Shi M, Mi L, Li F, Li Y, Zhou Y, Chen F, Liu L, Chai Y, Yang W, Zhang JN, Chen X. Fluvoxamine confers neuroprotection via inhibiting infiltration of peripheral leukocytes and M1 polarization of microglia/macrophages in a mouse model of traumatic brain injury.
J Neurotrauma 2022;
39:1240-1261. [PMID:
35502478 DOI:
10.1089/neu.2021.0355]
[Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is an important mediator of secondary injury pathogenesis which exerts dual beneficial and detrimental effects on pathophysiology of central nervous system (CNS) after traumatic brain injury (TBI). Fluvoxamine as a group of the Serotonin selective reuptake inhibitors (SSRIs) has been reported to have the anti-inflammatory properties. However, the mechanisms and therapeutic effects of Fluvoxamine in neuroinflammation after TBI have not be defined. In this study, we showed that Fluvoxamine inhibited peripheral immune cells infiltration and glia activation at 3 days in mice subjected to TBI. Fluvoxamine treatment promoted microglial/macrophages phenotypic transformation from pro-inflammatory M1-phenotype to anti-inflammatory M2-phenotype in vivo and vitro experiments. In addition, Fluvoxamine treatment attenuated neuronal apoptosis, blood-brain barrier disruption, cerebrovascular damage and posttraumatic edema formation, thereby improving neurological function of mice subjected to TBI. These findings support the clinical evaluation of Fluvoxamine as a neuroprotective therapy for TBI.
Collapse