1
|
Sheng L, Hu X, Du Y, Zhang G, Huang H, Scheres B, Xu L. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development 2017; 144:3126-3133. [PMID: 28743799 PMCID: PMC5611959 DOI: 10.1242/dev.152132] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022]
Abstract
Lateral roots (LRs), which originate from the growing root, and adventitious roots (ARs), which are formed from non-root organs, are the main contributors to the post-embryonic root system in Arabidopsis. However, our knowledge of how formation of the root system is altered in response to diverse inductive cues is limited. Here, we show that WOX11 contributes to root system plasticity. When seedlings are grown vertically on medium, WOX11 is not expressed in LR founder cells. During AR initiation, WOX11 is expressed in AR founder cells and activates LBD16. LBD16 also functions in LR formation and is activated in that context by ARF7/19 and not by WOX11. This indicates that divergent initial processes that lead to ARs and LRs may converge on a similar mechanism for primordium development. Furthermore, we demonstrated that when plants are grown in soil or upon wounding on medium, the primary root is able to produce both WOX11-mediated and non-WOX11-mediated roots. The discovery of WOX11-mediated root-derived roots reveals a previously uncharacterized pathway that confers plasticity during the generation of root system architecture in response to different inductive cues. Summary: Root system development can respond flexibly to developmental and environmental cues by utilizing WOX11-mediated and non-WOX11-mediated pathways, which converge on a common mechanism for primordium development involving LBD16.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
60 |
2
|
Guan L, Tayengwa R, Cheng ZM, Peer WA, Murphy AS, Zhao M. Auxin regulates adventitious root formation in tomato cuttings. BMC PLANT BIOLOGY 2019; 19:435. [PMID: 31638898 PMCID: PMC6802334 DOI: 10.1186/s12870-019-2002-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/30/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Adventitious root (AR) formation is a critical developmental process in cutting propagation for the horticultural industry. While auxin has been shown to regulate this process, the exact mechanism and details preceding AR formation remain unclear. Even though AR and lateral root (LR) formation share common developmental processes, there are exist some differences that need to be closely examined at the cytological level. Tomato stem cuttings, which readily form adventitious roots, represent the perfect system to study the influence of auxin on AR formation and to compare AR and LR organogenesis. RESULTS Here we show the progression by which AR form from founder cells in the basal pericycle cell layers in tomato stem cuttings. The first disordered clumps of cells assumed a dome shape that later differentiated into functional AR cell layers. Further growth resulted in emergence of mature AR through the epidermis following programmed cell death of epidermal cells. Auxin and ethylene levels increased in the basal stem cutting within 1 h. Tomato lines expressing the auxin response element DR5pro:YFP showed an increase in auxin distribution during the AR initiation phase, and was mainly concentrated in the meristematic cells of the developing AR. Treatment of stem cuttings with auxin, increased the number of AR primordia and the length of AR, while stem cuttings treated with the pre-emergent herbicide/auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) occasionally developed thick, agravitropic AR. Hormone profile analyses showed that auxin positively regulated AR formation, whereas perturbations to zeatin, salicylic acid, and abscisic acid homeostasis suggested minor roles during tomato stem rooting. The gene expression of specific auxin transporters increased during specific developmental phases of AR formation. CONCLUSION These data show that AR formation in tomato stems is a complex process. Upon perception of a wounding stimulus, expression of auxin transporter genes and accumulation of auxin at founder cell initiation sites in pericycle cell layers and later in the meristematic cells of the AR primordia were observed. A clear understanding and documentation of these events in tomato is critical to resolve AR formation in recalcitrant species like hardwoods and improve stem cutting propagation efficiency and effectiveness.
Collapse
|
research-article |
6 |
43 |
3
|
Liu W, Yu J, Ge Y, Qin P, Xu L. Pivotal role of LBD16 in root and root-like organ initiation. Cell Mol Life Sci 2018; 75:3329-3338. [PMID: 29943076 PMCID: PMC11105430 DOI: 10.1007/s00018-018-2861-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/17/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022]
Abstract
In the post-embryonic stage of Arabidopsis thaliana, roots can be initiated from the vascular region of the existing roots or non-root organs; they are designated as lateral roots (LRs) and adventitious roots (ARs), respectively. Some root-like organs can also be initiated from the vasculature. In tissue culture, auxin-induced callus, which is a group of pluripotent root-primordium-like cells, is formed via the rooting pathway. The formation of feeding structures from the vasculature induced by root-knot nematodes also borrows the rooting pathway. In this review, we summarize and discuss recent progress on the role of LATERAL ORGAN BOUNDARIES DOMAIN16 (LBD16; also known as ASYMMETRIC LEAVES2-LIKE18, ASL18), a member of the LBD/ASL gene family encoding plant-specific transcription factors, in roots and root-like organ initiation. Different root and root-like organ initiation processes have distinct priming mechanisms to specify founder cells. All these priming mechanisms converge to activate LBD16 expression in the primed founder cells. The activation of LBD16 expression leads to organ initiation via promotion of cell division and establishment of root-primordium identity. Therefore, LBD16 might play a common and pivotal role in root and root-like organ initiation.
Collapse
|
Review |
7 |
42 |
4
|
Eysholdt‐Derzsó E, Sauter M. Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:103-108. [PMID: 29996004 PMCID: PMC6585952 DOI: 10.1111/plb.12873] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/09/2018] [Indexed: 05/17/2023]
Abstract
Soil water-logging and flooding are common environmental stress conditions that can impair plant fitness. Roots are the first organs to be confronted with reduced oxygen tension as a result of flooding. While anatomical and morphological adaptations of roots are extensively studied, the root system architecture is only now becoming a focus of flooding research. Adventitious root (AR) formation shifts the root system higher up the plant, thereby facilitating supply with oxygen, and thus improving root and plant survival. We used Arabidopsis knockout mutants and overexpressors of ERFVII transcription factors to study their role in AR formation under hypoxic conditions and in response to ethylene. Results show that ethylene inhibits AR formation. Hypoxia mainly promotes AR elongation rather than formation mediated by ERFVII transcription factors, as indicated by reduced AR elongation in erfVII seedlings. Overexpression of HRE2 induces AR elongation to the same degree as hypoxia, while ethylene overrides HRE2-induced AR elongation. The ERFVII transcription factors promote establishment of an AR system that is under negative control by ethylene. Inhibition of growth of the main root system and promotion of AR elongation under hypoxia strengthens the root system in upper soil layers where oxygen shortage may last for shorter time periods.
Collapse
|
research-article |
6 |
39 |
5
|
Li F, Sun C, Li X, Yu X, Luo C, Shen Y, Qu S. The effect of graphene oxide on adventitious root formation and growth in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:122-129. [PMID: 29870863 DOI: 10.1016/j.plaphy.2018.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 05/26/2023]
Abstract
Graphene, a new type of nanomaterial, has unique physical properties and important potential biological applications. However, few studies have been conducted on the environmental impact of graphene. Therefore, to explore the effect of graphene on plants, three-week-old, tissue-cultured 'Gala' apple plants (Malus domestica) were treated with different concentrations (0, 0.1, 1, 10 mg/L) of graphene oxide (GO) and examined after 40 days. Results indicated that adventitious root length, moisture content and the number of lateral roots were all inhibited by 0.1-10 mg/L GO. At 0.1 and 1 mg/L GO, however, the number of adventitious roots and the rooting rate exhibited a significant increase, relative to the control (no GO). Treatment with GO increased the activities of oxidative stress enzymes including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in the apple plants, relative to controls. Malondialdehyde (MDA) levels were also significantly decreased at 10 mg/L GO. Treatment of apple plantlets with 0.1 mg/L GO increased the transcript abundance of auxin efflux carrier (PIN7, ABCB1) genes and auxin influx carrier (LAX2, LAX3) genes but inhibited the transcript levels of the ARR3 gene, which involved in cytokinin biosynthesis. Additionally, the transcript levels of ARRO1, ARF19, and TTG1, which play roles in the formation of adventitious roots, lateral roots, and root hairs, respectively, were all decreased in response to treatment with 1 and 10 mg/L GO. Collectively, the results indicate that treatment of 'Gala' apple plants with 0.1 mg/L GO had a positive effect on root formation but a negative effect on root growth. This response may be related to the negative impact of GO on cellular structure and function.
Collapse
|
|
7 |
32 |
6
|
Subramaniyam S, Mathiyalagan R, Natarajan S, Kim YJ, Jang MG, Park JH, Yang DC. Transcript expression profiling for adventitious roots of Panax ginseng Meyer. Gene 2014; 546:89-96. [PMID: 24831831 DOI: 10.1016/j.gene.2014.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/26/2014] [Accepted: 05/07/2014] [Indexed: 02/06/2023]
Abstract
Panax ginseng Meyer is one of the major medicinal plants in oriental countries belonging to the Araliaceae family which are the primary source for ginsenosides. However, very few genes were characterized for ginsenoside pathway, due to the limited genome information. Through this study, we obtained a comprehensive transcriptome from adventitious roots, which were treated with methyl jasmonic acids for different time points (control, 2h, 6h, 12h, and 24h) and sequenced by RNA 454 pyrosequencing technology. Reference transcriptome 39,304,529 (0.04GB) was obtained from 5,724,987,880 bases (5.7GB) of 22 libraries by de novo assembly and 35,266 (58.5%) transcripts were annotated with biological schemas (GO and KEGG). The digital gene expression patterns were obtained from in vitro grown adventitious root sequences which mapped to reference, from that, 3813 (6.3%) unique transcripts were involved in ≥2 fold up and downregulations. Finally, candidates for ginsenoside pathway genes were predicted from observed expression patterns. Among them, 30 transcription factors, 20 cytochromes, and 11 glycosyl transferases were predicted as ginsenoside candidates. These data can remarkably expand the existing transcriptome resources of Panax, especially to predict existence of gene networks in P. ginseng. The entity of the data provides a valuable platform to reveal more on secondary metabolism and abiotic stresses from P. ginseng in vitro grown adventitious roots.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
29 |
7
|
Li SW, Zeng XY, Leng Y, Feng L, Kang XH. Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:332-341. [PMID: 29890434 DOI: 10.1016/j.ecoenv.2018.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
In vitro experiments were performed to determine whether auxin can mediate the formation of adventitious roots in response to heavy metal and drought stresses using a model rooting plant, mung bean [Vigna radiata (L.) Wilczek]. The treatments with CdCl2 or mannitol alone significantly inhibited the formation and growth of adventitious roots in mung bean seedlings. In contrast, when CdCl2 or mannitol was applied together with indole-3-butyric acid (IBA), IBA considerably cancelled the inhibition of adventitious rooting by stresses. Treatment with CdCl2 or mannitol alone significantly increased the soluble protein and malondialdehyde (MDA) contents. CdCl2 and mannitol stress each induced differentially significant changes in the activities of antioxidative enzyme and antioxidant levels during adventitious rooting. Notably, both CdCl2 and mannitol stress strongly reduced the peroxidase (POD) and ascorbate peroxidase (APX) activities and glutathione (GSH) and phenols levels. Catalase and superoxide dismutase (SOD) activity were enhanced by CdCl2 but reduced by mannitol. CdCl2 increased the ascorbate acid (ASA) level, which was decreased by mannitol. Furthermore, when CdCl2 or mannitol was applied together with IBA, IBA counteracted the CdCl2- or mannitol-induced increase or decrease in certain antioxidants, MDA, and antioxidative enzymes. These results suggest that Cd and mannitol stress inhibition of adventitious rooting is associated with the regulation of antioxidative enzymes and antioxidants in cells to defense the oxidative stress. Moreover, IBA alleviates the effects of Cd and mannitol stress on the rooting process partially through the regulation of antioxidative defense systems.
Collapse
|
|
7 |
20 |
8
|
Ribeiro CL, Silva CM, Drost DR, Novaes E, Novaes CRDB, Dervinis C, Kirst M. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus. BMC PLANT BIOLOGY 2016; 16:66. [PMID: 26983547 PMCID: PMC4793515 DOI: 10.1186/s12870-016-0753-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/06/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. RESULTS Parental individuals and progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7-10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. CONCLUSIONS This study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of the Trp pathway flux appears to be directed to the synthesis of indole glucosinolates (IG), as suggested by the over-expression of SUR2. Individuals that are efficient in AR formation may utilize alternative (non-Trp) pathways to synthesize IAA, based on the observation that they down-regulate the expression of TSA1, one of the critical steps in the synthesis of tryptophan.
Collapse
|
research-article |
9 |
19 |
9
|
Wan Q, Zhai N, Xie D, Liu W, Xu L. WOX11: the founder of plant organ regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:1. [PMID: 36596978 PMCID: PMC9810776 DOI: 10.1186/s13619-022-00140-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023]
Abstract
De novo organ regeneration is the process in which adventitious roots or shoots regenerate from detached or wounded organs. De novo organ regeneration can occur either in natural conditions, e.g. adventitious root regeneration from the wounded sites of detached leaves or stems, or in in-vitro tissue culture, e.g. organ regeneration from callus. In this review, we summarize recent advances in research on the molecular mechanism of de novo organ regeneration, focusing on the role of the WUSCHEL-RELATED HOMEOBOX11 (WOX11) gene in the model plant Arabidopsis thaliana. WOX11 is a direct target of the auxin signaling pathway, and it is expressed in, and regulates the establishment of, the founder cell during de novo root regeneration and callus formation. WOX11 activates the expression of its target genes to initiate root and callus primordia. Therefore, WOX11 links upstream auxin signaling to downstream cell fate transition during regeneration. We also discuss the role of WOX11 in diverse species and its evolution in plants.
Collapse
|
review-article |
2 |
19 |
10
|
Yang C, Xu M, Xuan L, Jiang X, Huang M. Identification and expression analysis of twenty ARF genes in Populus. Gene 2014; 544:134-44. [PMID: 24786213 DOI: 10.1016/j.gene.2014.04.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
The auxin response factor (ARF) family of transcription factors is a crucial component of auxin signaling and plays important roles regulating numerous growth and developmental processes in plants. We isolated and characterized 20 ARF genes involved in adventitious root development of Populus. Multiple protein sequence alignments revealed that the PeARF proteins contained a highly conserved region in their N-terminal portion corresponding to the DNA-binding domain of the Arabidopsis ARF family. Except for PeARF3.1, PeARF3.2, PeARF17.1 and PeARF17.2, the PeARF proteins contained a carboxyl-terminal domain related to the Arabidopsis domains III and IV, which are involved in homo- and heterodimerization. The exon-intron structures of the PeARF genes were determined by aligning cDNA and genomic sequences. As expected, most PeARF genes had a similar distribution of exon-intron structures. Temporal expression patterns of these genes were profiled during adventitious root development. All 20 PeARF genes were expressed in root, stem and leaf in a dynamic manner. Transient expression assays with Populus protoplasts demonstrated that these PeARFs were localized to the nucleus. These results suggest that PeARFs may play diverse regulatory roles in adventitious root development of Populus and contribute to improving our understanding of conserved and divergent aspects of auxin signaling in various species.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
18 |
11
|
Lin C, Ogorek LLP, Pedersen O, Sauter M. Oxygen in the air and oxygen dissolved in the floodwater both sustain growth of aquatic adventitious roots in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1879-1890. [PMID: 33206163 DOI: 10.1093/jxb/eraa542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/11/2020] [Indexed: 05/25/2023]
Abstract
Flooding is an environmental stress that leads to a shortage of O2 that can be detrimental for plants. When flooded, deepwater rice grow floating adventitious roots to replace the dysfunctional soil-borne root system, but the features that ensure O2 supply and hence growth of aquatic roots have not been explored. We investigate the sources of O2 in aquatic adventitious roots and relate aerenchyma and barriers for gas diffusion to local O2 gradients, as measured by microsensor technology, to link O2 distribution in distinct root zones to their anatomical features. The mature root part receives O2 exclusively from the stem. It has aerenchyma that, together with suberin and lignin depositions at the water-root and cortex-stele interfaces, provides a path for longitudinal O2 movement toward the tip. The root tip has no diffusion barriers and receives O2 from the stem and floodwater, resulting in improved aeration of the root tip over mature tissues. Local formation of aerenchyma and diffusion barriers in the mature root channel O2 towards the tip which also obtains O2 from the floodwater. These features explain aeration of floating roots and their ability to grow under water.
Collapse
|
|
4 |
15 |
12
|
Dong CJ, Liu XY, Xie LL, Wang LL, Shang QM. Salicylic acid regulates adventitious root formation via competitive inhibition of the auxin conjugation enzyme CsGH3.5 in cucumber hypocotyls. PLANTA 2020; 252:75. [PMID: 33026530 DOI: 10.1007/s00425-020-03467-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Exogenous SA treatment at appropriate concentrations promotes adventitious root formation in cucumber hypocotyls, via competitive inhibiting the IAA-Asp synthetase activity of CsGH3.5, and increasing the local free IAA level. Adventitious root formation is critical for the cutting propagation of horticultural plants. Indole-3-acetic acid (IAA) has been shown to play a central role in regulating this process, while for salicylic acid (SA), its exact effects and regulatory mechanism have not been elucidated. In this study, we showed that exogenous SA treatment at the concentrations of both 50 and 100 µM promoted adventitious root formation at the base of the hypocotyl of cucumber seedlings. At these concentrations, SA could induce the expression of CYCLIN and Cyclin-dependent Kinase (CDK) genes during adventitious rooting. IAA was shown to be involved in SA-induced adventitious root formation in cucumber hypocotyls. Exposure to exogenous SA led to a slight increase in the free IAA content, and pre-treatment with the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) almost completely abolished the inducible effects of SA on adventitious root number. SA-induced IAA accumulation was also associated with the enhanced expression of Gretchen Hagen3.5 (CsGH3.5). The in vitro enzymatic assay indicated that CsGH3.5 has both IAA- and SA-amido synthetase activity and prefers aspartate (Asp) as the amino acid conjugate. The Asp concentration dictated the functional activity of CsGH3.5 on IAA. Both affinity and catalytic efficiency (Kcat/Km) increased when the Asp concentration increased from 0.3 to 1 mM. In contrast, CsGH3.5 showed equal catalytic efficiency for SA at low and high Asp concentrations. Furthermore, SA functioned as a competitive inhibitor of the IAA-Asp synthetase activity of CsGH3.5. During adventitious formation, SA application indeed repressed the IAA-Asp levels in the rooting zone. These data show that SA plays an inducible role in adventitious root formation in cucumber through competitive inhibition of the auxin conjugation enzyme CsGH3.5. SA reduces the IAA conjugate levels, thereby increasing the local free IAA level and ultimately enhancing adventitious root formation.
Collapse
|
|
5 |
15 |
13
|
Yamauchi T, Abe F, Kawaguchi K, Oyanagi A, Nakazono M. Adventitious roots of wheat seedlings that emerge in oxygen-deficient conditions have increased root diameters with highly developed lysigenous aerenchyma. PLANT SIGNALING & BEHAVIOR 2014; 9:e28506. [PMID: 24690588 PMCID: PMC4091475 DOI: 10.4161/psb.28506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 05/04/2023]
Abstract
Exposing roots of plants to hypoxic conditions is known to greatly improve their anoxic stress tolerance. We previously showed that pre-treatment of wheat seedlings with an ethylene precursor, 1-aminocyclopropanecarboxylic acid (ACC), enhanced their tolerance of oxygen-deficient conditions. Although ACC-pretreated seminal roots of wheat seedlings grown under oxygen-deficient conditions avoided root tip death, they elongated very little. In the present study, we assessed the effects of ethylene on the responses of adventitious roots of wheat seedlings to oxygen-deficient conditions. Lysigenous aerenchyma formation in the adventitious roots of wheat seedlings pretreated with ACC appeared to reduce tip death under oxygen-deficient conditions, but the adventitious roots, like the seminal roots, hardly elongated. We also found that adventitious roots that emerge in oxygen-deficient conditions continued to elongate even under such conditions. The adventitious roots emerged in oxygen-deficient conditions were found to have thicker root diameters than those emerged in aerated conditions. These results suggest that the adventitious roots with thicker root diameters can better cope with oxygen-deficient conditions. Measurements of the area of the lysigenous aerenchyma confirmed that the increased root diameters have a greater amount of air space generated by lysigenous aerenchyma formation.
Collapse
|
brief-report |
11 |
14 |
14
|
Li K, Liu Z, Xing L, Wei Y, Mao J, Meng Y, Bao L, Han M, Zhao C, Zhang D. miRNAs associated with auxin signaling, stress response, and cellular activities mediate adventitious root formation in apple rootstocks. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:66-81. [PMID: 30878839 DOI: 10.1016/j.plaphy.2019.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/27/2019] [Accepted: 03/05/2019] [Indexed: 05/09/2023]
Abstract
Adventitious root (AR) formation is essential for the vegetative propagation of apple rootstocks. miRNAs play a significant role in regulating AR development, however, large-scale transcriptomic data on miRNA mediated AR formation in apple rootstocks is lacking. Therefore, in order to identify the molecular mechanisms underlying AR formation in 'M9-T337' apple rootstocks, transcriptomic changes occurring during key time points of AR formation (0, 3, and 16 days) were analyzed using high-throughput sequencing with a focus on miRNAs. A total of 84 known miRNAs and 56 novel miRNAs have differentially expressed were identified. Additionally, a total of 88 target genes of known miRNAs and 76 target genes of novel miRNAs were identified by degradome sequencing. The expression levels of the miRNAs and target genes were quantified by RT-qPCR. Results indicate that miRNAs and their target genes are associated with auxin signal-related (miR160 and miR390), stress response-related (miR398, miR395 and miR408), cell fate transformation-, proliferation- and enlargement-related (miR171, miR156, miR166, miR319 and miR396). These all involve pathways that participate in AR formation in 'M9-T337' apple rootstock. In addition, hormones (AUX, CTK, GA3, BR, JA, and ABA) are also involved in regulating AR formation. The candidate genes belonging to pathways associated with AR formation exhibited significantly higher expression levels, providing evidence that they may be involved in the regulation of AR development. The collective results of the present study indicate that the developmental process associated with AR formation in apple rootstock is extremely complex. The known and novel miRNAs and target genes that were identified by high-throughput and degradome sequencing, respectively, provide a framework for the future analysis of miRNAs associated with AR development in apple rootstocks, and provide new information that can be used to better understand AR development in woody plants.
Collapse
|
|
6 |
12 |
15
|
Liu R, Wen SS, Sun TT, Wang R, Zuo WT, Yang T, Wang C, Hu JJ, Lu MZ, Wang LQ. PagWOX11/12a positively regulates the PagSAUR36 gene that enhances adventitious root development in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7298-7311. [PMID: 36001042 DOI: 10.1093/jxb/erac345] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Adventitious root (AR) development is an extremely complex biological process that is affected by many intrinsic factors and extrinsic stimuli. Some WUSCHEL-related homeobox (WOX) transcription factors have been reported to play important roles in AR development, but their functional relationships with auxin signaling are poorly understood, especially the developmental plasticity of roots in response to adversity stress. Here, we identified that the WOX11/12a-SMALL AUXIN UP RNA36 (SAUR36) module mediates AR development through the auxin pathway in poplar, as well as under salt stress. PagWOX11/12a displayed inducible expression during AR development, and overexpression of PagWOX11/12a significantly promoted AR development and increased salt tolerance in poplar, whereas dominant repression of PagWOX11/12a produced the opposite phenotype. PagWOX11/12a proteins directly bind to the SAUR36 promoter to regulate SAUR36 transcription, and this binding was enhanced during salt stress. Genetic modification of PagWOX11/12a-PagSAUR36 expression revealed that the PagWOX11/12a-PagSAUR36 module is crucial for controlling AR development via the auxin pathway. Overall, our results indicate that a novel WOX11-SAUR-auxin signaling regulatory module is required for AR development in poplar. These findings provide key insights and a better understanding of the involvement of WOX11 in root developmental plasticity in saline environments.
Collapse
|
|
3 |
12 |
16
|
Liu J, Chen T, Zhang J, Li C, Xu Y, Zheng H, Zhou J, Zha L, Jiang C, Jin Y, Nan T, Yi J, Sun P, Yuan Y, Huang L. Ginsenosides regulate adventitious root formation in Panax ginseng via a CLE45-WOX11 regulatory module. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6396-6407. [PMID: 32794554 DOI: 10.1093/jxb/eraa375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Adventitious root branching is vital to plant growth and regeneration, but the regulation of this process remains unclear. We therefore investigated how ginsenosides regulate adventitious root branching in Panax ginseng. Cell proliferation and adventitious root branching were decreased in the presence of ginsenoside Rb1 and a high concentration of ginsenoside Re, but increased when treating with a low concentration of Re. Moreover, the exogenous application of a synthetic dodeca-amino acid peptide that has a CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) motif corresponding to PgCLE45 retarded root growth in both ginseng and Arabidopsis. The root Re levels and the expression of the DDS, CYP716A47, and CYP716A53 genes that encode enzymes involved in ginsenoside synthesis were decreased in the presence of PgCLE45. The expression profiles of PgWOX and PgCLE genes were determined to further investigate the CLE-WOX signaling pathway. The levels of PgWOX11 transcripts showed an inverse pattern to PgCLE45 transcripts. Using yeast one-hybrid assay, EMSA, and ChIP assay, we showed that PgWOX11 bound to the PgCLE45 promoter, which contained the HD motif. Transient expression assay showed that PgWOX11 induced the expression of PgCLE45 in adventitious roots, while PgCLE45 suppressed the expression of PgWOX11. These results suggest that there is a negative feedback regulation between PgCLE45 and PgWOX11. Taken together, these data show that ginsenosides regulate adventitious root branching via a novel PgCLE45-PgWOX11 regulatory loop, providing a potential mechanism for the regulation of adventitious root branching.
Collapse
|
|
5 |
11 |
17
|
Wang H, Li K, Sun X, Xie Y, Han X, Zhang S. Isolation and characterization of larch BABY BOOM2 and its regulation of adventitious root development. Gene 2018; 690:90-98. [PMID: 30597235 DOI: 10.1016/j.gene.2018.12.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
The BABY BOOM2 gene, designated LkBBM2, and its promoter were isolated from hybrid larch (Larix kaempferi × L. olgensis). The open reading frame of LkBBM2 was 2574 bp, encoding 857 amino acids. The LkBBM2 protein contains two AP2 DNA binding domains and a BBM specific motif, but lacks the euANT5 motif common to AP2 family members. The LkBBM2 promoter contains several hormone response and root-specific expression elements. LkBBM2 expression was significantly higher in larch adventitious roots (ARs) than in stems, leaves or stem tips, and increased after auxin treatment. The fused protein LkBBM2-GFP was localized in both the nucleus and cytoplasm whereas LkBBM1-GFP was only localized in the nucleus. Over-expression of LkBBM2 and LkBBM1 in Arabidopsis significantly elongated the roots. Furthermore, over-expression those two genes in the hybrid poplar (Populus alba × P. glandulosa) significantly increased ARs number. We speculated that these two genes regulate AR development.
Collapse
|
Journal Article |
7 |
11 |
18
|
Kou N, Xiang Z, Cui W, Li L, Shen W. Hydrogen sulfide acts downstream of methane to induce cucumber adventitious root development. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:113-120. [PMID: 29890390 DOI: 10.1016/j.jplph.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 05/05/2023]
Abstract
Previous results have shown that hydrogen sulfide (H2S), mainly catalyzed by l-cysteine desulfhydrase (DES) in plants, triggers adventitious rooting. The objective of this study was to test whether H2S is involved in methane (CH4)-induced adventitious root development in cucumber explants. First, we observed that the activities of DES, endogenous H2S production, and thereafter adventitious root development were induced by CH4 and NaHS (an H2S donor). Some responses were sensitive to hypotaurine (HT; a scavenger of H2S), showing that endogenous H2S production and adventitious rooting were obviously blocked. The development of adventitious root primordia was also impaired. Further molecular evidence revealed that CH4-induced gene expression of CsDNAJ-1, CsCDPK1, CsCDPK5, CsCDC6 (a cell-division-related gene), CsAux22D-like, and CsAux22B-like (two auxin-signaling genes), several molecular markers responsible for adventitious rooting, were blocked by the co-treatment with HT. The occurrence of CH4-elicited S-sulfhydration during the above responses was also sensitive to the removal of endogenous H2S, suggesting the requirement of H2S. Taken together, our results reveal a vital role of endogenous H2S in CH4-triggered cucumber adventitious root development, and thus provide a comprehensive window into the complex signaling transduction pathway in CH4-mediated root organogenesis.
Collapse
|
|
7 |
10 |
19
|
Joshi M, Fogelman E, Belausov E, Ginzberg I. Potato root system development and factors that determine its architecture. JOURNAL OF PLANT PHYSIOLOGY 2016; 205:113-123. [PMID: 27669493 DOI: 10.1016/j.jplph.2016.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/27/2016] [Accepted: 08/28/2016] [Indexed: 05/21/2023]
Abstract
The potato root system is often characterized as shallow and inefficient, with poor ability to extract water and minerals from the soil. Potato root system architecture (RSA) refers to its 3-dimensional structure as determined by adventitious root (AR) growth and branching through lateral roots (LR). Understanding how the root system develops holds potential to increase plant yield and optimize agricultural land use. Root system development was monitored in greenhouse-grown potato while a root-on-a-plate assay was developed to explore factors that affect AR and LR development. Expression study of LR-related genes was conducted. Transgenic plants carrying DR5:GFP and CycB1:GUS reporter genes were used to monitor auxin signaling and cell division during root primordia formation, respectively. Maximum root development occurred mainly during the 6-week post seed-tuber planting and slowed during the onset of tuberization. AR and LR development was coordinated - a positive correlation was found between the length of AR and LR and between LR length and number. The expression of LR-related genes was higher in LR than in AR. High nitrate levels reduced LR number and length, however ablation of root-cap by high temperature (33°C) or cutting resulted with enhanced formation of LR. Growth conditions affect AR and LR development in potato, determining the final architecture of its root system. The overall results indicate that LR formation in potato follows similar pattern as in model plants, facilitating study and manipulation of its RSA to improve soil exploitation and yield.
Collapse
|
|
9 |
9 |
20
|
Zhang J, Zhou T, Zhang C, Zheng W, Li J, Jiang W, Xiao C, Wei D, Yang C, Xu R, Gong A, Bi Y. Gibberellin disturbs the balance of endogenesis hormones and inhibits adventitious root development of Pseudostellaria heterophylla through regulating gene expression related to hormone synthesis. Saudi J Biol Sci 2021; 28:135-147. [PMID: 33424290 PMCID: PMC7783660 DOI: 10.1016/j.sjbs.2020.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/30/2022] Open
Abstract
The adventitious roots of some plants will develop into tuberous roots which are widely used in many traditional Chinese medicines, including Pseudostellaria heterophylla. If adventitious root development is inhibited, the yield of Chinese medicinal materials will be reduced. Gibberellic acid is an important phytohormone that promotes plant growth and increases the resistance to drought, flood or disease. However, the effects of gibberellic acid on adventitious roots of Pseudostellaria heterophylla are not clear. Here, we reports GA3 suppressed adventitious root development of Pseudostellaria heterophylla by disturbing the balance of endogenesis hormones. By detecting the contents of various endogenous hormones, we found that the development of adventitious roots negatively correlated with the content of CA3 in tuberous roots. Exogenous GA3 treatment decreased the diameter of adventitious roots, but increased the length of adventitious roots of Pseudostellaria heterophylla. In contrast, blocking the biosynthesis of GA3 suppressed stem growth and promoted the xylem of tuberous roots development. Moreover, exogenous GA3 treatment resulted in imbalance of endogenesis hormones by regulating their synthesis-related genes expression in xylem of tuberous roots. These results suggest GA3 broke the established distribution of hormones by regulating synthesis, transport and biological activation of hormones to activate the apical meristem and suppress lateral meristem. Regulating GA3 signaling during adventitious roots development would be one of the possible ways to increase the yield of P. heterophylla.
Collapse
|
|
4 |
9 |
21
|
Zhang JY, Bae TW, Boo KH, Sun HJ, Song IJ, Pham CH, Ganesan M, Yang DH, Kang HG, Ko SM, Riu KZ, Lim PO, Lee HY. Ginsenoside Production and Morphological Characterization of Wild Ginseng (Panax ginseng Meyer) Mutant Lines Induced by γ-irradiation ((60)Co) of Adventitious Roots. J Ginseng Res 2013; 35:283-93. [PMID: 23717071 PMCID: PMC3659537 DOI: 10.5142/jgr.2011.35.3.283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 11/30/2022] Open
Abstract
With the purpose of improving ginsenoside content in adventitious root cultures of Korean wild ginseng (Panax ginseng Meyer), the roots were treated with different dosages of γ-ray (5, 10, 25, 50, 75, 100, and 200 Gy). The growth of adventitious roots was inhibited at over 100 Gy. The irradiated adventitious roots showed significant variation in the morphological parameters and crude saponin content at 50 to100 Gy. Therefore, four mutant cell lines out of the propagation of 35 cell lines treated with 50 Gy and 100 Gy were selected on the basis of phenotypic morphology and crude saponin contents relative to the wild type control. The contents of 7 major ginsenosides (Rg1, Re, Rb1, Rb2, Rc, Rf, and Rd) were determined for cell lines 1 and 3 from 100 Gy and lines 2 and 4 from 50 Gy treatments. Cell line 2 showed more secondary roots, longer length and superior growth rate than the root controls in flasks and bioreactors. Cell line 1 showed larger average diameter and the growth rate in the bioreactor was comparable with that of the control but greater in the flask cultured roots. Cell lines 1 and 2, especially the former, showed much more ginsenoside contents than the control in flasks and bioreactors. Therefore, we chose cell line 1 for further study of ginsenoside contents. The crude saponin content of line 1 in flask and bioreactor cultures increased by 1.4 and 1.8-fold, respectively, compared to the control. Total contents of 7 ginsenoside types (Rg1, Re, Rb1, Rb2, Rc, Rf, and Rd) increased by 1.8 and 2.3-fold, respectively compared to the control. Crude saponin and ginsenoside contents in the bioreactor culture increased by about 1.4-fold compared to that the flask culture.
Collapse
|
Journal Article |
12 |
8 |
22
|
Sang YL, Cheng ZJ, Zhang XS. Endogenous auxin biosynthesis and de novo root organogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4011-3. [PMID: 27402616 PMCID: PMC5301942 DOI: 10.1093/jxb/erw250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
other |
9 |
8 |
23
|
Xu X, Wang K, Pan J, Chen X. Small RNA sequencing identifies cucumber miRNA roles in waterlogging-triggered adventitious root primordia formation. Mol Biol Rep 2019; 46:6381-6389. [PMID: 31538299 DOI: 10.1007/s11033-019-05084-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
The formation of adventitious roots (ARs) is a key morphological adaptation of cucumber (Cucumis sativus L.) to waterlogging stress. MicroRNAs (miRNAs) constitute a group of non-coding small RNAs (sRNA) that play crucial roles in regulating diverse biological processes, including waterlogging acclimation. However, which specific miRNAs and how they are involved in waterlogging-triggered de novo AR primordia formation are not fully known. Here, Illumina sRNA sequencing was applied to sequence six sRNA libraries generated from the waterlogging-tolerant cucumber Zaoer-N after 48 h of waterlogging and the control. A total of 358 cucumber miRNAs, 312 known and 46 novel, were obtained. Among them, 23 were differentially expressed, with 10 and 13 being up- and downregulated, respectively. A qPCR expression study confirmed that the identified differentially expressed miRNAs were credible. A total of 657 putative miRNA target genes were predicted for the 23 miRNAs using an in silico approach. A gene ontology enrichment analysis revealed that target genes functioning in cell redox homeostasis, cytoskeleton, photosynthesis and cell growth were over-represented. In total, 58 of the 657 target genes showed inverse expression patterns compared with their respective miRNAs through a combined analysis of sRNA- and RNA-sequencing-based transcriptome datasets using the same experimental design. The target gene annotation included a peroxidase, a GDSL esterases/lipase and two heavy metal-associated isoprenylated plant proteins. Our results provide an important framework for understanding the unique miRNA patterns seen in responses to waterlogging and the miRNA-mediated formation of de novo AR primordia in cucumber.
Collapse
|
Journal Article |
6 |
8 |
24
|
Miao GP, Han J, Zhang JF, Zhu CS, Zhang X. A MDR transporter contributes to the different extracellular production of sesquiterpene pyridine alkaloids between adventitious root and hairy root liquid cultures of Tripterygium wilfordii Hook.f. PLANT MOLECULAR BIOLOGY 2017; 95:51-62. [PMID: 28733871 DOI: 10.1007/s11103-017-0634-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/14/2017] [Indexed: 05/11/2023]
Abstract
TwMDR1 transports sesquiterpene pyridine alkaloids, wilforine and wilforgine, into the hairy roots of T. wilfordii Hook.f. resulting in low secretion ratio of alkaloids. Hairy roots (HRs) exhibit high growth rate and biochemical and genetic stability. However, varying secondary metabolites in HR liquid cultures mainly remain in root tissues, and this condition may affect cell growth and cause inconvenience in downstream extraction. Studies pay less attention to adventitious root (AR) liquid cultures though release ratio of some metabolites in AR liquid cultures is significantly higher than that of HR. In Tripterygium wilfordii Hook.f., release ratio of wilforine in AR liquid cultures reached 92.75 and 13.32% in HR on day 15 of culture. To explore potential roles of transporters in this phenomenon, we cloned and functionally identified a multidrug resistance (MDR) transporter, TwMDR1, which shows high expression levels in HRs and is correlated to transmembrane transportation of alkaloids. Nicotiana tabacum cells with overexpressed TwMDR1 efficiently transported wilforine and wilforgine in an inward direction. To further prove the feasibility of genetically engineered TwMDR1 and improve alkaloid production, we performed a transient RNAi experiment on TwMDR1 in T. wilfordii Hook.f. suspension cells. Results indicated that release ratios of wilforine and wilforgine increased by 1.94- and 1.64-folds compared with that of the control group, respectively. This study provides bases for future studies that aim at increasing secretion ratios of alkaloids in root liquid cultures in vitro.
Collapse
|
|
8 |
7 |
25
|
Wang Y, Pang D, Ruan L, Liang J, Zhang Q, Qian Y, Zhang Y, Bai P, Wu L, Cheng H, Cui Q, Wang L, Wei K. Integrated transcriptome and hormonal analysis of naphthalene acetic acid-induced adventitious root formation of tea cuttings (Camellia sinensis). BMC PLANT BIOLOGY 2022; 22:319. [PMID: 35787241 PMCID: PMC9251942 DOI: 10.1186/s12870-022-03701-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Tea plant breeding or cultivation mainly involves propagation via cuttings, which not only ensures the inheritance of the excellent characteristics of the mother plant but also facilitates mechanized management. The formation of adventitious root (AR) determines the success of cutting-based propagation, and auxin is an essential factor involved in this process. To understand the molecular mechanism underlying AR formation in nodal tea cuttings, transcriptome and endogenous hormone analysis was performed on the stem bases of red (mature)- and green (immature)-stem cuttings of 'Echa 1 hao' tea plant as affected by a pulse treatment with naphthalene acetic acid (NAA). RESULTS In this study, NAA significantly promoted AR formation in both red- and green-stem cuttings but slightly reduced callus formation. External application of NAA reduced the levels of endogenous indole-3-acetic acid (IAA) and cytokinin (TZR, trans-zeatin riboside). The number of DEGs (NAA vs. CK) identified in the green-stem cuttings was significantly higher than that in the red-stem cuttings, which corresponded to a higher rooting rate of green-stem cuttings under the NAA treatment. A total of 82 common DEGs were identified as being hormone-related and involved in the auxin, cytokinin, abscisic acid, ethylene, salicylic acid, brassinosteroid, and jasmonic acid pathways. The negative regulation of NAA-induced IAA and GH3 genes may explain the decrease of endogenous IAA. NAA reduced endogenous cytokinin levels and further downregulated the expression of cytokinin signalling-related genes. By the use of weighted gene co-expression network analysis (WGCNA), several hub genes, including three [cellulose synthase (CSLD2), SHAVEN3-like 1 (SVL1), SMALL AUXIN UP RNA (SAUR21)] that are highly related to root development in other crops, were identified that might play important roles in AR formation in tea cuttings. CONCLUSIONS NAA promotes the formation of AR of tea cuttings in coordination with endogenous hormones. The most important endogenous AR inductor, IAA, was reduced in response to NAA. DEGs potentially involved in NAA-mediated AR formation of tea plant stem cuttings were identified via comparative transcriptome analysis. Several hub genes, such as CSLD2, SVL1 and SAUR21, were identified that might play important roles in AR formation in tea cuttings.
Collapse
|
research-article |
3 |
7 |