreva N, Pellegrini R, Rigo M, Ricchetti F, Nicosia L, Giaj-Levra N, Pastorello E, Allegra A, De-Colle C, Alongi F. Validation of a Monte Carlo-based dose calculation engine including the 1.5 T magnetic field for independent dose-check in MRgRT.
Phys Med 2025;
130:104906. [PMID:
39842321 DOI:
10.1016/j.ejmp.2025.104906]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
PURPOSE
Adaptive MRgRT by 1.5 T MR-linac requires independent verification of the plan-of-the-day by the primary TPS (MonacoTM) (M). Here we validated a Monte Carlo-based dose-check including the magnetostatic field, SciMoCaTM (S).
METHODS
M and S were validated first in water, by comparison with commissioning-dosimetry. PDD(2x2cm2) through a lung(air)-equivalent virtual-slab was then calculated. Clinical validation retrospectively included 161 SBRT plans, from five patients per-site: Pelvic-Nodes, Prostate, Liver, Pancreas, and Lungs. S-minus-M percentage differences (Δ%) were computed for target- and OARs-related dose-volume metrics. In-phantom dose verification per-patient was performed.
RESULTS
γ(2 %,1mm)-passing-rates (PR%) of in-water-computed PDD and transverse-dose-profiles vs. commissioning-dosimetry were (99.1 ± 2.0)% for M, and (99.3 ± 1.5)% for S. Calculated output-factors (OF) were typically within 1 % from measurements, except for OF(1x1cm2) which was misestimated by -4.4 % and + 2.2 %, by M and S respectively. Dose spikes (valleys) on the PDD(2x2cm2) by S across the lung-equivalent virtual-slab were slightly reduced with respect to M. In clinical plans, S computed higher V95% (p <0.05*, for pancreas and lung) and D2% (p <0.05*, for all sites) for the target, while D%>2% resulted for duodenal D(1cm3), in Pancreas-SBRT, and for mean-lung-dose, in Lung-SBRT. All mostly due to the underestimated OF(1x1cm2) by M. In-phantom dose verifications showed an average 1% increase in PR% by S vs. M.
CONCLUSIONS
Beam-model quality in S resulted equivalent to M, thus making S useful both for an independent validation of the same beam-model in M, and for a daily validation of the M-based online approval decisions, without significantly delaying the clinical workflow (2-3 min).
Collapse