1
|
Benelli G. Mode of action of nanoparticles against insects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12329-12341. [PMID: 29611126 DOI: 10.1007/s11356-018-1850-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/20/2018] [Indexed: 05/14/2023]
Abstract
The employment of nanoparticles obtained through various synthesis routes as novel pesticides recently attracted high research attention. An impressive number of studies have been conducted to test their toxic potential against a wide number of arthropod pests and vectors, with major emphasis on mosquitoes and ticks. However, precise information on the mechanisms of action of nanoparticles against insects and mites are limited, with the noteworthy exception of silica, alumina, silver, and graphene oxide nanoparticles on insects, while no information is available for mites. Here, I summarize current knowledge about the mechanisms of action of nanoparticles against insects. Both silver and graphene oxide nanoparticles have a significant impact on insect antioxidant and detoxifying enzymes, leading to oxidative stress and cell death. Ag nanoparticles also reduced acetylcholinesterase activity, while polystyrene nanoparticles inhibited CYP450 isoenzymes. Au nanoparticles can act as trypsin inhibitors and disrupt development and reproduction. Metal nanoparticles can bind to S and P in proteins and nucleic acids, respectively, leading to a decrease in membrane permeability, therefore to organelle and enzyme denaturation, followed by cell death. Besides, Ag nanoparticles up- and downregulate key insect genes, reducing protein synthesis and gonadotrophin release, leading to developmental damages and reproductive failure. The toxicity of SiO2 and Al2O3 nanoparticles is due to their binding to the insect cuticle, followed by physico-sorption of waxes and lipids, leading to insect dehydration. In the final section, insect nanotoxicology research trends are critically discussed, outlining major challenges to predict the ecotoxicological consequences arising from the real-world use of nanoparticles as pesticides.
Collapse
|
Review |
7 |
138 |
2
|
Zhang H, Jiao W, Cui H, Sun Q, Fan H. Combined exposure of alumina nanoparticles and chronic stress exacerbates hippocampal neuronal ferroptosis via activating IFN-γ/ASK1/JNK signaling pathway in rats. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125179. [PMID: 33858114 DOI: 10.1016/j.jhazmat.2021.125179] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Alumina nanoparticles (AlNPs) exposure causes hippocampal-dependent cognitive dysfunction. However, whether chronic stress exacerbates AlNPs-induced hippocampal lesion and its mechanism remains unclear. This study was aimed to investigate the combined effects and mechanisms of AlNPs and chronic stress on the hippocampal lesion. The behavioral tests demonstrated that combined exposure to AlNPs and chronic restraint stress (CRS) worsened both cognition and depression-like behavior than exposed to AlNPs and CRS alone. Microstructural and ultrastructural observations showed that combined exposure to AlNPs and CRS exacerbated hippocampal damage. Both AlNPs and CRS induced hippocampal neuronal ferroptosis, presenting as iron and glutamate metabolism disorder, GPX4 fluorescence of neurons decrease, LPO and ROS levels increase, and FJB-positive neurons increase. Meanwhile, combined exposure to AlNPs and CRS exacerbated hippocampal neuronal ferroptosis. Mechanism investigation revealed that combined exposure to AlNPs and CRS activated IFN-γ/ASK1/JNK signaling pathway. Furthermore, IFN-γ neutralizing antibody R4-6A2 effectively inhibited the activation of IFN-γ/ASK1/JNK signaling pathway, alleviated hippocampal neuronal ferroptosis and improved cognition ability. ASK1 inhibitor GS-4997 also improved hippocampal neuronal ferroptosis and cognitive dysfunction by inhibiting ASK1/JNK signaling pathway. Together, these results demonstrate that combined exposure to AlNPs and CRS exacerbates hippocampal neuronal ferroptosis via activating IFN-γ/ASK1/JNK signaling pathway.
Collapse
|
|
4 |
58 |
3
|
Chu TPM, Nguyen NT, Vu TL, Dao TH, Dinh LC, Nguyen HL, Hoang TH, Le TS, Pham TD. Synthesis, Characterization, and Modification of Alumina Nanoparticles for Cationic Dye Removal. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E450. [PMID: 30717156 PMCID: PMC6384569 DOI: 10.3390/ma12030450] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 11/25/2022]
Abstract
In the present study, alumina nanoparticles (nano-alumina) which were successfully fabricated by solvothermal method, were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), and Brunauer⁻Emmett⁻Teller (BET) methods. The removal of cationic dye, Rhodamine B (RhB), through adsorption method using synthesized nano-alumina with surface modification by anionic surfactant was also investigated. An anionic surfactant, sodium dodecyl sulfate (SDS) was used to modify nano-alumina surface at low pH and high ionic strength increased the removal efficiency of RhB significantly. The optimum adsorption conditions of contact time, pH, and adsorbent dosage for RhB removal using SDS modified nano-alumina (SMNA) were found to be 120 min, pH 4, and 5 mg/mL respectively. The RhB removal using SMNA reached a very high removal efficiency of 100%. After four times regeneration of adsorbent, the removal efficiency of RhB using SMNA was still higher than 86%. Adsorption isotherms of RhB onto SMNA at different salt concentrations were fitted well by a two-step model. A very high adsorption capacity of RhB onto SMNA of 165 mg/g was achieved. Adsorption mechanisms of RhB onto SMNA were discussed on the basis of the changes in surface modifications, the change in surface charges and adsorption isotherms.
Collapse
|
research-article |
6 |
51 |
4
|
Zhang H, Wang J, Ruan C, Gao Z, Zhu Q, Li S. Co-exposure of chronic stress and alumina nanoparticles aggravates hippocampal microglia pyroptosis by activating cathepsin B/NLRP3 signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129093. [PMID: 35569374 DOI: 10.1016/j.jhazmat.2022.129093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Combined exposure of chronic stress and alumina nanoparticles (AlNPs) aggravates hippocampal injury, but the pathogenesis is unevaluated. This study aimed to investigate the effect and mechanism of co-exposure to chronic stress and AlNPs on hippocampal microglia pyroptosis. In this study, chronic restraint stress (CRS) alone caused NLRP3-mediated hippocampal microglia pyroptosis, but AlNPs did not. Moreover, co-exposure to CRS and AlNPs exacerbated hippocampal microglia pyroptosis, resulting in more severe hippocampal damage and behavioral deficits in rats. Protein-protein interaction network predicted that cathepsin B was a potential regulatory protein of NLRP3. CRS up-regulated cathepsin B expression which had a more pronounced increase in co-exposure group. Whereas, caspase-1 inhibitor VX-765 alleviated hippocampal microglia pyroptosis and behavioral deficits in rats. Consistent with in vivo results, co-exposure of corticosterone and AlNPs aggravated NLRP3-mediated pyroptosis and cathepsin B expression in HAPI cells. Nevertheless, the pyroptosis of HAPI cells was inhibited by cathepsin B inhibitor CA-074Me and NLRP3 knockout, respectively. NLRP3 agonist nigericin failed to promote the pyroptosis of HAPI cells in the presence of cathepsin B inhibition. These results demonstrated that co-exposure to chronic stress and AlNPs could aggravate hippocampal microglia pyroptosis by activating cathepsin B/NLRP3 signaling pathway, resulting in hippocampal damage and behavioral deficits.
Collapse
|
|
3 |
12 |
5
|
Mu D, Mu X, Xu Z, Du Z, Chen G. Removing Bacillus subtilis from fermentation broth using alumina nanoparticles. BIORESOURCE TECHNOLOGY 2015; 197:508-511. [PMID: 26364829 DOI: 10.1016/j.biortech.2015.08.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 05/28/2023]
Abstract
In this study, an efficient separation technology using Al2O3 nanoparticles (NPs) was developed for removing Bacillus subtilis from fermentation broth. The dosage of alumina nanoparticles used for separating B. subtilis increased during the culture process and remained stable in the stationary phase of the culture process. The pH of the culture-broth was also investigated for its effects on flocculation efficiency, and showed an acidic pH could enhance the flocculation efficiency. The attachment mechanisms of Al2O3 NPs to the B. subtilis surface were investigated, and the zeta potential analysis showed that Al2O3 NPs could attach to B. subtilis via electrostatic attachment. Finally, the metabolite content and the antibacterial effect of the fermentation supernatants were detected and did not significantly differ between alumina nanoparticle separation and centrifugation separation. Together, these results indicate a great potential for a highly efficient and economical method for removing B. subtilis from fermentation broth using alumina nanoparticles.
Collapse
|
|
10 |
10 |
6
|
Abou-Zeid SM, Elkhadrawey BA, Anis A, AbuBakr HO, El-Bialy BE, Elsabbagh HS, El-Borai NB. Neuroprotective effect of sesamol against aluminum nanoparticle-induced toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53767-53780. [PMID: 34037932 DOI: 10.1007/s11356-021-14587-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Alumina nanoparticles (ALNPs) are widely used causing neurobehavioral impairment in intoxicated animals and humans. Sesamol (SML) emerged as a natural phytochemical with potent antioxidant and anti-inflammatory properties. However, no study has directly tested the potential of SML to protect against AlNP-induced detrimental effects on the brain. AlNPs (100 mg/kg) were orally administered to rats by gavage with or without oral sesamol (100 mg/kg) for 28 days. In AlNP-intoxicated group, the brain AChE activity was elevated. The concentrations of MDA and 8-OHdG were increased suggesting lipid peroxidation and oxidative DNA damage. GSH depletion with inhibited activities of CAT and SOD were demonstrated. Serum levels of IL-1β and IL-6 were elevated. The expressions of GST, TNF-α, and caspase-3 genes in the brain were upregulated. Histopathologically, AlNPs induced hemorrhages, edema, neuronal necrosis, and/or apoptosis in medulla oblongata. The cerebellum showed loss of Purkinje cells, and the cerebrum showed perivascular edema, neuronal degeneration, necrosis, and neuronal apoptosis. However, concomitant administration of SML with AlNPs significantly ameliorated the toxic effects on the brain, reflecting antioxidant, anti-inflammatory, and anti-apoptotic effects of SML. Considering these results, sesamol could be a promising phytochemical with neuroprotective activity against AlNP-induced neurotoxicity.
Collapse
|
|
4 |
6 |
7
|
Anchupogu P, Rao LN, Banavathu B. Effect of alumina nano additives into biodiesel-diesel blends on the combustion performance and emission characteristics of a diesel engine with exhaust gas recirculation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23294-23306. [PMID: 29869214 DOI: 10.1007/s11356-018-2366-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
In the present study, the combined effect of alumina nanoparticles into the Calophyllum inophyllum biodiesel blend and exhaust gas recirculation on the combustion, performance, and emission characteristics of a diesel engine was investigated. The alumina (Al2O3) nanoparticles with the mass fraction of 40 ppm were dispersed into the C. inophyllum biodiesel blend (20% of C. inophyllum biodiesel + 80% of diesel (CIB20)) by the ultrasonication process. Further, the exhaust gas recirculation was adopted to control the oxides of nitrogen (NOx) emissions of a diesel engine. The experiments were conducted on a single cylinder diesel engine with the diesel, CIB20, 20% of C. inophyllum biodiesel + 80% of diesel + 40 ppm Al2O3 nanoparticles (CIB20ANP40), CIB20 + 20% exhaust gas recirculation (EGR), and CIB20ANP40 + 20% EGR fuel samples at different load conditions. The results reveal that brake thermal efficiency of CIB20ANP40 fuel increased by 5.04 and 7.71% compared to the CIB20 and CIB20ANP40 + 20% EGR fuels, respectively. The addition of alumina nanoparticles to the CIB20 fuel, CO, and hydrocarbon (HC) emissions were was reduced compared to the CIB20 fuel. The smoke opacity was decreased with the addition of alumina nanoparticles to the CIB20 fuel by 7.3% compared to the CIB20 fuel. The NOx emissions for the CIB20ANP40 + 20% EGR fuel was decreased by 36.84, 31.53, and 17.67% compared to the CIB20, CIB20ANP40, and CIB20 + 20% EGR fuel samples at full load condition.
Collapse
|
Evaluation Study |
7 |
6 |
8
|
Zhang S, Chu Q, Zhang Z, Xu Y, Mao X, Zhang M. Responses of Caenorhabditis elegans to various surface modifications of alumina nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116335. [PMID: 33383418 DOI: 10.1016/j.envpol.2020.116335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 05/24/2023]
Abstract
The surface modifications of nanoparticles (NPs), are well-recognized parameters that affect the toxicity, while there has no study on toxicity of Al2O3 NPs with different surface modification. Therefore, for the first time, this study pays attention to evaluating the toxicity and potential mechanism of pristine Al2O3 NPs (p-Al2O3), hydrophilic (w-Al2O3) and lipophilic (o-Al2O3) modifications of Al2O3 NPs both in vitro and in vivo. Applied concentrations of 10, 20, 40, 80,100 and 200 μg/mL for 24 h exposure on Caenorhabditis elegans (C. elegans), while 100 μg/mL of Al2O3 NPs significantly decreased the survival rate. Using multiple toxicological endpoints, we found that o-Al2O3 NPs (100 μg/mL) could induce more severe toxicity than p-Al2O3 and w-Al2O3 NPs. After uptake by C. elegans, o-Al2O3 NPs increased the intestinal permeability, easily swallow and further destroy the intestinal membrane cells. Besides, cytotoxicity evaluation revealed that o-Al2O3 NPs (100 μg/mL) are more toxic than p-Al2O3 and w-Al2O3. Once inside the cell, o-Al2O3 NPs could attack mitochondria and induce the over-production of reactive oxygen species (ROS), which destroy the intracellular redox balance and lead to apoptosis. Furthermore, the transcriptome sequencing and RT-qPCR data also demonstrated that the toxicity of o-Al2O3 NPs is highly related to the damage of cell membrane and the imbalance of intracellular redox. Generally, our study has offered a comprehensive sight to the adverse effects of different surface modifications of Al2O3 NPs on environmental organisms and the possible underlying mechanisms.
Collapse
|
|
4 |
5 |
9
|
Fan R, Chen J, Gao X, Zhang Q. Neurodevelopmental toxicity of alumina nanoparticles to zebrafish larvae: Toxic effects of particle sizes and ions. Food Chem Toxicol 2021; 157:112587. [PMID: 34592389 DOI: 10.1016/j.fct.2021.112587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
The aim of this study was to explore the mechanism of neurodevelopmental toxicity of alumina nanoparticles (AlNPs) on zebrafish larvae, specifically, the toxic effects of AlNPs of different particle sizes and of dissolved aluminum ions. AlNPs with sizes of 13 nm (13 nm-Al) and 50 nm (50 nm-Al) were used as the main research objects; while nanocarbon particles with sizes of 13 nm (13 nm-C) and 50 nm (50 nm-C) as particle-size controls; and an aluminum chloride solution (Al3+) as an ion control. Zebrafish embryos were exposed to different treatments from 6 h post-fertilization (hpf) to 168 hpf. Deformities were observed at different time points. Neurodevelopmental behavior tests were carried out, and oxidative stress responses and transcriptional alterations in autophagy-related genes were assessed. Malformations occurred in the 13 nm-Al, 50 nm-Al, and Al3+ treated groups at different developmental stages of zebrafish larval, but no malformations were observed in the 13 nm-C or 50 nm-C groups. In addition, the average speed, distance travelled and thigmotaxis in zebrafish larvae decreased in the AlNPs treated group, and the effects were related to the particle sizes. Furthermore, increases in the oxidative stress response and autophagy-related genes expression were also related to the particle sizes of AlNPs as well. In conclusion, the mechanism underlying the neurodevelopmental toxicity of AlNPs on zebrafish larvae mainly depended on the size of the nanoparticles, and dissolved Al3+ also contributes to the toxic effects.
Collapse
|
|
4 |
3 |
10
|
Arain ZUA, Aftab A, Ali M, Altaf M, Sarmadivaleh M. Influence of stearic acid and alumina nanofluid on CO 2 wettability of calcite substrates: Implications for CO 2 geological storage in carbonate reservoirs. J Colloid Interface Sci 2023; 646:567-575. [PMID: 37210904 DOI: 10.1016/j.jcis.2023.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
HYPOTHESIS Atmospheric CO2 emissions trigger global warming and climate change challenges. Thus, geological CO2 storage appears to be the most viable choice to mitigate CO2 emissions in the atmosphere. However, the adsorption capacity of reservoir rock in the presence of diverse geological conditions, including organic acids, temperature, and pressure, can cause reduced certainty for CO2 storage and injection problems. Wettability is critical in measuring the adsorption behavior of rock in various reservoir fluids and conditions. EXPERIMENT We systematically evaluated the CO2-wettability of calcite substrates at geological conditions (323 K and 0.1, 10, and 25 MPa) in the presence of stearic acid (a replicate realistic reservoir organic material contamination). Similarly, to reverse the effects of organics on wettability, we treated calcite substrates with various alumina nanofluid concentrations (0.05, 0.1, 0.25, and 0.75 wt%) and evaluated the CO2-wettability of calcite substrates at similar geological conditions. FINDINGS Stearic acid profoundly affects the contact angle of calcite substrates where wettability shifts from intermediate to CO2-wet conditions, reducing the CO2 geological storage potential. The treatment of organic acid-aged calcite substrates with alumina nanofluid reversed the wettability to a more hydrophilic state, increasing CO2 storage certainty. Further, the optimum concentration displaying the optimum potential for changing the wettability in organic acid-aged calcite substrates was 0.25 wt%. The effect of organics and nanofluids should be augmented to improve the feasibility of CO2 geological projects at the industrial scale for reduced containment security.
Collapse
|
|
2 |
|
11
|
Demirtürk Z, Uçkan F. The effects of alumina and polystyrene nanoparticles on global DNA methylation, antimicrobial peptides and intergenerational inheritance of Galleria mellonella. Drug Chem Toxicol 2025:1-14. [PMID: 40160162 DOI: 10.1080/01480545.2025.2483970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The epigenetic and immunological effects of nanoparticles (NPs), which have started to be described as nano-pollutants today, are of great interest in living organisms. Particularly alumina (Al) and polystyrene (PS) are among the most produced NPs. Galleria mellonella larvae, an ideal model for the multi-generational effects of these NPs on global DNA methylation and the immune system, were used in the experiments. Al-NPs were bought, and PS-NPs were produced by the single emulsion solvent evaporation method. Al and PS-NPs were administered to larvae at different concentrations by changing only the water content in the diet. Global DNA methylation levels in the first and second generations were determined by HPLC. The expression levels of β-actin, transferrin, galiomycin, and p38 MAPK genes which constitute antimicrobial peptides, one of the humoral immune responses, were determined by RT-qPCR in two generations. The data obtained revealed that Al and PS-NPs increased global DNA methylation, and partially suppressed humoral immune responses. Furthermore, changes in genomic DNA methylation and immune-related gene expression levels induced by NPs in first generation larvae were found to be inherited by the next generation. Considering the importance of multigenerational epigenetic effects and changes in the immune system, our study results contribute to the literature and reveal the importance of such studies.
Collapse
|
|
1 |
|