Wang L, Ji X, Mao C, Yu R.
BAY-885, a mitogen-activated protein kinase kinase 5 inhibitor, induces apoptosis by regulating the endoplasmic reticulum stress/Mcl-1/Bim pathway in breast cancer cells.
Bioengineered 2022;
13:12888-12898. [PMID:
35609325 PMCID:
PMC9275924 DOI:
10.1080/21655979.2022.2078557]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
The mitogen-activated protein kinase kinase 5 (MEK5)/extracellular signal-regulated kinase 5 (ERK5) axis has been reported to promote tumorigenesis in breast cancer (BC). Therefore, targeting the MEK5/ERK5 axis is a potential strategy against BC. BAY-885 is a novel inhibitor of ERK5; however, to date, its anti-tumor effects in BC have not been investigated. This study aimed to assess the anti-tumor effects of BAY-885 in BC and identify its underlying mechanisms of action. Unlike other ERK5 inhibitors, which frequently failed to mimic ERK5 genetic ablation phenotypes, the BAY-885 treatment effectively recapitulated ERK5 depletion effects in BC cells. Results revealed that BAY-885 affected the viability and induced apoptosis in BC cells. Moreover, the BAY-885-mediated downregulation of myeloid cell leukemia-1 (Mcl-1) and upregulation of Bim were dependent on ERK5 inhibition. Furthermore, BAY-885 triggered activation of endoplasmic reticulum (ER) stress, which further led to the upregulation of Bim and downregulation of Mcl-1. ER stress was induced in an ERK5 inhibition-dependent manner. These findings suggested that BAY-885 induced apoptosis in BC cells via ER stress/Mcl-1/Bim axis, suggesting that BAY-885 may serve as a therapeutic agent for BC.
Collapse