1
|
van Belkum A, Welker M, Pincus D, Charrier JP, Girard V. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues? Ann Lab Med 2018; 37:475-483. [PMID: 28840984 PMCID: PMC5587819 DOI: 10.3343/alm.2017.37.6.475] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/20/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement.
Collapse
|
Review |
7 |
65 |
2
|
Kubicek-Sutherland JZ, Heithoff DM, Ersoy SC, Shimp WR, House JK, Marth JD, Smith JW, Mahan MJ. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure. EBioMedicine 2015; 2:1169-78. [PMID: 26501114 PMCID: PMC4588393 DOI: 10.1016/j.ebiom.2015.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 01/03/2023] Open
Abstract
Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host–pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies.
Standard MIC testing does not consider the influence of the host milieu, potentially hindering therapeutic intervention. Salmonella induce polymyxin resistance during infection at levels of drug that far exceed dosages determined by MIC testing. Polymyxin treatment failed to control Salmonella infection and promotes the emergence of drug-resistant mutants. Physicians rely on laboratory antimicrobial susceptibility testing of clinical isolates to identify a suitable antibiotic for therapy. Although the recommended antibiotics clear most bacterial infections, some patients fail to respond and require prolonged therapy, higher dosing or different antibiotics. Why does this occur and what are the possible implications? By studying antibiotic resistance in the context of infection, we identified a host-dependent mechanism that promotes antibiotic resistance at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. These findings question current antibiotic testing methods that have guided physician treatment practices and drug development for the last several decades.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
52 |
3
|
Price CS, Kon SE, Metzger S. Rapid antibiotic susceptibility phenotypic characterization of Staphylococcus aureus using automated microscopy of small numbers of cells. J Microbiol Methods 2014; 98:50-8. [PMID: 24393790 DOI: 10.1016/j.mimet.2013.12.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 01/16/2023]
Abstract
Staphylococcus aureus remains a leading, virulent pathogen capable of expressing complex drug resistance that requires up to 2-4 days for laboratory analysis. In this study, we evaluate the ability of automated microscopy of immobilized live bacterial cells to differentiate susceptible from non-susceptible responses of S. aureus isolates (MRSA/MSSA, clindamycin resistance/susceptibility and VSSA/hVISA/VISA) to an antibiotic based on the characterization of as few as 10 growing clones after 4 h of growth, compared to overnight growth required for traditional culture based methods. Isolates included 131 characterized CDC isolates, 3 clinical isolates and reference strains. MRSA phenotype testing used 1 h of 1 μg/mL cefoxitin induction followed by 3 h of 6 μg/mL cefoxitin. Clindamycin susceptibility testing used 1h of induction by 0.1 μg/mL erythromycin followed by 3h of 0.5 μg/mL clindamycin. An automated microscopy system acquired time-lapse dark-field images, and then computed growth data for individual immobilized progenitor cells and their progeny clones while exposed to different test conditions. Results were compared to concurrent cefoxitin disk diffusion and D-test references. For CDC organisms, microscopy detected 77/77 MRSA phenotypes and 54/54 MSSA phenotypes, plus 53/56 clindamycin-resistant and 75/75 clindamycin susceptible strains. Automated microscopy was used to characterize heterogeneous and inducible resistance, and perform population analysis profiles. Microscopy-based hVISA population analysis profiles (PAPs) were included as an extended proof of concept, and successfully differentiated VSSA from hVISA and VISA phenotypes compared to plate-based PAP.
Collapse
|
Journal Article |
11 |
47 |
4
|
Jo N, Kim B, Lee SM, Oh J, Park IH, Jin Lim K, Shin JS, Yoo KH. Aptamer-functionalized capacitance sensors for real-time monitoring of bacterial growth and antibiotic susceptibility. Biosens Bioelectron 2017; 102:164-170. [PMID: 29132052 DOI: 10.1016/j.bios.2017.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/15/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022]
Abstract
To prevent spread of infection and antibiotic resistance, fast and accurate diagnosis of bacterial infection and subsequent administration of antimicrobial agents are important. However, conventional methods for bacterial detection and antibiotic susceptibility testing (AST) require more than two days, leading to delays that have contributed to an increase in antibiotic-resistant bacteria. Here, we report an aptamer-functionalized capacitance sensor array that can monitor bacterial growth and antibiotic susceptibility in real-time. While E. coli and S. aureus were cultured, the capacitance increased over time, and apparent bacterial growth curves were observed even when 10 CFU/mL bacteria was inoculated. Furthermore, because of the selectivity of aptamers, bacteria could be identified within 1h using the capacitance sensor array functionalized with aptamers. In addition to bacterial growth, antibiotic susceptibility could be monitored in real-time. When bacteria were treated with antibiotics above the minimum inhibitory concentration (MIC), the capacitance decreased because the bacterial growth was inhibited. These results demonstrate that the aptamer-functionalized capacitance sensor array might be applied for rapid ASTs.
Collapse
|
Journal Article |
8 |
44 |
5
|
Pulcini C, Tebano G, Mutters NT, Tacconelli E, Cambau E, Kahlmeter G, Jarlier V. Selective reporting of antibiotic susceptibility test results in European countries: an ESCMID cross-sectional survey. Int J Antimicrob Agents 2017; 49:162-166. [PMID: 28093208 DOI: 10.1016/j.ijantimicag.2016.11.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/04/2016] [Accepted: 11/12/2016] [Indexed: 11/30/2022]
Abstract
Selective reporting of antibiotic susceptibility test (AST) results is one possible laboratory-based antibiotic stewardship intervention. The primary aim of this study was to identify where and how selective reporting of AST results is implemented in Europe both in inpatient and in outpatient settings. An ESCMID cross-sectional, self-administered, internet-based survey was conducted among all EUCIC (European Committee on Infection Control) or EUCAST (European Committee on Antimicrobial Susceptibility Testing) national representatives in Europe and Israel. Of 38 countries, 36 chose to participate in the survey. Selective reporting of AST results was implemented in 11/36 countries (31%), was partially implemented in 4/36 (11%) and was limited to local initiatives or was not adopted in 21/36 (58%). It was endorsed as standard of care by health authorities in only three countries. The organisation of selective reporting was everywhere discretionally managed by each laboratory, with a pronounced intra- and inter-country variability. The most frequent application was in uncomplicated community-acquired infections, particularly urinary tract and skin and soft-tissue infections. The list of reported antibiotics ranged from a few first-line options, to longer reports where only last-resort antibiotics were hidden. Several barriers to implementation were reported, mainly lack of guidelines, poor system support, insufficient resources, and lack of professionals' capability. In conclusion, selective reporting of AST results is poorly implemented in Europe and is applied with a huge heterogeneity of practices. Development of an international framework, based on existing initiatives and identified barriers, could favour its dissemination as one important element of antibiotic stewardship programmes.
Collapse
|
Journal Article |
8 |
39 |
6
|
Cammarota G, Ianiro G, Bibbò S, Di Rienzo TA, Masucci L, Sanguinetti M, Gasbarrini A. Culture-guided treatment approach for Helicobacter pylori infection: Review of the literature. World J Gastroenterol 2014; 20:5205-5211. [PMID: 24833850 PMCID: PMC4017035 DOI: 10.3748/wjg.v20.i18.5205] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/09/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
The progressive loss of efficacy of standard eradication therapies has made the treatment of Helicobacter pylori (H. pylori) more challenging than ever. Endoscopic-guided antibiotic susceptibility testing had previously been suggested to guide treatment after failure of second-line therapies. However, its role has expanded over the years, in accordance with the current Maastricht Guidelines. Several authors have dealt with this topic, developing both efficacy trials and cost-effectiveness trials against resistant H. pylori infections as well as infections in naïve patients. However, results are not homogeneous enough to provide definite advice, because antibiotic resistance is not the only reason for treatment failure. Moreover, the culture-guided approach is surrounded by many practical issues, such as the availability of both endoscopy units and microbiology laboratories, and the need for a standard of quality that cannot be satisfied everywhere. Finally, pre-treatment susceptibility testing should be part - and not the only weapon - of a targeted, personalized strategy to overcome H. pylori infection.
Collapse
|
Topic Highlight |
11 |
33 |
7
|
Antibiotic susceptibility of Propionibacterium acnes isolated from orthopaedic implant-associated infections. Anaerobe 2014; 32:57-62. [PMID: 25541476 DOI: 10.1016/j.anaerobe.2014.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Prosthetic joint infections (PJIs) caused by Propionibacterium acnes account for a larger proportion of the total number of PJIs than previously assumed and thus knowledge of the antimicrobial susceptibility patterns of P. acnes is of great value in everyday clinical practice. MATERIALS AND METHODS Using Etest, the present study investigated the susceptibility of 55 clinical isolates of P. acnes, obtained from orthopaedic implant-associated infections of the knee joint (n = 5), hip joint (n = 17), and shoulder joint (n = 33), to eight antimicrobial agents: benzylpenicillin, clindamycin, metronidazole, fusidic acid, doxycycline, moxifloxacin, linezolid and rifampicin. Synergy testing was also conducted, in which rifampicin was combined with each of the remaining seven antibiotics. RESULTS All isolates (n = 55) were susceptible to most of the antibiotics tested, with the exception of 100% resistance to metronidazole, five (9.1%) isolates displaying decreased susceptibility to clindamycin, and one (1.8%) to moxifloxacin. None of the antimicrobial agents investigated were synergistic with each other when combined and nine isolates were antagonistic for various antimicrobial combinations. The majority of the antimicrobial combinations had an indifferent effect on the isolates of P. acnes. However, the combination of rifampicin and benzylpenicillin showed an additive effect on nearly half of the isolates. CONCLUSION Almost all P. acnes, isolated from orthopaedic implant-associated infections, predominantly PJIs, were susceptible to the antibiotics tested, with the exception of complete resistance to metronidazole. Synergy test could not demonstrate any synergistic effect but additive effects were found when combining various antibiotics. Antagonistic effects were rare.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
27 |
8
|
Campbell J, McBeth C, Kalashnikov M, Boardman AK, Sharon A, Sauer-Budge AF. Microfluidic advances in phenotypic antibiotic susceptibility testing. Biomed Microdevices 2016; 18:103. [PMID: 27796676 PMCID: PMC5473355 DOI: 10.1007/s10544-016-0121-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strong natural selection for microbial antibiotic resistance has resulted from the extensive use and misuse of antibiotics. Though multiple factors are responsible for this crisis, the most significant factor - widespread prescription of broad-spectrum antibiotics - is largely driven by the fact that the standard process for determining antibiotic susceptibility includes a 1-2-day culture period, resulting in 48-72 h from patient sample to final determination. Clearly, disruptive approaches, rather than small incremental gains, are needed to address this issue. The field of microfluidics promises several advantages over existing macro-scale methods, including: faster assays, increased multiplexing, smaller volumes, increased portability for potential point-of-care use, higher sensitivity, and rapid detection methods. This Perspective will cover the advances made in the field of microfluidic, phenotypic antibiotic susceptibility testing (AST) over the past two years. Sections are organized based on the functionality of the chip - from simple microscopy platforms, to gradient generators, to antibody-based capture devices. Microfluidic AST methods that monitor growth as well as those that are not based on growth are presented. Finally, we will give our perspective on the major hurdles still facing the field, including the need for rapid sample preparation and affordable detection technologies.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
27 |
9
|
Gulumbe BH, Haruna UA, Almazan J, Ibrahim IH, Faggo AA, Bazata AY. Combating the menace of antimicrobial resistance in Africa: a review on stewardship, surveillance and diagnostic strategies. Biol Proced Online 2022; 24:19. [PMID: 36424530 PMCID: PMC9685880 DOI: 10.1186/s12575-022-00182-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
The emergence of antibiotic-resistant pathogens has threatened not only our ability to deal with common infectious diseases but also the management of life-threatening complications. Antimicrobial resistance (AMR) remains a significant threat in both industrialized and developing countries alike. In Africa, though, poor clinical care, indiscriminate antibiotic use, lack of robust AMR surveillance programs, lack of proper regulations and the burden of communicable diseases are factors aggravating the problem of AMR. In order to effectively address the challenge of AMR, antimicrobial stewardship programs, solid AMR surveillance systems to monitor the trend of resistance, as well as robust, affordable and rapid diagnostic tools which generate data that informs decision-making, have been demonstrated to be effective. However, we have identified a significant knowledge gap in the area of the application of fast and affordable diagnostic tools, surveillance, and stewardship programs in Africa. Therefore, we set out to provide up-to-date information in these areas. We discussed available hospital-based stewardship initiatives in addition to the role of governmental and non-governmental organizations. Finally, we have reviewed the application of various phenotypic and molecular AMR detection tools in both research and routine laboratory settings in Africa, deployment challenges and the efficiency of these methods.
Collapse
|
Review |
3 |
26 |
10
|
Sherman EX, Wozniak JE, Weiss DS. Methods to Evaluate Colistin Heteroresistance in Acinetobacter baumannii. Methods Mol Biol 2019; 1946:39-50. [PMID: 30798542 PMCID: PMC6637766 DOI: 10.1007/978-1-4939-9118-1_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The nosocomial pathogen Acinetobacter baumannii is a growing threat to public health due to its increasing resistance to antibiotics including the last-line polymyxin, colistin. Heteroresistance to colistin has been described in A. baumannii, wherein a resistant subpopulation of cells coexisting with a majority susceptible subpopulation actively grows in the presence of antibiotic and can cause treatment failure. The shortcomings of diagnostic tests in detecting colistin heteroresistance are especially worrisome as they may lead to clinicians unknowingly prescribing an ineffective antibiotic, leading to increased patient morbidity and mortality.Several techniques can be used to detect heteroresistance, and the purpose of this chapter is to outline effective methods for identifying, quantifying, and analyzing heteroresistance to colistin in A. baumannii. We will highlight the advantages and disadvantages of techniques including population analysis profile (PAP), Etest, and disc diffusion, as well as additional methods to distinguish heteroresistance from other forms of resistance. While the scope of this chapter will focus on colistin heteroresistance in A. baumannii, these techniques can be adapted for the study of heteroresistance to other antibiotics and in other bacteria with slight modifications.
Collapse
|
research-article |
6 |
25 |
11
|
Taha L, Stegger M, Söderquist B. Staphylococcus lugdunensis: antimicrobial susceptibility and optimal treatment options. Eur J Clin Microbiol Infect Dis 2019; 38:1449-1455. [PMID: 31144243 PMCID: PMC6647525 DOI: 10.1007/s10096-019-03571-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/25/2019] [Indexed: 11/28/2022]
Abstract
Staphylococcus lugdunensis is a coagulase-negative staphylococcus (CoNS) with unusual pathogenicity resembling that of S. aureus. Unlike other CoNS, S. lugdunensis remains susceptible to most antibiotics. The resistance to penicillin varies widely (range, 15–87% worldwide), whereas methicillin resistance is still rare. We aimed to evaluate treatment options for infections caused by S. lugdunensis and more specifically to investigate whether penicillin G could be a better treatment choice than oxacillin. Susceptibility testing was performed using the disc diffusion method for penicillin G, cefoxitin, trimethoprim/sulfamethoxazole, erythromycin, clindamycin, gentamicin, norfloxacin, fusidic acid, rifampicin, and fosfomycin. Isolates susceptible to penicillin G were further tested with a gradient test for penicillin G and oxacillin. Of the 540 clinical isolates tested, 74.6% were susceptible to penicillin G. Among these penicillin-susceptible isolates, the MIC50 and MIC90 values for penicillin G were threefold lower than that for oxacillin. A majority of the isolates were susceptible to all other antibiotics tested. Breakpoints for fosfomycin have not yet been defined, and so no conclusions could be drawn. Two isolates were resistant to cefoxitin and carried the mecA gene; whole-genome sequencing revealed that both harbored the SCCmec element type IVa(2B). S. lugdunensis isolated in Sweden were susceptible to most tested antibiotics. Penicillin G may be a more optimal treatment choice than oxacillin. Although carriage of the mecA gene is rare among S. lugdunensis, it does occur.
Collapse
|
Journal Article |
6 |
25 |
12
|
Tebano G, Mouelhi Y, Zanichelli V, Charmillon A, Fougnot S, Lozniewski A, Thilly N, Pulcini C. Selective reporting of antibiotic susceptibility testing results: a promising antibiotic stewardship tool. Expert Rev Anti Infect Ther 2020; 18:251-262. [PMID: 31928257 DOI: 10.1080/14787210.2020.1715795] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Selective reporting of antibiotic susceptibility testing (AST) results is a potentially interesting tool for antibiotic stewardship. It consists of performing AST according to usual practices, but the results are reported to the prescriber only for a few antibiotics (i.e. first-line agents) or not reported at all when colonization is likely.Areas covered: We retrieved 20 studies exploring the impact of selective reporting. Overall, selective reporting is able to influence antibiotic use, both discouraging prescription in case of colonization, and promoting the selection of narrow-spectrum agents. Most studies concerned urine samples. Evidence on the impact on antibiotic resistance is insufficient. Unintended consequences were not observed, but evidence on this topic is scarce. Selective reporting is well implemented in a few countries, and a huge heterogeneity of practices exists.Expert opinion: Evidence shows that selective reporting can help reducing inappropriate and unnecessary antibiotic prescriptions. Uncomplicated urinary tract infections are probably the best initial target, both in hospital and community settings, but other non-severe infections can be a suitable option. The implementation of selective reporting should be promoted by the scientific community, with detailed practical guidelines, and its impact should be further assessed in large interventional studies.
Collapse
|
Review |
5 |
25 |
13
|
Avershina E, Sharma P, Taxt AM, Singh H, Frye SA, Paul K, Kapil A, Naseer U, Kaur P, Ahmad R. AMR-Diag: Neural network based genotype-to-phenotype prediction of resistance towards β-lactams in Escherichia coli and Klebsiella pneumoniae. Comput Struct Biotechnol J 2021; 19:1896-1906. [PMID: 33897984 PMCID: PMC8060595 DOI: 10.1016/j.csbj.2021.03.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance poses a major threat to public health. More effective ways of the antibiotic prescription are needed to delay the spread of antibiotic resistance. Employment of sequencing technologies coupled with the use of trained neural network algorithms for genotype-to-phenotype prediction will reduce the time needed for antibiotic susceptibility profile identification from days to hours. In this work, we have sequenced and phenotypically characterized 171 clinical isolates of Escherichia coli and Klebsiella pneumoniae from Norway and India. Based on the data, we have created neural networks to predict susceptibility for ampicillin, 3rd generation cephalosporins and carbapenems. All networks were trained on unassembled data, enabling prediction within minutes after the sequencing information becomes available. Moreover, they can be used both on Illumina and MinION generated data and do not require high genome coverage for phenotype prediction. We cross-checked our networks with previously published algorithms for genotype-to-phenotype prediction and their corresponding datasets. Besides, we also created an ensemble of networks trained on different datasets, which improved the cross-dataset prediction compared to a single network. Additionally, we have used data from direct sequencing of spiked blood cultures and found that AMR-Diag networks, coupled with MinION sequencing, can predict bacterial species, resistome, and phenotype as fast as 1–8 h from the sequencing start. To our knowledge, this is the first study for genotype-to-phenotype prediction: (1) employing a neural network method; (2) using data from more than one sequencing platform; and (3) utilizing sequence data from spiked blood cultures.
Collapse
|
Journal Article |
4 |
24 |
14
|
Antibiotic susceptibility reporting and association with antibiotic prescribing: a cohort study. Clin Microbiol Infect 2020; 27:568-575. [PMID: 33059090 DOI: 10.1016/j.cmi.2020.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Selective reporting of antibiotic susceptibility test results may help guide appropriate antibiotic prescribing, particularly for urinary tract infections. Our objective was to describe laboratory urine culture susceptibility reporting practices and to estimate their impact on antibiotic prescribing in outpatients. METHODS We examined all positive urine cultures with Escherichia coli, Klebsiella pneumoniae, or Proteus mirabilis associated with an antibiotic prescription among outpatients over 65 years of age in Ontario, Canada from 2014 through 2017. We evaluated antibiotic prescribing in the empirical window (1-3 days before culture result) and in the directed window (0-5 days after culture result). Unadjusted and adjusted odds ratios were reported to estimate the association between reporting and prescribing. RESULTS In total 113 780 eligible urine cultures from 48 laboratories were included in the study cohort. Susceptibility reporting practices were highly variable between laboratories, with a range across antibiotics from norfloxacin (n = 5/48, 10.4% reporting) to nitrofurantoin (n = 40/48, 83.3% reporting). Reporting antibiotic susceptibility was associated with increased odds of prescribing that antibiotic in the directed window (aOR 2.98, 95%CI 2.07-4.28). At the laboratory level, the proportion of urine cultures reporting specific antibiotic susceptibility results was also associated with an increase in prescribing of that antibiotic in the empirical window (adjusted OR 1.23, 95%CI 1.13-1.33, per 25% increase in reporting). CONCLUSIONS Laboratory reporting of antibiotic susceptibility results for urine cultures is associated with empirical and directed prescribing of the reported antibiotics. Laboratories can play an important role in guiding appropriate antibiotic selection for urinary indications.
Collapse
|
Journal Article |
5 |
22 |
15
|
Ohishi T, Aoki K, Ishii Y, Usui M, Tamura Y, Kawanishi M, Ohnishi K, Tateda K. Molecular epidemiological analysis of human- and chicken-derived isolates of Campylobacter jejuni in Japan using next-generation sequencing. J Infect Chemother 2017; 23:165-172. [PMID: 28087306 DOI: 10.1016/j.jiac.2016.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 01/24/2023]
Abstract
In this research, we analyzed the main sequence types (ST) and ST complexes of human- and chicken-derived isolates of Campylobacter jejuni in Japan by using multilocus sequence typing (MLST). We also analyzed lipooligosaccharide biosynthesis locus classes (LOS locus classes) and the numbers of isolates carrying genes coding resistance factors against various antibiotics, and observed their relationships. ST-21 complex was the main ST complex in isolates from humans (n = 38) and chickens (n = 25). None of the isolates showed resistance to imipenem, chloramphenicol, or erythromycin. Few isolates were resistant to ampicillin and streptomycin (1.3%-15%), whereas many showed resistance to tetracycline, ciprofloxacin, and nalidixic acid (38%-48%). Among the ST-21 complex isolates, ST4526 was detected at a very high rate. Those isolates showed resistance to tetracycline and ciprofloxacin, and were susceptible to ampicillin. Among the chicken-derived isolates, 37 of the 38 isolates that showed resistance to ciprofloxacin and nalidixic acid had threonine to isoleucine amino acid substitution in GyrA at codon 86 (T86I). Among the human-derived isolates, 17 of the 47 isolates that showed resistance to ciprofloxacin and 16 of the 48 isolates that showed resistance to nalidixic acid did not have T86I amino acid mutations in GyrA. The human-derived ST-21 complex isolates were classified into LOS locus classes A, B, C, D, and E. The chicken-derived ST-21 complex isolates, with the exception of one isolate, were all classified into LOS locus classes C and D. Among chicken-derived isolates, the most prevalent was ST51 (ST-443 complex) (10 isolates) and all of those were LOS locus class E.
Collapse
|
Journal Article |
8 |
17 |
16
|
From genotype to antibiotic susceptibility phenotype in the order Enterobacterales: a clinical perspective. Clin Microbiol Infect 2019; 26:643.e1-643.e7. [PMID: 31586657 DOI: 10.1016/j.cmi.2019.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Predicting the antibiotic susceptibility phenotype from genomic data is challenging, especially for some specific antibiotics in the order Enterobacterales. Here we aimed to assess the performance of whole genomic sequencing (WGS) for predicting the antibiotic susceptibility in various Enterobacterales species using the detection of antibiotic resistance genes (ARGs), specific mutations and a knowledge-based decision algorithm. METHODS We sequenced (Illumina MiSeq, 2×250 bp) 187 clinical isolates from species possessing (n = 98) or not (n = 89) an intrinsic AmpC-type cephalosporinase. Phenotypic antibiotic susceptibility was performed by the disc diffusion method. Reads were assembled by A5-miseq and ARGs were identified from the ResFinder database using Diamond. Mutations on GyrA and ParC topoisomerases were studied. Piperacillin, piperacillin-tazobactam, ceftazidime, cefepime, meropenem, amikacin, gentamicin and ciprofloxacin were considered for prediction. RESULTS A total of 1496 isolate/antibiotic combinations (187 isolates × 8 antibiotics) were considered. In 230 cases (15.4%), no attempt of prediction was made because it could not be supported by current knowledge. Among the 1266 attempts, 1220 (96.4%) were correct (963 for predicting susceptibility and 257 for predicting resistance), 24 (1.9%) were major errors (MEs) and 22 (1.7%) were very major errors (VMEs). Concordance were similar between non-AmpC and AmpC-producing Enterobacterales (754/784 (96.2%) vs 466/482 (96.7%), chi-square test p 0.15), but more VMEs were observed in non-AmpC producing strains than in those producing an AmpC (19/784 (2.4%) vs 3/466 (0.6%), chi-square test p 0.02). The majority of VMEs were putatively due to the overexpression of chromosomal genes. CONCLUSIONS In conclusion, the inference of antibiotic susceptibility from genomic data showed good performances for non-AmpC and AmpC-producing Enterobacterales species. However, more knowledge about the mechanisms underlying the derepression of AmpC are needed.
Collapse
|
Journal Article |
6 |
14 |
17
|
Dimitriadis P, Protonotariou E, Varlamis S, Poulou A, Vasilaki O, Metallidis S, Tsakris A, Malisiovas N, Skoura L, Pournaras S. Comparative evaluation of minocycline susceptibility testing methods in carbapenem-resistant Acinetobacter baumannii. Int J Antimicrob Agents 2016; 48:321-3. [PMID: 27451087 DOI: 10.1016/j.ijantimicag.2016.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
Abstract
In this study, the performance of two commonly used routine antimicrobial susceptibility testing methods, the automated VITEK(®)2 system and Etest (bioMérieux, Marcy-l'Étoile, France), was compared with the standard broth microdilution (BMD) method on 87 multidrug- and carbapenem-resistant Acinetobacter baumannii clinical isolates. Clinical and Laboratory Standards Institute (CLSI) 2015 breakpoints (susceptible, ≤4 mg/L; intermediate, 8 mg/L; and resistant, ≥16 mg/L) were used. Minocycline showed excellent activity, with 94.3% of isolates susceptible by BMD (VITEK(®)2, 73.6%; Etest, 63.2%). The MIC50/90 values (minimum inhibitory concentrations required to inhibit 50% and 90% of the isolates, respectively) were as follows: BMD, 1/4 mg/L; VITEK(®)2, ≤1/8 mg/L; and Etest, 4/16 mg/L. Etest produced 14.9% major/20.7% minor errors and VITEK(®)2 produced 3.4% major/17.2% minor errors. These data indicate that VITEK(®)2 may be more reliable than Etest for routine susceptibility testing of minocycline for A. baumannii isolates. As both VITEK(®)2 and Etest produced higher minocycline MICs compared with the reference method, BMD may be needed to validate the categorisation of carbapenem-resistant A. baumannii by these assays as minocycline non-susceptible.
Collapse
|
Journal Article |
9 |
11 |
18
|
Zeng W, Chen P, Li S, Sha Q, Li P, Zeng X, Feng X, Du W, Liu BF. Hand-powered vacuum-driven microfluidic gradient generator for high-throughput antimicrobial susceptibility testing. Biosens Bioelectron 2022; 205:114100. [PMID: 35219023 DOI: 10.1016/j.bios.2022.114100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
The growth of bacterial resistance to antimicrobials is a serious problem attracting much attention nowadays. To prevent the misuse and abuse of antimicrobials, it is important to carry out antibiotic susceptibility testing (AST) before clinical use. However, conventional AST methods are relatively laborious and time-consuming (18-24 h). Here, we present a hand-powered vacuum-driven microfluidic (HVM) device, in which a syringe is used as the only vacuum source for rapid generating concentration gradient of antibiotics in different chambers. The HVM device can be preassembled with various amounts of antibiotics, lyophilized, and stored for ready-to-use. Bacterial samples can be loaded into the HVM device through a simple suction step. With the assistance of Alamar Blue, the AST assay and the minimum inhibitory concentration (MIC) of different antibiotics can be investigated by comparing the growth results of bacteria in different culture chambers. In addition, a parallel HVM device was proposed, in which eight AST assays can be performed simultaneously. The results of MIC of three commonly used antibiotics against E. coli K-12 in our HVM device were consistent with those obtained by traditional method while the detection time was shortened to less than 8 h. We believe that our platform is high-throughput, cost-efficient, easy to use, and suitable for POCT applications.
Collapse
|
|
3 |
10 |
19
|
Tibbits G, Mohamed A, Call DR, Beyenal H. Rapid differentiation of antibiotic-susceptible and -resistant bacteria through mediated extracellular electron transfer. Biosens Bioelectron 2022; 197:113754. [PMID: 34773749 DOI: 10.1016/j.bios.2021.113754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 11/02/2022]
Abstract
Conventional methods for testing antibiotic susceptibility rely on bacterial growth on agar plates (diffusion assays) or in liquid culture (microdilution assays). These time-consuming assays use population growth as a proxy for cellular respiration. Herein we propose to use mediated extracellular electron transfer as a rapid and direct method to classify antibiotic-susceptible and -resistant bacteria. We tested antibiotics with diverse mechanisms of action (ciprofloxacin, imipenem, oxacillin, or tobramycin) with four important nosocomial pathogens (Acinetobacter baumannii, Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae) by adding the bacterial culture to a custom-designed electrochemical cell with a glassy-carbon electrode and growth media supplemented with a soluble electron transfer mediator, phenazine methosulfate (PMS). During cell respiration, liberated electrons reduce PMS, which is then oxidized on the electrode surface, and current is recorded. Using this novel approach, we were able to consistently classify strains as antibiotic-resistant or -susceptible in <90 min for methodology development and <150 min for blinded tests.
Collapse
|
|
3 |
9 |
20
|
Ehlersson G, Hellmark B, Svartström O, Stenmark B, Söderquist B. Phenotypic characterisation of coagulase-negative staphylococci isolated from blood cultures in newborn infants, with a special focus on Staphylococcus capitis. Acta Paediatr 2017. [PMID: 28631328 DOI: 10.1111/apa.13950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIM This Swedish study determined which species of coagulase-negative staphylococci (CoNS) were found in neonatal blood cultures and whether they included Staphylococcus capitis clones with decreased susceptibility to vancomycin. METHODS CoNS isolates (n = 332) from neonatal blood cultures collected at Örebro University Hospital during 1987-2014 were identified to species level with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). The antibiotic susceptibility pattern of S. capitis isolates was determined by the disc diffusion test and Etest, and the presence of heterogeneous glycopeptide-intermediate S. capitis (hGISC) was evaluated. RESULTS Staphylococcus epidermidis (67.4%), Staphylococcus haemolyticus (10.5%) and S. capitis (9.6%) were the most common CoNS species. Of the S. capitis isolates, 75% were methicillin-resistant and 44% were multidrug-resistant. No isolate showed decreased susceptibility to vancomycin, but at least 59% displayed the hGISC phenotype. Staphylococcus capitis isolates related to the strain CR01 displaying pulsotype NRCS-A were found. CONCLUSION Staphylococcus epidermidis, S. haemolyticus and S. capitis were the predominant species detected in neonatal blood cultures by MALDI-TOF MS. The number of episodes caused by S. capitis increased during the study period, but no isolates with decreased susceptibility to vancomycin were identified. However, S. capitis isolates related to the strain CR01 displaying pulsotype NRCS-A were found.
Collapse
|
Journal Article |
8 |
7 |
21
|
Salih L, Tevell S, Månsson E, Nilsdotter-Augustinsson Å, Hellmark B, Söderquist B. Staphylococcus epidermidis isolates from nares and prosthetic joint infections are mupirocin susceptible. J Bone Jt Infect 2018; 3:1-4. [PMID: 29291157 PMCID: PMC5744189 DOI: 10.7150/jbji.22459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/22/2017] [Indexed: 01/24/2023] Open
Abstract
The objective of the present study was to investigate the antibiotic susceptibility including mupirocin among Staphylococcus. epidermidis isolated from prosthetic joint infections (PJIs) (n=183) and nasal isolates (n=75) from patients intended to undergo prosthetic joint replacements. Susceptibility to mupirocin (used for eradication of nasal carriership of Staphylococcus aureus) was investigated by gradient test, and susceptibility to various other antimicrobial agents was investigated by disc diffusion test. All isolates, except three from PJIs and one from the nares, were fully susceptible to mupirocin. Multi-drug resistance (≥3 antibiotic classes) was found in 154/183 (84.2%) of the PJI isolates but only in 2/75 (2.7%) of the nares isolates, indicating that S. epidermidis causing PJIs do not originate from the nares.
Collapse
|
Journal Article |
7 |
5 |
22
|
Tannert A, Ramoji A, Neugebauer U, Popp J. Photonic monitoring of treatment during infection and sepsis: development of new detection strategies and potential clinical applications. Anal Bioanal Chem 2017; 410:773-790. [PMID: 29214536 DOI: 10.1007/s00216-017-0713-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023]
Abstract
Despite the strong decline in the infection-associated mortality since the development of the first antibiotics, infectious diseases are still a major cause of death in the world. With the rising number of antibiotic-resistant pathogens, the incidence of deaths caused by infections may increase strongly in the future. Survival rates in sepsis, which occurs when body response to infections becomes uncontrolled, are still very poor if an adequate therapy is not initiated immediately. Therefore, approaches to monitor the treatment efficacy are crucially needed to adapt therapeutic strategies according to the patient's response. An increasing number of photonic technologies are being considered for diagnostic purpose and monitoring of therapeutic response; however many of these strategies have not been introduced into clinical routine, yet. Here, we review photonic strategies to monitor response to treatment in patients with infectious disease, sepsis, and septic shock. We also include some selected approaches for the development of new drugs in animal models as well as new monitoring strategies which might be applicable to evaluate treatment response in humans in the future. Figure Label-free probing of blood properties using photonics.
Collapse
|
Review |
8 |
5 |
23
|
Luo J, Yu J, Yang H, Wei H. Parallel susceptibility testing of bacteria through culture-quantitative PCR in 96-well plates. Int J Infect Dis 2018; 70:86-92. [PMID: 29559368 DOI: 10.1016/j.ijid.2018.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE The methods combining culture and quantitative PCR(qPCR) offer new solutions for rapid antibiotic susceptibility testing(AST). However, the multiple steps of DNA extraction and cold storage of PCR reagents needed make them unsuitable for rapid high throughput AST. In this study, a parallel culture-qPCR method was developed to overcome above problems. METHOD In this method, bacteria culture and DNA extraction automatically and simultaneously completed through using a common PCR instrument as a controllable heating device. A lyophilized 16S rDNA targeted qPCR reagent was also developed, which was stable and could be kept at 4°C for long time and at 37°C for about two months. RESULT Testing of 36 P. aeruginosa isolates and 28 S. aureus isolates showed that the method had good agreements with the standard broth microdilution method, with an overall agreement of 97.22% (95% CI, 85.83-99.51) for P. aeruginosa and 96.43% (95% CI, 79.76-99.81) for S. aureus. This method could test 12 samples against a panel of up to 7 antibiotics simultaneously in two 96-well PCR plates within 4h, which greatly improves the testing efficiency of the culture-qPCR method. CONCLUSION With rapidness to obtain results and the capabilities for automation and multiple-sample testing, the parallel culture-qPCR method would have great potentials in clinical labs.
Collapse
|
Journal Article |
7 |
5 |
24
|
Kuzma J, Palcová L, Timko J, Bastová V, Janošcová V, Chmelař D. Detection and molecular characterization of VRE isolates in Slovakia from stool samples positive for Clostridioides difficile toxins. Folia Microbiol (Praha) 2022; 67:975-984. [PMID: 35997873 PMCID: PMC9395909 DOI: 10.1007/s12223-022-01002-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022]
Abstract
The study aimed to identify colonized patients as a possible source of eventual VRE (vancomycin-resistant enterococci) infection from stool samples positive for glutamate dehydrogenase antigen, as well as for Clostridioides difficile toxins A and B. The study was carried out from 7/2020 to 9/2021. Stool samples were grown in a brain heart infusion medium with a gram-positive non-spore-forming bacteria supplement under aerobic conditions. The samples for VRE identification were grown on CHROMID® VRE agar, and the MICs for vancomycin and teicoplanin were also estimated. The presence of the vanA/vanB genes was tested using the PCR method. The total number of 113 stool samples positive for Clostridioides difficile toxins was analyzed. Of these samples, 44 isolates with VRE characters were identified. The most prevalent isolates in our set of isolates were Enterococcus faecium (27 isolates, 62%), Enterococcus faecalis (9 isolates, 21%), Enterococcus solitarius (4 isolates, 9%), Enterococcus durans (2 isolates, 4%), 1 isolate Enterococcus sulfurous (2%), and Enterococcus raffinosus (2%). In total, 26 isolates were detected in the study in the presence of vanA genes (24 isolates E. faecium, 2 isolates E. faecalis) and 18 isolates detected in the presence of vanB genes (7 isolates E. faecalis, 4 isolates E. solitarius, 3 isolates E. faecium, 2 isolates E. durans, 1 isolate E. sulfurous, and E. raffinosus). The results of this study showed the local dominance character of the vanA gene of hospital VRE isolates that were carriers of genes associated with high resistance to vancomycin, teicoplanin, and occasionally linezolid.
Collapse
|
|
3 |
4 |
25
|
Chmelař D, Rozložník M, Hájek M, Pospíšilová N, Kuzma J. Effect of hyperbaric oxygen on the growth and susceptibility of facultatively anaerobic bacteria and bacteria with oxidative metabolism to selected antibiotics. Folia Microbiol (Praha) 2024; 69:101-108. [PMID: 38100018 PMCID: PMC10876729 DOI: 10.1007/s12223-023-01120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/05/2023] [Indexed: 02/21/2024]
Abstract
Wild strains of Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were tested in an experimental hyperbaric chamber to determine the possible effect of hyperbaric oxygen on the susceptibility of these strains to the antibiotics ampicillin, ampicillin + sulbactam, cefazolin, cefuroxime, cefoxitin, gentamicin, sulfamethoxazole + trimethoprim, colistin, oxolinic acid, ofloxacin, tetracycline, and aztreonam during their cultivation at 23 °C and 36.5 °C. Ninety-six-well inoculated microplates with tested antibiotics in Mueller-Hinton broth were cultured under standard incubator conditions (normobaric normoxia) for 24 h or in an experimental hyperbaric chamber (HAUX, Germany) for 24 h at 2.8 ATA of 100% oxygen (hyperbaric hyperoxia). The hyperbaric chamber was pressurised with pure oxygen (100%). Both cultures (normoxic and hyperoxic) were carried out at 23 °C and 36.5 °C to study the possible effect of the cultivation temperature. No significant differences were observed between 23 and 36.5 °C cultivation with or without the 2-h lag phase in Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Cultivation in a hyperbaric chamber at 23 °C and 36.5 °C with or without a 2-h lag phase did not produce significant changes in the minimum inhibitory concentration (MIC) of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. For the tested strains of Pseudomonas aeruginosa, the possible effect of hyperbaric oxygen on their antibiotic sensitivity could not be detected because the growth of these bacteria was completely inhibited by 100% hyperbaric oxygen at 2.8 ATA under all hyperbaric conditions tested at 23 °C and 36.5 °C. Subsequent tests with wild strains of pseudomonads, burkholderias, and stenotrophomonads not only confirmed the fact that these bacteria stop growing under hyperbaric conditions at a pressure of 2.8 ATA of 100% oxygen but also indicated that inhibition of growth of these bacteria under hyperbaric conditions is reversible.
Collapse
|
research-article |
1 |
4 |