Wang BY, Wu TK, Liu H, Hou WG, Ma LT, Deng YX, Ding C, Hong Y, Xie HQ. Biomechanical Analysis of
Bilateral Facet Joint Stabilization Using Bioderived Tendon for Posterior Cervical Spine Motion Reservation in Goats.
World Neurosurg 2017;
107:268-275. [PMID:
28826710 DOI:
10.1016/j.wneu.2017.07.163]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVES
To investigate the biomechanical properties of a novel stabilization method for posterior cervical motion preservation using bioderived freeze-dried tendon.
METHODS
Experiments were conducted both in vitro and in vivo. For the in vitro group, 15 fresh-frozen goat spines (C1-C7) were randomly divided into 3 subgroups: intact (INT-vitro, n = 5), injury model (IM-vitro, n = 5), and bilateral facet joint stabilization (BFJS-vitro, n = 5) subgroups. For the in vivo group, 15 adult goats were randomly divided into 3 experimental subgroups: INT-vivo subgroup (n = 5), IM-vivo subgroup (n = 5), and BFJS-vivo subgroup (n = 5). Goats in the in vivo group were euthanized 12 weeks after surgery. Biomechanical tests were performed to evaluate range of motion. Histologic analysis was conducted to evaluate survival and reactions associated with the bioderived tendon.
RESULTS
Compared with the INT-vitro and INT-vivo subgroups, the flexion of IM-vitro and IM-vivo subgroups increased significantly, respectively (P < 0.05). The flexion of the BFJS-vitro and BFJS-vivo subgroups was significantly smaller than in the IM-vitro and IM-vivo subgroups, respectively (P < 0.05). Significant differences between the BFJS-vitro and BFJS-vivo subgroups were observed in flexion, lateral bending, and rotation (P < 0.05). Histologic evaluation demonstrated that fibers arranged regularly and stained homogeneously. New vessels in growth indicated that the bioderived tendon was survival and processed good regeneration.
CONCLUSIONS
Bilateral facet joint stabilization can significantly limit excessive flexion motion and maintain adequate stability. Furthermore, the preservation of extension motions without limiting lateral bending and rotation ideally simulates the features of the posterior ligamentous complex. This preserves the dynamic stability of the lower cervical spine.
Collapse