1
|
Protective effects of polydatin on lipopolysaccharide-induced acute lung injury through TLR4-MyD88-NF-κB pathway. Int Immunopharmacol 2015; 29:370-376. [PMID: 26507165 DOI: 10.1016/j.intimp.2015.10.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to investigate the protective effect of PD against lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore its potential mechanism. In vivo, PD and dexamethasone were intraperitoneally administered 1h before LPS stimulation. Then, mice were sacrificed at 6h post-LPS stimulation. Neutrophil number, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid (BALF) were determined, as well as lung wet to dry ratio (W/D) and polymorphonuclear (MPO) activity. The protein expressions of Toll like receptor 4 (TLR4), myeloid differentiating factor 88 (MyD88), IL-1R-associated kinases 1 (IRAK1), IRAK4, inhibitor of nuclear factor kappa-B kinase (IKK)α, p-IKKα, IKKβ, p-IKKβ, inhibitor of NF-κB (IκBα), p-IκBα and NF-κB in lung tissues were assessed. Besides, we detected the IL-6, IL-1β, IL-8, TNF-α levels and TLR4, MyD88, NF-κB protein expressions in LPS-induced BEAS-2B cells. Consequently, PD significantly inhibited the levels of W/D, MPO, neutrophils number, TNF-α, IL-6, IL-1β and reversed TLR4-MyD88-NF-κB signaling pathway in lung tissues. In vitro assays, PD effectively negatively mediated the inflammatory cytokines and ameliorated the high expressions of TLR4, MyD88, NF-κB caused by LPS simulation in Human bronchial epithelial BEAS-2B cells. This study indicated that PD played a protective role in LPS-induced ALI and BEAS-2B cells. The results supported further study of PD as potential candidate for acute lung injury.
Collapse
|
Journal Article |
10 |
155 |
2
|
Dergham M, Lepers C, Verdin A, Cazier F, Billet S, Courcot D, Shirali P, Garçon G. Temporal-spatial variations of the physicochemical characteristics of air pollution Particulate Matter (PM2.5-0.3) and toxicological effects in human bronchial epithelial cells (BEAS-2B). ENVIRONMENTAL RESEARCH 2015; 137:256-267. [PMID: 25601727 DOI: 10.1016/j.envres.2014.12.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
While the evidence for the health adverse effects of air pollution Particulate Matter (PM) has been growing, there is still uncertainty as to which constituents within PM are most harmful. Hence, to contribute to fulfill this gap of knowledge, some physicochemical characteristics and toxicological endpoints (i.e. cytotoxicity, oxidative damage, cytokine secretion) of PM2.5-0.3 samples produced during two different seasons (i.e. spring/summer or autumn/winter) in three different surroundings (i.e. rural, urban, or industrial) were studied, thereby expecting to differentiate their respective adverse effects in human bronchial epithelial cells (BEAS-2B). Physicochemical characteristics were closely related to respective origins and seasons of the six PM2.5-0.3 samples, highlighting the respective contributions of industrial and heavy motor vehicle traffic sources. Space- and season-dependent differences in cytotoxicity of the six PM2.5-0.3 samples could only be supported by considering both the physicochemical properties and the variance in air PM concentrations. Whatever spaces and seasons, dose- and even time-dependent increases in oxidative damage and cytokine secretion were reported in PM2.5-0.3-exposed BEAS-2B cells. However, the relationship between the chemical composition of each of the six PM2.5-0.3 samples and their oxidative or inflammatory potentials seemed to be very complex. These results supported the role of inorganic, ionic and organic components as exogenous source of Reactive Oxygen Species and, thereafter, cytokine secretion. Nevertheless, one of the most striking observation was that some inorganic, ionic and organic chemical components were preferentially associated with early oxidative events whereas others in the later oxidative damage and/or cytokine secretion. Taken together, these results indicated that PM mass concentration alone might not be able to explain the health outcomes, because PM is chemically nonspecific, and supported growing evidence that PM-size, composition and emission source, together with sampling season, interact in a complex manner to produce PM2.5-0.3-induced human adverse health effects.
Collapse
|
|
10 |
75 |
3
|
Garcia-Canton C, Minet E, Anadon A, Meredith C. Metabolic characterization of cell systems used in in vitro toxicology testing: lung cell system BEAS-2B as a working example. Toxicol In Vitro 2013; 27:1719-27. [PMID: 23669205 DOI: 10.1016/j.tiv.2013.05.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/29/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022]
Abstract
The bioactivation of pro-toxicants is the biological process through which some chemicals are metabolized into reactive metabolites. Therefore, in vitro toxicological evaluation should ideally be conducted in cell systems retaining adequate metabolic competency and relevant to the route of exposure. The respiratory tract is the primary route of exposure to inhaled pro-toxicants and lung-derived BEAS-2B cell line has been considered as a potentially suitable model for in vitro toxicology testing. However, its metabolic activity has not been characterized. We performed a gene expression analysis for 41 metabolism-related genes and compared the profile with liver- and lung-derived cell lines (HepaRG, HepG2 and A549). To confirm that mRNA expression was associated with the corresponding enzyme activity, we used a series of metabolic substrates of CYPs (CYP1A1/1B1, CYP1A2, CYP2A6/2A13 and CYP2E1) known to bioactivate inhaled pro-toxicants. CYP activities were compared between BEAS-2B, HepaRG, HepG2, and A549 cells and published literature on primary bronchial epithelium cells (HBEC). We found that in contrast to HBEC, BEAS-2B and A549 have limited CYP activity which was in agreement with their CYP gene expression profile. Control cell lines such as HepG2 and HepaRG were metabolically active for the tested CYPs. We recommend that similar strategies can be used to select suitable cell systems in the context of pro-toxicant assessment.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
75 |
4
|
Abbas I, Badran G, Verdin A, Ledoux F, Roumie M, Lo Guidice JM, Courcot D, Garçon G. In vitro evaluation of organic extractable matter from ambient PM 2.5 using human bronchial epithelial BEAS-2B cells: Cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. ENVIRONMENTAL RESEARCH 2019; 171:510-522. [PMID: 30743243 DOI: 10.1016/j.envres.2019.01.052] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
A particular attention has been devoted to the type of toxicological responses induced by particulate matter (PM), since their knowledge is greatly complicated by the fact that it is a heterogeneous and often poorly described pollutant. However, despite intensive research effort, there is still a lack of knowledge about the specific chemical fraction of PM, which could be mainly responsible of its adverse health effects. We sought also to better investigate the toxicological effects of organic extractable matter (OEM) in normal human bronchial epithelial lung BEAS-2B cells. The wide variety of chemicals, including PAH and other related-chemicals, found in OEM, has been rather associated with early oxidative events, as supported by the early activation of the sensible NRF-2 signaling pathway. For the most harmful conditions, the activation of this signaling pathway could not totally counteract the ROS overproduction, thereby leading to critical oxidative damage to macromolecules (lipid peroxidation, oxidative DNA adducts). While NRF-2 is an anti-inflammatory, OEM exposure did not trigger any significant change in the secretion of inflammatory cytokines (i.e., TNFα, IL-1β, IL-6, IL-8, MCP-1, and IFNγ). According to the high concentrations of PAH and other related organic chemicals found in this OEM, CYP1A1 and 1B1 genes exhibited high transcription levels in BEAS-2B cells, thereby supporting both the activation of the critical AhR signaling pathway and the formation of highly reactive ultimate metabolites. As a consequence, genotoxic events occurred in BEAS-2B cells exposed to this OEM together with cell survival events, with possible harmful cell cycle deregulation. However, more studies are required to implement these observations and to contribute to better decipher the critical role of the organic fraction of air pollution-derived PM2.5 in the activation of some sensitive signaling pathways closely associated with G1/S and intra-S checkpoint blockage, on the one hand, and cell survival, on the other hand.
Collapse
|
|
6 |
74 |
5
|
Borgie M, Ledoux F, Verdin A, Cazier F, Greige H, Shirali P, Courcot D, Dagher Z. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells. ENVIRONMENTAL RESEARCH 2015; 136:352-362. [PMID: 25460656 DOI: 10.1016/j.envres.2014.10.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/21/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Assessment of air pollution by particulate matter (PM) is strongly required in Lebanon in the absence of an air quality law including updated air quality standards. Using two different PM2.5-0.3 samples collected at an urban and a rural site, we examined genotoxic/epigenotoxic effects of PM exposure within a human bronchial epithelial cell line (BEAS-2B). Inorganic and organic contents evidence the major contribution of traffic and generating sets in the PM2.5-0.3 composition. Urban PM2.5-0.3 sample increased the phosphorylation of H2AX, the telomerase activity and the miR-21 up-regulation in BEAS-2B cells in a dose-dependent manner. Furthermore, urban PM2.5-0.3 induced a significant increase in CYP1A1, CYP1B1 and AhRR genes expression. The variable concentrations of transition metals and organic compounds detected in the collected PM2.5-0.3 samples might be the active agents leading to a cumulative DNA damage, critical for carcinogenesis.
Collapse
|
|
10 |
57 |
6
|
Liu J, Chen X, Dou M, He H, Ju M, Ji S, Zhou J, Chen C, Zhang D, Miao C, Song Y. Particulate matter disrupts airway epithelial barrier via oxidative stress to promote Pseudomonas aeruginosa infection. J Thorac Dis 2019; 11:2617-2627. [PMID: 31372298 DOI: 10.21037/jtd.2019.05.77] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Airborne particulate matter (PM) is associated with increasing susceptibility to respiratory bacterial infection. Tight junctions (TJs) are protein complexes that form airway epithelial barrier against infection. This study aimed to investigate the effects of PM on the airway TJs in response to infection. Methods The cytotoxicity of PM to BEAS-2B was evaluated. The reactive oxygen species (ROS) production was measured by the flow cytometry. Colony forming units (CFUs) assay and confocal microscopy were utilized to evaluate the number of bacteria. Immunofluorescence and western blot assay were conducted to detect the expressions of TJs proteins. Animal models were used to investigate the role of TJs in PM-induced lung injury upon bacterial infection. Results In vitro, PM decreased cell viability, increased ROS production, and increased the number of intracellular bacteria accompanying by the degradation of TJs. N-acetylcysteine (NAC) significantly reversed the PM-induced bacterial invasion and PM-induced disruption of TJs. In vivo, PM increases bacteria-infected lung injury, lung bacteria burden and blood bacterial dissemination, which was closely correlated to the degradation of TJs. Conclusions PM disrupts TJs via oxidative stress to promote bacterial infection.
Collapse
|
Journal Article |
6 |
57 |
7
|
Park YH, Kim D, Dai J, Zhang Z. Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis. Toxicol Appl Pharmacol 2015; 287:240-5. [PMID: 26091798 PMCID: PMC4549192 DOI: 10.1016/j.taap.2015.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022]
Abstract
Occupational and environmental exposure to arsenic (III) and chromium VI (Cr(VI)) have been confirmed to cause lung cancer. Mechanisms of these metals carcinogenesis are still under investigation. Selection of cell lines to be used is essential for the studies. Human bronchial epithelial BEAS-2B cells are the cells to be utilized by most of scientists. However, due to p53 missense mutation (CCG→TCG) at codon 47 and the codon 72 polymorphism (CGC→CCC) in BEAS-2B cells, its usage has frequently been questioned. The present study has examined activity and expression of 53 and its downstream target protein p21 upon acute or chronic exposure of BEAS-2B cells to arsenic and Cr(VI). The results show that short-term exposure of BEAS-2B cells to arsenic or Cr(VI) was able to activate both p53 and p21. Chronic exposure of BEAS-2B cells to these two metals caused malignant cell transformation and tumorigenesis. In arsenic-transformed BEAS-2B cells reductions in p53 promoter activity, mRNA expression, and phosphorylation of p53 at Ser392 were observed, while the total p53 protein level remained the same compared to those in passage-matched parent ones. p21 promoter activity and expression were decreased in arsenic-transformed cells. Cr(VI)-transformed cells exhibit elevated p53 promoter activity, mRNA expression, and phosphorylation at Ser15, but reduced phosphorylation at Ser392 and total p53 protein level compared to passage-matched parent ones. p21 promoter activity and expression were elevated in Cr(VI)-transformed cells. These results demonstrate that p53 is able to respond to exposure of arsenic or Cr(VI), suggesting that BEAS-2B cells are an appropriate in vitro model to investigate arsenic or Cr(VI) induced lung cancer.
Collapse
MESH Headings
- Animals
- Arsenites/toxicity
- Bronchi/drug effects
- Bronchi/metabolism
- Bronchi/pathology
- Cell Line
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chromates/toxicity
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Dose-Response Relationship, Drug
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Heavy Metal Poisoning
- Humans
- Lung Neoplasms/chemically induced
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Metals, Heavy/metabolism
- Mice, Nude
- Mutation, Missense
- Phosphorylation
- Poisoning/etiology
- Poisoning/genetics
- Poisoning/metabolism
- Poisoning/pathology
- Promoter Regions, Genetic
- Risk Assessment
- Signal Transduction/drug effects
- Sodium Compounds/toxicity
- Time Factors
- Transcriptional Activation
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
|
Research Support, N.I.H., Extramural |
10 |
52 |
8
|
Malinska D, Szymański J, Patalas-Krawczyk P, Michalska B, Wojtala A, Prill M, Partyka M, Drabik K, Walczak J, Sewer A, Johne S, Luettich K, Peitsch MC, Hoeng J, Duszyński J, Szczepanowska J, van der Toorn M, Wieckowski MR. Assessment of mitochondrial function following short- and long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product and reference cigarettes. Food Chem Toxicol 2018; 115:1-12. [PMID: 29448087 DOI: 10.1016/j.fct.2018.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/07/2018] [Indexed: 12/25/2022]
Abstract
Mitochondrial dysfunction caused by cigarette smoke is involved in the oxidative stress-induced pathology of airway diseases. Reducing the levels of harmful and potentially harmful constituents by heating rather than combusting tobacco may reduce mitochondrial changes that contribute to oxidative stress and cell damage. We evaluated mitochondrial function and oxidative stress in human bronchial epithelial cells (BEAS 2B) following 1- and 12-week exposures to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2), in comparison with TPM from the 3R4F reference cigarette. After 1-week exposure, 3R4F TPM had a strong inhibitory effect on mitochondrial basal and maximal oxygen consumption rates compared to TPM from THS2.2. Alterations in oxidative phosphorylation were accompanied by increased mitochondrial superoxide levels and increased levels of oxidatively damaged proteins in cells exposed to 7.5 μg/mL of 3R4F TPM or 150 μg/mL of THS2.2 TPM, while cytosolic levels of reactive oxygen species were not affected. In contrast, the 12-week exposure indicated adaptation of BEAS-2B cells to long-term stress. Together, the findings indicate that 3R4F TPM had a stronger effect on oxidative phosphorylation, gene expression and proteins involved in oxidative stress than TPM from the candidate modified-risk tobacco product THS2.2.
Collapse
|
|
7 |
39 |
9
|
Long-term exposures to low doses of silver nanoparticles enhanced in vitro malignant cell transformation in non-tumorigenic BEAS-2B cells. Toxicol In Vitro 2016; 37:41-49. [PMID: 27596524 DOI: 10.1016/j.tiv.2016.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022]
Abstract
To predict carcinogenic potential of AgNPs on the respiratory system, BEAS-2B cells (human bronchial epithelial cells) were chronically exposed to low- and non-cytotoxic dose (0.13 and 1.33μg/ml) of AgNPs for 4months (#40 passages). To assess malignant cell transformation of chronic exposure to AgNPs, several bioassays including anchorage independent agar colony formation, cell migration/invasion assay, and epithelial-mesenchymal transition (EMT) were performed in BEAS-2B cells. Chronic exposure to AgNPs showed a significant increase of anchorage independent agar colony formation and cell migration/invasion. EMT, which is the loss of epithelial markers (E-Cadherin and Keratin) and the gain of mesenchymal marker (N-cadherin and Vimentin), was induced by chronic exposure to AgNPs. These responses indicated that chronic exposure to AgNPs could acquire characteristics of tumorigenic cells from normal BEAS-2B cells. In addition, caspase-3, p-p53, p-p38, and p-JNK were significantly decreased, while p-ERK1/2 was significantly increased. MMP-9 related to cell migration/invasion was upregulated, while a MMP-9 inhibitor, TIMP-1 was down-regulated. These results indicated that BEAS-2B cells exposed to AgNPs could induce anti-apoptotic response/anoikis resistance, and cell migration/invasion by complex regulation of MAPK kinase (p38, JNK, and ERK) and p53 signaling pathways. Therefore, we suggested that long-term exposure to low-dose of AgNPs could enhance malignant cell transformation in non-tumorigenic BEAS-2B cells. Our findings provide useful information needed to assess the carcinogenic potential of AgNPs.
Collapse
|
Journal Article |
9 |
37 |
10
|
Vales G, Rubio L, Marcos R. Genotoxic and cell-transformation effects of multi-walled carbon nanotubes (MWCNT) following in vitro sub-chronic exposures. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:193-202. [PMID: 26736170 DOI: 10.1016/j.jhazmat.2015.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
BEAS-2B cells were sub-chronically exposed (up to 4 weeks) to low doses of multi-walled carbon nanotubes (MWCNT, NM403). Genotoxic effects were evaluated using the comet and the micronucleus (MN) assays at three different time-points. The expression of different interleukins (IL) such as IL-1B, IL-6 and IL-8, as well as HO-1 as stress marker, was assessed after 3 weeks treatments. As a hallmark biomarker of cell-transforming ability we used the soft-agar assay, which detects anchorage-independent cell growth. Our results show high levels of intracellular reactive oxygen species (ROS) associated to MWCNT exposure. Nevertheless, an important proportion of these ROS levels seems to be associated to solubilized metals contaminants present in NM403, more than to the internalized MWCNT. No primary DNA damage was obtained in the Comet assay although significant levels of chromosome damage were detected using the micronucleus assay. A significant decrease in the expression of the studied cytokines was observed and significant increases in the number of induced colonies were obtained when the ability of induce anchorage-independent growth was determined. These results show that chromosome damage and reducing inflammatory signalling correlated with an increase in attachment-independent growth associated with sub-chronic MWCNT exposure.
Collapse
|
|
9 |
34 |
11
|
Ng DSW, Liao W, Tan WSD, Chan TK, Loh XY, Wong WSF. Anti-malarial drug artesunate protects against cigarette smoke-induced lung injury in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1638-44. [PMID: 25442271 DOI: 10.1016/j.phymed.2014.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/11/2014] [Accepted: 07/22/2014] [Indexed: 06/04/2023]
Abstract
Cigarette smoking is the primary cause of chronic obstructive pulmonary disease (COPD), which is mediated by lung infiltration with inflammatory cells, enhanced oxidative stress, and tissue destruction. Anti-malarial drug artesunate has been shown to possess anti-inflammatory and anti-oxidative actions in mouse asthma models. We hypothesized that artesunate can protect against cigarette smoke-induced acute lung injury via its anti-inflammatory and anti-oxidative properties. Artesunate was given by oral gavage to BALB/c mice daily 2h before 4% cigarette smoke exposure for 1h over five consecutive days. Bronchoalveolar lavage (BAL) fluid and lungs were collected for analyses of cytokines, oxidative damage and antioxidant activities. Bronchial epithelial cell BEAS-2B was exposed to cigarette smoke extract (CSE) and used to study the mechanisms of action of artesunate. Artesunate suppressed cigarette smoke-induced increases in BAL fluid total and differential cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Artesunate promoted anti-oxidant catalase activity and reduced NADPH oxidase 2 (NOX2) protein level in the lungs from cigarette smoke-exposed mice. In BEAS-2B cells, artesunate suppressed pro-inflammatory PI3K/Akt and p44/42 MAPK signaling pathways, and increased nuclear Nrf2 accumulation in response to CSE. Artesunate possesses anti-inflammatory and anti-oxidative properties against cigarette smoke-induced lung injury, probably via inhibition of PI3K and p42/22 MAPK signaling pathways, augmentation of Nrf2 and catalase activities, and reduction of NOX2 level. Our data suggest that artesunate may have therapeutic potential for treating COPD.
Collapse
|
|
11 |
32 |
12
|
Li Y, Duan J, Yang M, Li Y, Jing L, Yu Y, Wang J, Sun Z. Transcriptomic analyses of human bronchial epithelial cells BEAS-2B exposed to atmospheric fine particulate matter PM 2.5. Toxicol In Vitro 2017; 42:171-181. [PMID: 28412507 DOI: 10.1016/j.tiv.2017.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 01/24/2023]
Abstract
Respiratory exposure is the major route of atmospheric PM2.5 entering the human body. Epidemiological studies have indicated that exposure to PM2.5 is associated with increased risk of pulmonary diseases, but the underlying mechanisms remain less clear. In this study, human bronchial epithelial cells (BEAS-2B) were used to investigate the toxic effect and gene expression changes induced by PM2.5 collected from Beijing, China, based on microarray and following bioinformatic analyses. Gene ontology (GO) analysis indicated that PM2.5 caused significant changes in gene expression patterns related to a series of important functions, covering gene transcription, signal transduction, cell proliferation, cellular metabolic processes, immune response, etc. Additionally, pathway analysis and signal-net analysis showed that PI3K/Akt, MAPK, and TNF signaling pathways were the most prominently significant pathways affected by PM2.5, which play key roles in regulating cell proliferation, cell differentiation, cytoskeleton regulation, and inflammatory response. Finally, for the purpose of verifing the accuracy of microarray analysis, qRT-PCR was used to detect the expression of part key genes in the above signaling pathways, which were selected from the signal-net. Our study provided a large amount of information on the molecular mechanism that underling PM2.5 caused pulmonary diseases, and follow-up researches are still needed for further exploration.
Collapse
|
Journal Article |
8 |
27 |
13
|
Nakamoto K, Watanabe M, Sada M, Inui T, Nakamura M, Honda K, Wada H, Ishii H, Takizawa H. Pseudomonas aeruginosa-derived flagellin stimulates IL-6 and IL-8 production in human bronchial epithelial cells: A potential mechanism for progression and exacerbation of COPD. Exp Lung Res 2019; 45:255-266. [PMID: 31517562 DOI: 10.1080/01902148.2019.1665147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background and purpose of the study: Pseudomonas aeruginosa commonly colonizes the airway of patients with chronic obstructive pulmonary disease (COPD) and exacerbates their symptoms. P. aeruginosa carries flagellin that stimulates toll-like receptor (TLR)-5; however, the role of flagellin in the pathogenesis of COPD remains unclear. The aim of the study was to evaluate the mechanisms of the flagellin-induced innate immune response in bronchial epithelial cells, and to assess the effects of anti-inflammatory agents for treatment. Materials and methods: We stimulated BEAS-2B cells with P. aeruginosa-derived flagellin, and assessed mRNA expression and protein secretion of interleukin (IL)-6 and IL-8. We also used mitogen-activated protein kinases (MAPK) inhibitors to assess the signaling pathways involved in flagellin stimulation, and investigated the effect of clinically available anti-inflammatory agents against flagellin-induced inflammation. Results: Flagellin promoted protein and mRNA expression of IL-6 and IL-8 in BEAS-2B cells and induced phosphorylation of p38, ERK, and JNK; p38 phosphorylation-induced IL-6 production, while IL-8 production resulted from p38 and ERK phosphorylation. Fluticasone propionate (FP) and dexamethasone (DEX) suppressed IL-6 and IL-8 production in BEAS-2B cells, but clarithromycin (CAM) failed to do so. Conclusions: P. aeruginosa-derived flagellin-induced IL-6 and IL-8 production in bronchial epithelial cells, which partially explains the mechanisms of progression and exacerbation of COPD. Corticosteroids are the most effective treatment for the suppression of flagellin-induced IL-6 and IL-8 production in the bronchial epithelial cells.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
23 |
14
|
Kumbıçak U, Cavaş T, Cinkılıç N, Kumbıçak Z, Vatan O, Yılmaz D. Evaluation of in vitro cytotoxicity and genotoxicity of copper-zinc alloy nanoparticles in human lung epithelial cells. Food Chem Toxicol 2014; 73:105-12. [PMID: 25116682 DOI: 10.1016/j.fct.2014.07.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/07/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In the present study, in vitro cytotoxic and genotoxic effect of copper-zinc alloy nanoparticles (Cu-Zn ANPs) on human lung epithelial cells (BEAS-2B) were investigated. XTT test and clonogenic assay were used to determine cytotoxic effects. Cell death mode and intracellular reactive oxygen species formations were analyzed using M30, M65 and ROS Elisa assays. Genotoxic effects were evaluated using micronucleus, comet and γ-H2AX foci assays. Cu-Zn ANPs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements. Characterization of Cu-Zn ANPs showed an average size of 200nm and zeta potential of -22mV. TEM analyses further revealed the intracellular localization of Cu-Zn ANPs in cytoplasm within 24h. Analysis of micronucleus, comet and γ-H2AX foci counts showed that exposure to Cu-Zn ANPs significantly induced chromosomal damage as well as single and double stranded DNA damage in BEAS-2B cells. Our results further indicated that exposure to Cu-Zn ANPs significantly induced intracellular ROS formation. Evaluation of M30:M65 ratios suggested that cell death was predominantly due to necrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
22 |
15
|
Wang M, Ge X, Zheng J, Li D, Liu X, Wang L, Jiang C, Shi Z, Qin L, Liu J, Yang H, Liu LZ, He J, Zhen L, Jiang BH. Role and mechanism of miR-222 in arsenic-transformed cells for inducing tumor growth. Oncotarget 2016; 7:17805-14. [PMID: 26909602 PMCID: PMC4951251 DOI: 10.18632/oncotarget.7525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/14/2016] [Indexed: 12/26/2022] Open
Abstract
High levels of arsenic in drinking water, soil, and air are associated with the higher incidences of several kinds of cancers worldwide, but the mechanism is yet to be fully discovered. Recently, a number of evidences show that dysregulation of microRNAs (miRNAs) induces carcinogenesis. In this study, we found miR-222 was upregulated in arsenic-transformed human lung epithelial BEAS-2B cells (As-T cells). Anti-miR-222 inhibitor treatment decreased cell proliferation, migration, tube formation, and induced apoptosis. In addition, anti-miR-222 inhibitor expression decreased tumor growth in vivo. We also found that inhibition of miR-222 induced the expression of its direct targets ARID1A and phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and activated apoptosis of As-T cells in part through ARID1A downregulation. These results indicate that miR-222 plays an important role in arsenic-induced tumor growth.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
22 |
16
|
Liu L, Wan C, Zhang W, Guan L, Tian G, Zhang F, Ding W. MiR-146a regulates PM 1 -induced inflammation via NF-κB signaling pathway in BEAS-2B cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:743-751. [PMID: 29667303 DOI: 10.1002/tox.22561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/31/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Exposure to particulate matter (PM) leads to kinds of cardiopulmonary diseases, such as asthma, COPD, arrhythmias, lung cancer, etc., which are related to PM-induced inflammation. We have found that PM2.5 (aerodynamics diameter <2.5 µm) exposure induces inflammatory response both in vivo and in vitro. Since the toxicity of PM is tightly associated with its size and components, PM1 (aerodynamics diameter <1.0 µm) is supposed to be more toxic than PM2.5 . However, the mechanism of PM1 -induced inflammation is not clear. Recently, emerging evidences prove that microRNAs play a vital role in regulating inflammation. Therefore, we studied the regulation of miR-146a in PM1 -induced inflammation in human lung bronchial epithelial BEAS-2B cells. The results show that PM1 induces the increase of IL-6 and IL-8 in BEAS-2B cells and up-regulates the miR-146a expression by activating NF-κB signaling pathway. Overexpressed miR-146a prevents the nuclear translocation of p65 through inhibiting the IRAK1/TRAF6 expression, and downregulates the expression of IL-6 and IL-8. Taken together, these results demonstrate that miR-146a can negatively feedback regulate PM1 -induced inflammation via NF-κB signaling pathway in BEAS-2B cells.
Collapse
|
|
7 |
20 |
17
|
Kacar S, Sahinturk V, Kutlu HM. Effect of acrylamide on BEAS-2B normal human lung cells: Cytotoxic, oxidative, apoptotic and morphometric analysis. Acta Histochem 2019; 121:595-603. [PMID: 31109687 DOI: 10.1016/j.acthis.2019.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 01/17/2023]
Abstract
Due to the broad toxic relevance of acrylamide, many measures have been taken since the 1900s. These measures increased day by day when acrylamide was discovered in foods in 2002, and its toxic spectrum was found to be wider than expected. Therefore, in some countries, the products with higher acrylamide content were restricted. On the other hand, the effects of acrylamide on the respiratory system cells have yet to be well understood. In this study, we aimed at investigating the effect of acrylamide on lung epithelial BEAS-2B cells. Initially, the cytotoxic effect of acrylamide on BEAS-2B was determined by MTT assay. Then, cellular oxidative stress was measured. Flow cytometry analysis was conducted for Annexin-V and caspase 3/7. Furthermore, Bax, Bcl-2 and Nrf-2 proteins were evaluated by immunocytochemistry. Finally, acrylamide-induced cellular morphological changes were observed under confocal and TEM microscopes. According to MTT results, the IC50 concentration of acrylamide was 2.00 mM. After acrylamide treatment, oxidative stress increased dose-dependently. Annexin V-labelled apoptotic cells and caspase 3/7 activity were higher than untreated cells in acrylamide-treated cells. Immunocytochemical examination revealed a marked decrease in Bcl-2, an increase in Bax and Nrf-2 protein staining upon acrylamide treatment. Furthermore, in confocal and TEM microscopy, apoptotic hallmarks were pronounced. In the present study, acrylamide was suggested to display anti-proliferative activity, decrease viability, induce apoptosis and oxidative stress and cause morphological changes in BEAS-2B cells.
Collapse
|
|
6 |
19 |
18
|
Ji M, Zhang Y, Li N, Wang C, Xia R, Zhang Z, Wang SL. Nicotine Component of Cigarette Smoke Extract (CSE) Decreases the Cytotoxicity of CSE in BEAS-2B Cells Stably Expressing Human Cytochrome P450 2A13. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101221. [PMID: 29027939 PMCID: PMC5664722 DOI: 10.3390/ijerph14101221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 2A13 (CYP2A13), an extrahepatic enzyme mainly expressed in the human respiratory system, has been reported to mediate the metabolism and toxicity of cigarette smoke. We previously found that nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism by CYP2A13, but its influence on other components of cigarette smoke remains unclear. The nicotine component of cigarette smoke extract (CSE) was separated, purified, and identified using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), splitting CSE into a nicotine section (CSE-N) and nicotine-free section (CSE-O). Cell viability and apoptosis by Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted on immortalized human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13) or vector (B-V), respectively. Interestingly, CSE and CSE-O were toxic to BEAS-2B cells whereas CSE-N showed less cytotoxicity. CSE-O was more toxic to B-2A13 cells than to B-V cells (IC50 of 2.49% vs. 7.06%), which was flatted by 8-methoxypsoralen (8-MOP), a CYP inhibitor. CSE-O rather than CSE or CSE-N increased apoptosis of B-2A13 cells rather than B-V cells. Accordingly, compared to CSE-N and CSE, CSE-O significantly changed the expression of three pairs of pro- and anti-apoptotic proteins, Bcl-2 Associated X Protein/B cell lymphoma-2 (Bax/Bcl-2), Cleaved Poly (Adenosine Diphosphate-Ribose) Polymerase/Poly (Adenosine Diphosphate-Ribose) Polymerase (C-PARP/PARP), and C-caspase-3/caspase-3, in B-2A13 cells. In addition, recombination of CSE-N and CSE-O (CSE-O/N) showed similar cytotoxicity and apoptosis to the original CSE. These results demonstrate that the nicotine component decreases the metabolic activation of CYP2A13 to CSE and aids in understanding the critical role of CYP2A13 in human respiratory diseases caused by cigarette smoking.
Collapse
|
Journal Article |
8 |
19 |
19
|
Rodríguez-Cotto RI, Ortiz-Martínez MG, Rivera- Ramírez E, Méndez LB, Dávila JC, Jiménez-Vélez BD. African Dust Storms Reaching Puerto Rican Coast Stimulate the Secretion of IL-6 and IL-8 and Cause Cytotoxicity to Human Bronchial Epithelial Cells (BEAS-2B). Health (London) 2013; 5:14-28. [PMID: 25002916 PMCID: PMC4082624 DOI: 10.4236/health.2013.510a2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
African dust storm events (ADE) travel across the Atlantic Ocean (ADEAO) and reach the Puerto Rican coast (ADEPRC), potentially impacting air quality and human health. To what extent seasonal variations in atmospheric particulate matter (PM) size fractions, composition and sources trigger respiratory-adverse effects to Puerto Ricans is still unclear. In the present study, we investigated the pro-inflammatory and cytotoxic effects of PM samples harvested during ADEAO (PM10), ADEPRC (PM2.5 and PM10) and Non-ADE (Preand Post-ADEAO and Non-ADEPRC), using BEAS-2B cells. Endotoxins (ENX) in PM2.5 and PM10 extracts and traces of metals (TMET) in PM2.5 extracts were also examined. IL-6 and IL-8 secretion and cytotoxicity were used as endpoints. ADEAO and ADEPRC extracts were found to be more cytotoxic than Non-ADE and ADEAO were more toxic than ADEPRC extracts. PM10 extracts from ADEAO and Post-ADEAO caused significant secretion of IL-8. IL-6 and IL-8 secretion was higher following treatment with PM10 and PM2.5 ADEPRC than with Non-ADEPRC extracts. ENX levels were found to be higher in PM10 ADEAO than in the rest of the samples tested. TMET levels were higher in PM2.5 ADEPRC than in Non-ADEPRC extracts. Deferoxamine significantly reduced cytotoxicity and IL-6 and IL-8 secretion whereas Polymyxin B did not. TMET in PM2.5 fractions is a major determinant in ADEPRC-induced toxicity and work in conjunction with ENX to cause toxicity to lung cells in vitro. ENX and TMET may be responsible, in part, for triggering PM-respiratory adverse responses in susceptible and predisposed individuals.
Collapse
|
research-article |
12 |
17 |
20
|
Wu J, Shi Y, Asweto CO, Feng L, Yang X, Zhang Y, Hu H, Duan J, Sun Z. Fine particle matters induce DNA damage and G2/M cell cycle arrest in human bronchial epithelial BEAS-2B cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25071-25081. [PMID: 28921051 DOI: 10.1007/s11356-017-0090-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
There is compelling evidence that exposure to particulate matter (PM) is linked to lung tumorigenesis. However, there is not enough experimental evidence to support the specific mechanisms of PM2.5-induced DNA damage and cell cycle arrest in lung tumorigenesis. In this study, we investigated the toxic effects and molecular mechanisms of PM2.5 on bronchial epithelial (BEAS-2B) cells. PM2.5 exposure reduced cell viability and enhanced LDH activity. The cell growth curves of BEAS-2B cells decreased gradually with the increase in PM2.5 dosage. A significant increase in MDA content and a decrease in GSH-Px activity were observed. The generation of ROS was enhanced obviously, while apoptosis increased in BEAS-2B cells exposed to PM2.5 for 24 h. DNA damage was found to be more severe in the exposed groups compared with the control. For in-depth study, we have demonstrated that PM2.5 stimulated the activation of HER2/ErbB2 while significantly upregulating the expression of Ras/GADPH, p-BRAF/BRAF, p-MEK/MEK, p-ERK/ERK, and c-Myc/GADPH in a dose-dependent manner. In summary, we suggested that exposure to PM2.5 sustained the activation of HER2/ErbB2, which in turn promoted the activation of the Ras/Raf/MAPK pathway and the expression of the downstream target c-Myc. The overexpression of c-Myc may lead to G2/M arrest and aggravate the DNA damage and apoptosis in BEAS-2B after exposure to PM2.5.
Collapse
|
|
8 |
16 |
21
|
Duan S, Wang N, Huang L, Shao H, Zhang P, Wang W, Wu Y, Wang J, Liu H, Zhang Q, Feng F. NLRP3 inflammasome activation involved in LPS and coal tar pitch extract-induced malignant transformation of human bronchial epithelial cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:585-593. [PMID: 30698909 DOI: 10.1002/tox.22725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/06/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Inflammatory microenvironment has been found as a new characteristic of cancer; however, the mechanisms of inflammation-related lung cancer remain unclear. To explore the role of NLRP3 inflammsome activation in inflammation-related lung carcinogenesis, a cell model was set up. Human bronchial epithelial cells (BEAS-2B) were stimulated with 1 μg/mL lipopolysaccharide (LPS) for 24 hours, and then treated with 2.4 μg/mL coal tar pitch extract (CTPE) for 24 hours, after removal of LPS and CTPE, the cells were numbered passage 1 and were passaged and treated in this way until passage 30, which was called LPS + CTPE group. DMSO and Saline were used as vehicle controls. Malignant transformation of cells in passage 30 was evaluated by morphological change, platelet clone formation assay, and tumor formation in nude mice. The mRNA levels of NLRP3 and IL-1β were detected by real time-PCR. The combination of NLRP3 and caspase-1 were determined using immunofluorescence and confocal. The protein expression of NLRP3, cleaved caspase-1(p10), and cleaved IL-1β was detected using Western blot. It was shown that CTPE, LPS + CTPE-stimulated BEAS-2B cells of passage 30 changed a lot morphologically. The clone formation rates, the rates of positive cells of NLRP3 and caspase-1 combination, the mRNA levels of NLRP3 and IL-1β, the protein expression of NLRP3, cleaved caspase-1(p10) and cleaved IL-1β of cells exposed with CTPE and LPS + CTPE at passage 30 were significantly increased compared to vehicle controls. Furthermore, the ability of tumor formation in nude mice, the rates of clone formation and positive cells, mRNA and protein levels of NLRP3 inflammasome activation-related factors in LPS + CTPE-induced cells were all higher than those in cells stimulated with CTPE alone. In conclusion, the cell model of inflammation-related lung cancer is set up successfully, and NLRP3 inflammasome activation may be involved in the malignant transformation of BEAS-2B cells which induced by CTPE alone or LPS combined with CTPE.
Collapse
|
|
6 |
16 |
22
|
Micronuclei Detection by Flow Cytometry as a High-Throughput Approach for the Genotoxicity Testing of Nanomaterials. NANOMATERIALS 2019; 9:nano9121677. [PMID: 31771274 PMCID: PMC6956333 DOI: 10.3390/nano9121677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Abstract
Thousands of nanomaterials (NMs)-containing products are currently under development or incorporated in the consumer market, despite our very limited understanding of their genotoxic potential. Taking into account that the toxicity and genotoxicity of NMs strongly depend on their physicochemical characteristics, many variables must be considered in the safety evaluation of each given NM. In this scenario, the challenge is to establish high-throughput methodologies able to generate rapid and robust genotoxicity data that can be used to critically assess and/or predict the biological effects associated with those NMs being under development or already present in the market. In this study, we have evaluated the advantages of using a flow cytometry-based approach testing micronucleus (MNs) induction (FCMN assay). In the frame of the EU NANoREG project, we have tested six different NMs—namely NM100 and NM101 (TiO2NPs), NM110 (ZnONPs), NM212 (CeO2NPs), NM300K (AgNPs) and NM401 (multi-walled carbon nanotubes (MWCNTs)). The obtained results confirm the ability of AgNPs and MWCNTs to induce MN in the human bronchial epithelial BEAS-2B cell line, whereas the other tested NMs retrieved non-significant increases in the MN frequency. Based on the alignment of the results with the data reported in the literature and the performance of the FCMN assay, we strongly recommend this assay as a reference method to systematically evaluate the potential genotoxicity of NMs.
Collapse
|
Journal Article |
6 |
14 |
23
|
Hong J, Zhou W, Wang X. Involvement of miR-455 in the protective effect of H 2S against chemical hypoxia-induced injury in BEAS-2B cells. Pathol Res Pract 2018; 214:1804-1810. [PMID: 30193773 DOI: 10.1016/j.prp.2018.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023]
Abstract
The protective effect of hydrogen sulfide (H2S) against hypoxia-induced injury via anti-apoptosis is well established, but the underlying mechanism remains unclear. The present study aimed to investigate whether miR-455 participated in the H2S protection of lung epithelial cells against CoCl2-induced apoptosis by regulating endoplasmic reticulum stress (ERS)-related genes. Human lung epithelial cells BEAS-2B were subjected to hypoxia injury with or without H2S preconditioning. It was found that hypoxia injury increased apoptosis of BEAS-2B cells, down-regulated the expression of miR-455, and upregulated the expression of calreticulin (Calr). H2S preconditioning attenuated lung epithelial cells apoptosis, enhanced cell viability, up-regulated the expression of miR-455, as well as down-regulated the expression of Calr following hypoxia injury. In addition, Calr, GRP78, C/EBP homologous protein (CHOP) and Caspase-12 protein was down-regulated by the miR-455 mimic and up-regulated by the miR-455 inhibitor. These results implicate miR-455 regulated H2S protection of lung epithelial cells against hypoxia-induced apoptosis by stimulating Calr.
Collapse
|
Journal Article |
7 |
12 |
24
|
Borgie M, Dagher Z, Ledoux F, Verdin A, Cazier F, Martin P, Hachimi A, Shirali P, Greige-Gerges H, Courcot D. Comparison between ultrafine and fine particulate matter collected in Lebanon: Chemical characterization, in vitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:250-260. [PMID: 26093079 DOI: 10.1016/j.envpol.2015.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
During the last few years, the induction of toxicological mechanisms by atmospheric ultrafine particles (UFP) has become one of the most studied topics in toxicology and a subject of huge debates. Fine particles (FP) and UFP collected at urban and rural sites in Lebanon were studied for their chemical composition and toxicological effects. UFP were found more enriched in trace elements, secondary inorganic ions, total carbon and organic compounds than FP. For toxicological analysis, BEAS-2B cells were exposed for 24, 48 and 72 h to increasing concentrations of FP, water-UFP suspension (UFPw) and UFP organic extract (UFPorg). Our findings showed that UFP caused earlier alterations of mitochondrial metabolism and membrane integrity from the lowest concentrations. Moreover, a significant induction of CYP1A1, CYP1B1 and AhRR genes expression was showed after cells exposure to UFPorg and to a lesser extent to UFPw and FP samples.
Collapse
|
Comparative Study |
10 |
11 |
25
|
Jin Q, Fan Y, Lu Y, Zhan Y, Sun J, Tao D, He Y. Liquid crystal monomers in ventilation and air conditioning dust: Indoor characteristics, sources analysis and toxicity assessment. ENVIRONMENT INTERNATIONAL 2023; 180:108212. [PMID: 37738697 DOI: 10.1016/j.envint.2023.108212] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/25/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Indoor dust contaminated with liquid crystal monomers (LCMs) released from various commercial liquid crystal display (LCD) screens may pose environmental health risks to humans. This study aimed to investigate the occurrence of 64 LCMs in ventilation and air conditioning filters (VACF) dust, characterize their composition profiles, potential sources, and associations with indoor characteristics, and assess their in vitro toxicity using the human lung bronchial epithelial cells (BEAS-2B). A total of 31 LCMs with concentrations (ΣLCMs) ranging from 43.7 ng/g to 448 ng/g were detected in the collected VACF dust. Additional analysis revealed the potential interactions between indoor environmental conditions and human exposure risks associated with the detected LCMs in VACF dust. The service area and working time of the ventilation and air conditioning system, and the number of indoor LCD screens were positively correlated with the fluorinated ΣLCMs in VACF dust (r = 0.355 ∼ 0.511, p < 0.05), while the associations with the non-fluorinated ΣLCMs were not found (p > 0.05), suggesting different environmental behavior and fates of fluorinated and non-fluorinated LCMs in the indoor environment. Four main indoor sources of LCMs (i.e., computer (37.1%), television (28.3%), Brand A smartphone (21.2%) and Brand S smartphone (13.4%)) were identified by positive matrix factorization-multiple linear regression (PMF-MLR). Exposure to 14 relatively frequently detected LCMs, individually and in the mixture, induced significant oxidative stress in BEAS-2B cells. Among them, non-fluorinated LCMs, specifically 3cH2B and MeP3bcH, caused dominant decreased cell viability. This study provides new insights into the indoor LCMs pollution and the associated potential health risks due to the daily use of electronic devices.
Collapse
|
|
2 |
11 |