1
|
Dong L, Qi J, Shao C, Zhong X, Gao D, Cao W, Gao J, Bai R, Long G, Chu C. Concentration and size distribution of total airborne microbes in hazy and foggy weather. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1011-1018. [PMID: 26473703 DOI: 10.1016/j.scitotenv.2015.10.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 05/23/2023]
Abstract
Atmospheric bioaerosol particles were collected using a bioaerosol sampler from Oct. 2013 to Aug. 2014 in the coastal region of Qingdao. The total microbes were measured using an epifluorescence microscope after staining with DAPI (4',6-diamidino-2-phenylindole). The concentration of total airborne microbes showed seasonal variation, with the highest value in winter and the lowest in summer. The mean concentration of total microbes was 6.55 × 10(5)Cells/m(3) on non-hazy days. The total microbe concentration increased to 7.09 × 10(5) and 9.00 × 10(5)Cells/m(3) on hazy and foggy days, respectively. The particle sizes of the total microbes presented a bimodal distribution on sunny days, with one peak at 1.1-2.1 μm and another at 4.7-7.0 μm. The size distribution of total microbes showed an increase in the fine fraction on hazy days and an increase in the coarse fraction on foggy days. However, the size distribution became unimodal during a heating period. Spearman correlation analysis showed that temperature and O3 had a significant negative correlation with the airborne microbe concentration, while PM2.5, SO2, NO2, CO and the air quality index (AQI) had significant positive correlations with the airborne microbe concentration during hazy days. The increased number of airborne microbes will affect the air quality on hazy days.
Collapse
|
|
9 |
90 |
2
|
Ruiz-Gil T, Acuña JJ, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, Jorquera MA. Airborne bacterial communities of outdoor environments and their associated influencing factors. ENVIRONMENT INTERNATIONAL 2020; 145:106156. [PMID: 33039877 DOI: 10.1016/j.envint.2020.106156] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 05/16/2023]
Abstract
Microbial entities (such bacteria, fungi, archaea and viruses) within outdoor aerosols have been scarcely studied compared with indoor aerosols and nonbiological components, and only during the last few decades have their studies increased. Bacteria represent an important part of the microbial abundance and diversity in a wide variety of rural and urban outdoor bioaerosols. Currently, airborne bacterial communities are mainly sampled in two aerosol size fractions (2.5 and 10 µm) and characterized by culture-dependent (plate-counting) and culture-independent (DNA sequencing) approaches. Studies have revealed a large diversity of bacteria in bioaerosols, highlighting Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as ubiquitous phyla. Seasonal variations in and dispersion of bacterial communities have also been observed between geographical locations as has their correlation with specific atmospheric factors. Several investigations have also suggested the relevance of airborne bacteria in the public health and agriculture sectors as well as remediation and atmospheric processes. However, although factors influencing airborne bacterial communities and standardized procedures for their assessment have recently been proposed, the use of bacterial taxa as microbial indicators of specific bioaerosol sources and seasonality have not been broadly explored. Thus, in this review, we summarize and discuss recent advances in the study of airborne bacterial communities in outdoor environments and the possible factors influencing their abundance, diversity, and seasonal variation. Furthermore, airborne bacterial activity and bioprospecting in different fields (e.g., the textile industry, the food industry, medicine, and bioremediation) are discussed. We expect that this review will reveal the relevance and influencing factors of airborne bacteria in outdoor environments as well as stimulate new investigations on the atmospheric microbiome, particularly in areas where air quality is a public concern.
Collapse
|
Review |
5 |
87 |
3
|
Hospodsky D, Yamamoto N, Nazaroff WW, Miller D, Gorthala S, Peccia J. Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children's classrooms. INDOOR AIR 2015; 25:641-52. [PMID: 25403276 DOI: 10.1111/ina.12172] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/13/2014] [Indexed: 05/06/2023]
Abstract
UNLABELLED Baseline information on size-resolved bacterial, fungal, and particulate matter (PM) indoor air concentrations and emission rates is presented for six school classrooms sampled in four countries. Human occupancy resulted in significantly elevated airborne bacterial (81 times on average), fungal (15 times), and PM mass (nine times) concentrations as compared to vacant conditions. Occupied indoor/outdoor (I/O) ratios consistently exceeded vacant I/O ratios. Regarding size distributions, average room-occupied bacterial, fungal, and PM geometric mean particle sizes were similar to one another while geometric means estimated for bacteria, fungi, and PM mass during vacant sampling were consistently lower than when occupied. Occupancy also resulted in elevated indoor bacterial-to-PM mass-based and number-based ratios above corresponding outdoor levels. Mean emission rates due to human occupancy were 14 million cells/person/h for bacteria, 14 million spore equivalents/person/h for fungi, and 22 mg/person/h for PM mass. Across all locations, indoor emissions contributed 83 ± 27% (bacteria), 66 ± 19% (fungi), and 83 ± 24% (PM mass) of the average indoor air concentrations during occupied times. PRACTICAL IMPLICATIONS An extensive data set of bacterial and fungal size-distributed indoor air concentrations and emission rates is presented. Analysis of these data contributes to an understanding of how indoor bacterial and fungal aerosols are influenced by human occupancy. This work extends beyond prior culture and DNA-based microbiome studies in buildings to include quantitative relationships between size-resolved bacterial and fungal concentrations in indoor air and building parameters such as occupancy, ventilation, and outdoor conditions. The work indicates that occupancy-associated emissions (e.g., via resuspension and shedding) contribute more to both bacterial and fungal indoor air concentrations than do outdoor sources for the occupied classrooms investigated in this study.
Collapse
|
|
10 |
82 |
4
|
Uhrbrand K, Schultz AC, Koivisto AJ, Nielsen U, Madsen AM. Assessment of airborne bacteria and noroviruses in air emission from a new highly-advanced hospital wastewater treatment plant. WATER RESEARCH 2017; 112:110-119. [PMID: 28153697 DOI: 10.1016/j.watres.2017.01.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/20/2016] [Accepted: 01/22/2017] [Indexed: 05/21/2023]
Abstract
Exposure to bioaerosols can pose a health risk to workers at wastewater treatment plants (WWTPs) and to habitants of their surroundings. The main objective of this study was to examine the presence of harmful microorganisms in the air emission from a new type of hospital WWTP employing advanced wastewater treatment technologies. Air particle measurements and sampling of inhalable bacteria, endotoxin and noroviruses (NoVs) were performed indoor at the WWTP and outside at the WWTP ventilation air exhaust, downwind of the air exhaust, and upwind of the WWTP. No significant differences were seen in particle and endotoxin concentrations between locations. Bacterial concentrations were comparable or significantly lower in the exhaust air than inside the WWTP and in the upwind reference. Bacterial isolates were identified using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. In total, 35 different bacterial genera and 64 bacterial species were identified in the air samples. Significantly higher genus and species richness was found with an Andersen Cascade Impactor compared with filter-based sampling. No pathogenic bacteria were found in the exhaust air. Streptomyces was the only bacterium found in the air both inside the WWTP and at the air emission, but not in the upwind reference. NoV genomes were detected in the air inside the WWTP and at the air exhaust, albeit in low concentrations. As only traces of NoV genomes could be detected in the exhaust air they are unlikely to pose a health risk to surroundings. Hence, we assess the risk of airborne exposure to pathogenic bacteria and NoVs from the WWTP air emission to surroundings to be negligible. However, as a slightly higher NoV concentration was detected inside the WWTP, we cannot exclude the possibility that exposure to airborne NoVs can pose a health risk to susceptible to workers inside the WWTP, although the risk may be low.
Collapse
|
|
8 |
70 |
5
|
Douglas P, Robertson S, Gay R, Hansell AL, Gant TW. A systematic review of the public health risks of bioaerosols from intensive farming. Int J Hyg Environ Health 2018; 221:134-173. [PMID: 29133137 DOI: 10.1016/j.ijheh.2017.10.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Population growth, increasing food demands, and economic efficiency have been major driving forces behind farming intensification over recent decades. However, biological emissions (bioaerosols) from intensified livestock farming may have the potential to impact human health. Bioaerosols from intensive livestock farming have been reported to cause symptoms and/or illnesses in occupational-settings and there is concern about the potential health effects on people who live near the intensive farms. As well as adverse health effects, some potential beneficial effects have been attributed to farm exposures in early life. The aim of the study was to undertake a systematic review to evaluate potential for adverse health outcomes in populations living near intensive livestock farms. MATERIAL AND METHODS Two electronic databases (PubMed and Scopus) and bibliographies were searched for studies reporting associations between health outcomes and bioaerosol emissions related to intensive farming published between January 1960 and April 2017, including both occupational and community studies. Two authors independently assessed studies for inclusion and extracted data. Risk of bias was assessed using a customized score. RESULTS 38 health studies met the inclusion criteria (21 occupational and 1 community study measured bioaerosol concentrations, 16 community studies using a proxy measure for exposure). The majority of occupational studies found a negative impact on respiratory health outcomes and increases in inflammatory biomarkers among farm workers exposed to bioaerosols. Studies investigating the health of communities living near intensive farms had mixed findings. All four studies of asthma in children found increased reported asthma prevalence among children living or attending schools near an intensive farm. Papers principally investigated respiratory and immune system outcomes. CONCLUSIONS The review indicated a potential impact of intensive farming on childhood respiratory health, based on a small number of studies using self-reported outcomes, but supported by findings from occupational studies. Further research is needed to measure and monitor exposure in community settings and relate this to objectively measured health outcomes.
Collapse
|
Review |
7 |
69 |
6
|
Tseng CC, Li CS. Collection efficiencies of aerosol samplers for virus-containing aerosols. JOURNAL OF AEROSOL SCIENCE 2005; 36:593-607. [PMID: 32287372 PMCID: PMC7118727 DOI: 10.1016/j.jaerosci.2004.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 12/04/2004] [Accepted: 12/07/2004] [Indexed: 05/08/2023]
Abstract
Collection efficiencies of four bioaerosol samplers (Andersen impactor, AGI-30 impinger, gelatin filter, and nuclepore filter) were evaluated for virus-containing aerosols. Four different bacteriophages were used as surrogates for the mammalian viruses. Results showed that the collection efficiency was significantly affected by the morphology of the virus particles. For hydrophilic viruses, the collection efficiencies of the Andersen impactor, impinger, and gelatin filter were 10 times higher than that of the nuclepore filter. For hydrophilic viruses, the collection efficiencies of all four samplers were 10-100 times higher than hydrophobic viruses. The infectivity of the virus in collected samples was also evaluated for an AGI-30 impinger. Results showed that the viruses retained more infectivity when the samples were refrigerated (up to 1 day) during storage than when stored at room temperature (up to 8 h). Therefore, even when refrigerated, airborne virus samples collected using an impinger should be processed as soon as possible to avoid loss of virus infectivity.
Collapse
|
research-article |
20 |
68 |
7
|
Gao XL, Shao MF, Wang Q, Wang LT, Fang WY, Ouyang F, Li J. Airborne microbial communities in the atmospheric environment of urban hospitals in China. JOURNAL OF HAZARDOUS MATERIALS 2018; 349:10-17. [PMID: 29414740 DOI: 10.1016/j.jhazmat.2018.01.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 05/11/2023]
Abstract
Clinically relevant antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in bioaerosols have become a greater threat to public health. However, few reports have shown that ARB and ARGs were found in the atmosphere. High-throughput sequencing applied to environmental sciences has enhanced the exploration of microbial populations in atmospheric samples. Thus, five nosocomial bioaerosols were collected, and the dominant microbial and pathogenic microorganisms were identified by high-throughput sequencing in this study. The results suggested that the dominant microorganisms at the genus level were Massilia, Sphingomonas, Methylobacterium, Methylophilus, Micrococcineae, and Corynebacterineae. The most abundant pathogenic microorganisms were Staphylococcus saprophyticus, Corynebacterium minutissimum, Streptococcus pneumoniae, Escherichia coli, Arcobacter butzleri, Aeromonas veronii, Pseudomonas aeruginosa, and Bacillus cereus. The relationship between microbial communities and environmental factors was evaluated with canonical correspondence analysis (CCA). Meanwhile, differences in the pathogenic bacteria between bioaerosols and dust in a typical hospital was investigated. Furthermore, cultivable Staphylococcus isolates with multi-drug resistance phenotype (>3 antibiotics) in the inpatient departments were much higher than those in the transfusion area and out-patient departments, possibly attributed to the dense usage of antibiotics in inpatient departments. The results of this study might be helpful for scientifically air quality control in hospitals.
Collapse
|
|
7 |
64 |
8
|
Stockwell RE, Ballard EL, O'Rourke P, Knibbs LD, Morawska L, Bell SC. Indoor hospital air and the impact of ventilation on bioaerosols: a systematic review. J Hosp Infect 2019; 103:175-184. [PMID: 31279762 DOI: 10.1016/j.jhin.2019.06.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
Healthcare-acquired infections (HAIs) continue to persist in hospitals, despite the use of increasingly strict infection-control precautions. Opportunistic airborne transmission of potentially pathogenic bioaerosols may be one possible reason for this persistence. Therefore, this study aimed to systematically review the concentrations and compositions of indoor bioaerosols in different areas within hospitals and the effects of different ventilation systems. Electronic databases (Medline and Web of Science) were searched to identify articles of interest. The search was restricted to articles published from 2000 to 2017 in English. Aggregate data was used to examine the differences in mean colony forming units per cubic metre (cfu/m3) between different hospital areas and ventilation types. A total of 36 journal articles met the eligibility criteria. The mean total bioaerosol concentrations in the different areas of the hospitals were highest in the inpatient facilities (77 cfu/m3, 95% confidence interval (CI): 55-108) compared with the restricted (13cfu/m3, 95% CI: 10-15) and public areas (14 cfu/m3, 95% CI: 10-19). Hospital areas with natural ventilation had the highest total bioaerosol concentrations (201 cfu/m3, 95% CI: 135-300) compared with areas using conventional mechanical ventilation systems (20 cfu/m3, 95% CI: 16-24). Hospital areas using sophisticated mechanical ventilation systems (such as increased air changes per hour, directional flow and filtration systems) had the lowest total bioaerosol concentrations (9 cfu/m3, 95% CI: 7-13). Operating sophisticated mechanical ventilation systems in hospitals contributes to improved indoor air quality within hospitals, which assists in reducing the risk of airborne transmission of HAIs.
Collapse
|
Systematic Review |
6 |
62 |
9
|
Madsen AM, Zervas A, Tendal K, Nielsen JL. Microbial diversity in bioaerosol samples causing ODTS compared to reference bioaerosol samples as measured using Illumina sequencing and MALDI-TOF. ENVIRONMENTAL RESEARCH 2015; 140:255-67. [PMID: 25880607 DOI: 10.1016/j.envres.2015.03.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/16/2015] [Accepted: 03/26/2015] [Indexed: 05/04/2023]
Abstract
The importance of the microbial diversity of bioaerosols in relation to occupational exposure and work related health symptoms is not known. The aim of this paper is to gain knowledge on the bacterial and fungal communities in dust causing organic dust toxic syndrome (ODTS) and in reference dust not causing ODTS. Bacterial and fungal communities were described in personal exposure samples from grass seed workers developing ODTS, in dust generated from grass seeds causing ODTS and in dust generated from reference seeds not causing ODTS. Amplicon sequencing of the bacterial 16S rRNA gene and the fungal ITS region, as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) were used for identification of fungi and bacteria in personal exposure samples and in dust samples from grass seeds causing ODTS and in dust from reference grass seeds. Furthermore, activities of enzymes were measured in the same samples. The sequencing data revealed more than 150 bacterial and 25 fungal genera present in each sample. Streptomyces spp., Aspergillus fumigatus and Rhizopus microsporus were dominating in the dust causing ODTS but not in the reference dust. The dustiness in terms of Mucor sp. and R. microsporus were 100-1000 times higher for problematic seeds compared to reference seeds. The bacterial species in the dust causing ODTS included pathogenic species such as Klebsiella pneumonia and Streptomyces pneumonia, and it contained increased concentrations of total protein, serine protease, chitinase, and β-glucosidase. Twenty-three bacterial genera covered more than 50% of the total reads in the personal and problematic seed dust. These 23 genera accounted for less than 7% of the total reads in the reference seed dust. The microbial community of the dust from the problematic seeds showed great similarities to that from the personal air samples from the workers. In conclusion, we have shown for the first time a shift in the microbial community in aerosol samples that caused ODTS compared to the reference samples that did not cause the ODTS. Furthermore, elevated enzyme activities were found in the dust causing ODTS.
Collapse
|
|
10 |
61 |
10
|
Gaviria-Figueroa A, Preisner EC, Hoque S, Feigley CE, Norman RS. Emission and dispersal of antibiotic resistance genes through bioaerosols generated during the treatment of municipal sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:402-412. [PMID: 31181526 DOI: 10.1016/j.scitotenv.2019.05.454] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 05/22/2023]
Abstract
Wastewater treatment plants act as socio-ecological couplers through the concentration, treatment, and subsequent environmental release of sewage collected from surrounding communities and are often considered hotspots for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). While studies have identified the release of ARB/ARGs in treated liquid sewage, little is known about potential dispersal through wastewater bioaerosol emissions. The aim of this study was to better define the contribution of WWTP bioaerosols to potential environmental distribution of ARB/ARGs. Bioaerosols were collected immediately upwind and downwind from the aeration tanks of a municipal wastewater treatment plant and liquid sludge samples were obtained from the aeration tanks. From the bioaerosol and liquid samples, qPCR assays identified 44 ARGs that confer resistance to a wide range of antibiotics. Comparison of the ARG profiles across samples showed that the downwind bioaerosol profile was 68% similar to the profile found in liquid sludge samples. Community 16S rRNA gene sequencing also showed that downwind bioaerosols had similar taxonomic profiles as those generated from liquid sludge while the upwind profiles showed a distinct difference. Preliminary ARG dispersion modeling estimated an ARG emission rate of ~10,620 genes per hour from the liquid sludge and indicated that the bioaerosols have the potential to be carried kilometers away from the WWTP source based on wind speed. The overall results from this study suggest that bioaerosols generated during WWTP processes can aid in the emission and dispersal of bacteria and ARGs, resulting in a possible route of human exposure and deposition into surrounding environments.
Collapse
|
|
6 |
59 |
11
|
Fan XY, Gao JF, Pan KL, Li DC, Dai HH, Li X. More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM 2.5. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:668-680. [PMID: 31108300 DOI: 10.1016/j.envpol.2019.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 05/16/2023]
Abstract
Based on long-term systematic sampling, information is currently limited regarding the impacts of different air pollution levels on variations of bacteria, fungi and ammonia-oxidizing microorganisms (AOMs) in fine particulate matter (PM2.5), especially their interactions. Here, PM2.5 samples were weekly collected at different air pollution levels in Beijing, China during one-year period. Microbial composition was profiled using Illumina sequencing, and their interactions were further investigated to reveal the hub genera with network analysis. Diversity of bacteria and fungi showed obvious seasonal variations, and the heavy- or severe-pollution levels mainly affected the diversity and composition of bacteria, but not fungi. While, the community structure of both bacteria and fungi was influenced by the combination of air pollution levels and seasons. The most abundant bacterial genera and some genera with highest abundance in heavy- or severe-pollution days were the hub bacteria in PM2.5. Whereas, only the dominant fungi in light-pollution days in winter were the hub fungi in PM2.5. The complex positive correlations of bacterial or fungal pathogens would aggravate the air pollution effects on human health, despite of their low relative abundances. Moreover, the strong co-occurrence and co-exclusion patterns of bacteria and fungi in PM2.5 were identified. Furthermore, the hub environmental factors (e.g., relative humidity and atmospheric pressure) may play central roles in the distributions of bacteria and fungi, including pathogens. Importantly, AOMs showed significant co-occurrence patterns with the main bacterial and fungal genera and potential pathogens, providing possible microbiological evidences for controlling ammonia emissions to effectively reduce PM2.5 pollution. These results highlighted the more obvious air pollution impacts on bacteria than fungi, and the complex bacterial-fungal interactions, as well as the important roles of AOMs in airborne microbial interactions webs, improving our understanding of bioaerosols in PM2.5.
Collapse
|
|
6 |
57 |
12
|
Lu R, Li Y, Li W, Xie Z, Fan C, Liu P, Deng S. Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi'an, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:244-252. [PMID: 29753222 DOI: 10.1016/j.scitotenv.2018.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/06/2018] [Accepted: 05/01/2018] [Indexed: 05/04/2023]
Abstract
Serious air pollution events have frequently occurred in China associated with the acceleration of urbanization and industrialization in recent years. Exposure to atmospheric particulate matter (PM) of high concentration can lead to adverse effects on human health. Airborne bacteria are important constituents of microbial aerosols and contain lots of pathogens. However, variations in bacterial community structure in atmospheric PM of different sizes (PM2.5, PM10 and TSP) have not yet been explored. In this study, PM samples of different sizes were collected during the hazy days from Jul.2016 to Apr.2017 to determine bacterial diversity and community structure. Samples from soils and leaf surfaces were also collected to determine potential sources of bacterial aerosols. High-throughput sequencing technology was used generate bacterial community profiles, where we determined their diversity and abundances in the samples. Results showed that the dominant bacterial community structures in PM2.5, PM10 and TSP were strongly similar. Compared with non-haze days, the relative abundances of most bacterial pathogens on the haze days did not increase. Meanwhile, temperature, O3 and NO2 had more significant effects on bacterial community than the other environmental factors. Source tracking analysis indicated that the airborne bacteria might be not from local environment. It may come from the entire city or other regions by long distance airflow transport. Results of this study improved our understanding of the influence of bioaerosols on human health and the potential sources of airborne microbes.
Collapse
|
|
7 |
55 |
13
|
Xie W, Li Y, Bai W, Hou J, Ma T, Zeng X, Zhang L, An T. The source and transport of bioaerosols in the air: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:44. [PMID: 33589868 PMCID: PMC7876263 DOI: 10.1007/s11783-020-1336-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 05/13/2023]
Abstract
Recent pandemic outbreak of the corona-virus disease 2019 (COVID-19) has raised widespread concerns about the importance of the bioaerosols. They are atmospheric aerosol particles of biological origins, mainly including bacteria, fungi, viruses, pollen, and cell debris. Bioaerosols can exert a substantial impact on ecosystems, climate change, air quality, and public health. Here, we review several relevant topics on bioaerosols, including sampling and detection techniques, characterization, effects on health and air quality, and control methods. However, very few studies have focused on the source apportionment and transport of bioaerosols. The knowledge of the sources and transport pathways of bioaerosols is essential for a comprehensive understanding of the role microorganisms play in the atmosphere and control the spread of epidemic diseases associated with them. Therefore, this review comprehensively summarizes the up to date progress on the source characteristics, source identification, and diffusion and transport process of bioaerosols. We intercompare three types of diffusion and transport models, with a special emphasis on a widely used mathematical model. This review also highlights the main factors affecting the source emission and transport process, such as biogeographic regions, land-use types, and environmental factors. Finally, this review outlines future perspectives on bioaerosols.
Collapse
|
Review |
4 |
48 |
14
|
Polednik B. Aerosol and bioaerosol particles in a dental office. ENVIRONMENTAL RESEARCH 2014; 134:405-409. [PMID: 25218707 DOI: 10.1016/j.envres.2014.06.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/05/2014] [Accepted: 06/08/2014] [Indexed: 06/03/2023]
Abstract
This study reports comprehensive aerosol and bioaerosol measurements in a dental office. The highest submicrometer particle concentrations were observed during dental grinding and they were on average 16 times higher than the indoor background. Certain metallic trace elements and total carbon concentrations were significantly elevated (>10 times) in the particles deposited in the operating room. Dental procedures also contributed to increased bacterial contamination that may pose a health risk both for dental personnel and patients.
Collapse
|
|
11 |
47 |
15
|
Mbareche H, Veillette M, Bonifait L, Dubuis ME, Benard Y, Marchand G, Bilodeau GJ, Duchaine C. A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1306-1314. [PMID: 28605849 DOI: 10.1016/j.scitotenv.2017.05.235] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Composting is used all over the world to transform different types of organic matter through the actions of complex microbial communities. Moving and handling composting material may lead to the emission of high concentrations of bioaerosols. High exposure levels are associated with adverse health effects among compost industry workers. Fungal spores are suspected to play a role in many respiratory illnesses. There is a paucity of information related to the detailed fungal diversity in compost as well as in the aerosols emitted through composting activities. The aim of this study was to analyze the fungal diversity of both organic matter and aerosols present in facilities that process domestic compost and facilities that process pig carcasses. This was accomplished using a next generation sequencing approach that targets the ITS1 genomic region. Multivariate analyses revealed differences in the fungal community present in samples coming from compost treating both raw materials. Furthermore, results show that the compost type affects the fungal diversity of aerosols emitted. Although 8 classes were evenly distributed in all samples, Eurotiomycetes were more dominant in carcass compost while Sordariomycetes were dominant in domestic compost. A large diversity profile was observed in bioaerosols from both compost types showing the presence of a number of pathogenic fungi newly identified in bioaerosols emitted from composting plants. Members of the family Herpotrichiellaceae and Gymnoascaceae which have been shown to cause human diseases were detected in compost and air samples. Moreover, some fungi were identified in higher proportion in air compared to compost. This is the first study to identify a high level of fungal diversity in bioaerosols present in composting plants suggesting a potential exposure risk for workers. This study suggests the need for creating guidelines that address human exposure to bioaerosols. The implementation of technical and organizational measure should be a top priority. However, skin and respiratory protection for compost workers could be used to reduce the exposure as a second resort.
Collapse
|
|
8 |
47 |
16
|
Gong J, Qi J, E B, Yin Y, Gao D. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113485. [PMID: 31708283 DOI: 10.1016/j.envpol.2019.113485] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/13/2019] [Accepted: 10/23/2019] [Indexed: 05/21/2023]
Abstract
Bacteria are important components of bioaerosols with the potential to influence human health and atmospheric dynamics. However, information on the concentrations and influencing factors of viable bacteria is poorly understood. In this study, size-segregated bioaerosol samples were collected from Aug. 2017 to Feb. 2018 in the coastal region of Qingdao, China. The total microbes and viable/non-viable bacteria in the samples were measured using an epifluorescence microscope after staining with the DAPI (4', 6-diamidino-2-phenylindole) and LIVE/DEAD® BacLight™ Bacterial Viability Kit, respectively. The concentrations of non-viable bacteria increased when the air quality index (AQI) increased from <50 to 300, with the proportion of non-viable bacteria to total microbes increasing from (11.1 ± 12.0)% at an AQI of <50 to (18.4 ± 14.7)% at an AQI of >201. However, the concentrations of viable bacteria decreased from (2.12 ± 2.04) × 104 cells·m-3 to (9.00 ± 1.72) × 103 cells·m-3 when the AQI increased from <50 to 150. The ratio of viable bacteria to total bacteria (viability) decreased from (31.0 ± 14.7)% at 0 < AQI<50 to (8.6 ± 1.0)% at 101 < AQI<150 and then increased to (9.6 ± 5.3)% at an AQI of 201-300. The results indicated that the bacterial viability decreased when air pollution occurred and increased again when pollution became severe. The mean size distribution of non-viable bacteria exhibited a bimodal distribution pattern at an AQI<50 with two peaks at 2.1-3.3 μm and >7.0 μm, while the viable bacteria had two peaks at 1.1-2.1 μm and >7 μm. When the AQI increased from 101 to 300, the size distribution of viable/non-viable bacteria varied with an increased proportion of fine particles. The multiple linear regression analysis results verified that the AQI and PM10 had important effects on the concentrations of non-viable bacteria. These results highlight impacts of air pollution on viable/non-viable bacteria and the interactions between complex environmental factors and bacteria interactions, improving our understanding of bioaerosols under air pollution conditions.
Collapse
|
|
5 |
43 |
17
|
Liang Z, Yu Y, Ye Z, Li G, Wang W, An T. Pollution profiles of antibiotic resistance genes associated with airborne opportunistic pathogens from typical area, Pearl River Estuary and their exposure risk to human. ENVIRONMENT INTERNATIONAL 2020; 143:105934. [PMID: 32645489 DOI: 10.1016/j.envint.2020.105934] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
To reveal the selective pressures of near-shore human activities on marine and continental bioaerosols, the pollution profile and potential exposure risk of airborne pathogens and antibiotic-resistance genes (ARGs) in Pearl River Estuaries (113.52 oE, 22.69 oN), a transitional zone between marine and continental environments, were fully explored. The results showed that the total bacteria among bioaerosols varied largely with average pollution levels of 1.86 × 105 and 4.35 × 104 cfu m-3 in spring and summer, respectively, and were high than those of airborne fungi. The predominant aerodynamic diameters of bioaerosols were in respirable size range (<4.7 µm), and the microbes communities' diversity and abundance varied significantly. Besides, many opportunistic pathogenic bacteria (Burkholderia-Paraburkholderia, Staphylococcus and Acinetobacter) and fungi (Alternaria, Penicillium and Cladosporium) were dominant in bioaerosol samples. Of 21 ARGs subtypes detected, the tetracycline resistance gene tetA was the most abundant, followed by aminoglycoside resistance gene and mobile genetic elements. Correlation analysis revealed that the changes of pathogens community contributed significantly to the prevalence of ARGs in bioaerosol. Based on the average daily dose rates of microorganisms and human direct intake of ARGs, health risk of bioaerosols from the Pearl River Estuaries were also evaluated. In summary, the presence of opportunistic pathogens and diversity of ARGs strengthens the call to consider the bioaerosol in air quality monitoring and risk assessment in the future.
Collapse
|
|
5 |
43 |
18
|
Mbareche H, Veillette M, Bilodeau G, Duchaine C. Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols. PeerJ 2020; 8:e8523. [PMID: 32110484 PMCID: PMC7032056 DOI: 10.7717/peerj.8523] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
This paper presents the performance of two eukaryotic genomic ribosomal regions, ITS1 and ITS2, in describing fungal diversity in aerosol samples using amplicon-based High-Throughput Sequencing (HTS). Composting sites, biomethanization facilities, and dairy farms, all affected by the presence of fungi, were visited to collect air samples. The amplicon-based HTS approach is a target enrichment method that relies on the amplification of a specific target using particular primers before sequencing. Thus, the results are highly dependent on the quality of amplification. For this reason, the authors of this paper used a shotgun metagenomic approach to compare its outcome with the amplicon-based method. Indeed, shotgun metagenomic does not rely on any amplification prior to sequencing, because all genes are sequenced without a specific target. In addition, culture methods were added to the analyses in biomethanization and dairy farms samples to validate their contribution to fungal diversity of aerosols. The results obtained are unequivocal towards ITS1 outperformance to ITS2 in terms of richness, and taxonomic coverage. The differential abundance analysis did demonstrate that some taxa were exclusively detected only by ITS2, and vice-versa for ITS1. However, the shotgun metagenomic approach showed a taxonomic profile more resembling to ITS1 than ITS2. Based on these results, neither of the barcodes evaluated is perfect in terms of distinguishing all species. Using both barcodes offers a broader view of the fungal aerosol population. However, with the actual knowledge, the authors strongly recommend using ITS1 as a universal fungal barcode for quick general analyses of diversity and when limited financial resources are available, primarily due its ability to capture taxonomic profiles similar to those obtained using the shotgun metagenomic. The culture comparison with amplicon-based sequencing showed the complementarity of both approaches in describing the most abundant taxa.
Collapse
|
research-article |
5 |
43 |
19
|
Mbareche H, Brisebois E, Veillette M, Duchaine C. Bioaerosol sampling and detection methods based on molecular approaches: No pain no gain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:2095-2104. [PMID: 28558432 DOI: 10.1016/j.scitotenv.2017.05.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 05/23/2023]
Abstract
Bioaerosols are among the less studied particles in the environment. The lack of standardization in sampling procedures, difficulties related to the effect of sampling processes on the integrity of microorganisms, and challenges associated with the application of environmental microbiology analyses and molecular and culture methods frighten many young scientists. Every microorganism has its own particularities and acts differently when aerosolized in various conditions. Because the air is an extremely biologically diluted environment, it is necessary to concentrate its content before any analysis is performed. Challenges faced when applying molecular methods to air samples reveal the need for a better standardization of approaches for cell and nucleic acid recovery, the choice of genetic markers, and interpretation of data. This paper presents a few of the limits and difficulties tackled when molecular methods are applied to bioaerosols, suggests some improvements by specifying the critical stages that should be considered when studying the microbial ecology of bioaerosols, and provides thoughtful insights on how to overcome the challenges encountered.
Collapse
|
Review |
8 |
42 |
20
|
Wang Y, Li L, Han Y, Liu J, Yang K. Intestinal bacteria in bioaerosols and factors affecting their survival in two oxidation ditch process municipal wastewater treatment plants located in different regions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:162-170. [PMID: 29471278 DOI: 10.1016/j.ecoenv.2018.02.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 05/04/2023]
Abstract
Samples from two oxidation ditch process municipal wastewater treatment plants (MWTPs) (HJK and GXQ) in two regions of China were analysed for bacteria, particles, total organic carbon, and water-soluble ions in bioaerosols. Diversity and potential pathogen populations were evaluated by high-throughput sequencing. Bioaerosol sources, factors affecting intestinal bacterial survival, and the relationship between bioaerosols and water were analysed by Source tracker and partial least squares-discriminant, principal component, and canonical correspondence analyses. Culturable bacteria concentrations were 110-846 and 27-579 CFU/m3 at HJK and GXQ, respectively. Intestinal bacteria constituted 6-33% of bacteria. Biochemical reaction tank, sludge dewatering house (SDH), and fine screen samples showed the greatest contribution to bioaerosol contamination. Enterobacter aerogenes was the main intestinal bacteria (> 99.5%) in HJK and detected at each sampling site. Enterobacter aerogenes (98.67% in SDH), Aeromonas sp. (76.3% in biochemical reaction tank), and Acinetobacter baumannii (99.89% in fine screens) were the main intestinal bacteria in GXQ. Total suspended particulate masses in SDH were 229.46 and 141.6 μg/m3 in HJK and GXQ, respectively. Percentages of insoluble compounds in total suspended particulates decreased as height increased. The main soluble ions in bioaerosols were Ca2+, Na+, Cl-, and SO42-, which ranged from 3.8 to 27.55 μg/m3 in the MWTPs. Water was a main source of intestinal bacteria in bioaerosols from the MWTPs. Bioaerosols in HJK but not in GXQ were closely related. Relative humidity and some ions positively influenced intestinal bacteria in bioaerosols, while wind speed and solar illumination had a negative influence.
Collapse
|
|
7 |
40 |
21
|
Wiśniewska K, Lewandowska AU, Śliwińska-Wilczewska S. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment - Review study. ENVIRONMENT INTERNATIONAL 2019; 131:104964. [PMID: 31351382 DOI: 10.1016/j.envint.2019.104964] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Airborne microalgae and cyanobacteria are among the least studied organisms in aerobiology. While those of them living in freshwater and seawater are well recognized, those constituting the components of aerosols are rarely the focus of research. However, their presence has been noted by scientists from all over the world. The presence of these organisms is not indifferent to the environment as they participate in the formation of clouds and influence both the hydrological cycle and Earth's climate. Recent studies have concentrated mostly on the negative impact of airborne cyanobacteria and microalgae, as well as the toxic compounds they produce, on human health. This review focuses on measurement results published on those bioaerosols, combining the achievements of scientists from the last century with the latest reports and trends. Within it gaps in current knowledge are discussed, including the role of airborne organisms in the transport of harmful chemicals like PAHs and heavy metals. The current studies on which it is based emphasize the advantages and disadvantages of the measurement methods used in sampling and analysing. It also visualizes, in the form of maps, where research on bioaerosols has so far been conducted, while at the same time determining the share of organisms potentially dangerous to human health. In addition, we have also tried to recommend future research directions for both environmental and laboratory-based studies.
Collapse
|
Review |
6 |
40 |
22
|
Blais-Lecours P, Perrott P, Duchaine C. Non-culturable bioaerosols in indoor settings: Impact on health and molecular approaches for detection. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2015; 110:45-53. [PMID: 32288547 PMCID: PMC7108366 DOI: 10.1016/j.atmosenv.2015.03.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 05/21/2023]
Abstract
Despite their significant impact on respiratory health, bioaerosols in indoor settings remain understudied and misunderstood. Culture techniques, predominantly used for bioaerosol characterisation in the past, allow for the recovery of only a small fraction of the real airborne microbial burden in indoor settings, given the inability of several microorganisms to grow on agar plates. However, with the development of new tools to detect non-culturable environmental microorganisms, the study of bioaerosols has advanced significantly. Most importantly, these techniques have revealed a more complex bioaerosol burden that also includes non-culturable microorganisms, such as archaea and viruses. Nevertheless, air quality specialists and consultants remain reluctant to adopt these new research-developed techniques, given that there are relatively few studies found in the literature, making it difficult to find a point of comparison. Furthermore, it is unclear as to how this new non-culturable data can be used to assess the impact of bioaerosol exposure on human health. This article reviews the literature that describes the non-culturable fraction of bioaerosols, focussing on bacteria, archaea and viruses, and examines its impact on bioaerosol-related diseases. It also outlines available molecular tools for the detection and quantification of these microorganisms and states various research needs in this field.
Collapse
|
research-article |
10 |
39 |
23
|
Grinn-Gofroń A, Nowosad J, Bosiacka B, Camacho I, Pashley C, Belmonte J, De Linares C, Ianovici N, Manzano JMM, Sadyś M, Skjøth C, Rodinkova V, Tormo-Molina R, Vokou D, Fernández-Rodríguez S, Damialis A. Airborne Alternaria and Cladosporium fungal spores in Europe: Forecasting possibilities and relationships with meteorological parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:938-946. [PMID: 30759619 DOI: 10.1016/j.scitotenv.2018.10.419] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/07/2018] [Accepted: 10/30/2018] [Indexed: 05/06/2023]
Abstract
Airborne fungal spores are prevalent components of bioaerosols with a large impact on ecology, economy and health. Their major socioeconomic effects could be reduced by accurate and timely prediction of airborne spore concentrations. The main aim of this study was to create and evaluate models of Alternaria and Cladosporium spore concentrations based on data on a continental scale. Additional goals included assessment of the level of generalization of the models spatially and description of the main meteorological factors influencing fungal spore concentrations. Aerobiological monitoring was carried out at 18 sites in six countries across Europe over 3 to 21 years depending on site. Quantile random forest modelling was used to predict spore concentrations. Generalization of the Alternaria and Cladosporium models was tested using (i) one model for all the sites, (ii) models for groups of sites, and (iii) models for individual sites. The study revealed the possibility of reliable prediction of fungal spore levels using gridded meteorological data. The classification models also showed the capacity for providing larger scale predictions of fungal spore concentrations. Regression models were distinctly less accurate than classification models due to several factors, including measurement errors and distinct day-to-day changes of concentrations. Temperature and vapour pressure proved to be the most important variables in the regression and classification models of Alternaria and Cladosporium spore concentrations. Accurate and operational daily-scale predictive models of bioaerosol abundances contribute to the assessment and evaluation of relevant exposure and consequently more timely and efficient management of phytopathogenic and of human allergic diseases.
Collapse
|
|
6 |
38 |
24
|
Gwenzi W, Shamsizadeh Z, Gholipour S, Nikaeen M. The air-borne antibiotic resistome: Occurrence, health risks, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150154. [PMID: 34798728 DOI: 10.1016/j.scitotenv.2021.150154] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance comprising of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is an emerging problem causing global human health risks. Several reviews exist on antibiotic resistance in various environmental compartments excluding the air-borne resistome. An increasing body of recent evidence exists on the air-borne resistome comprising of antibiotic resistance in air-borne bioaerosols from various environmental compartments. However, a comprehensive review on the sources, dissemination, behavior, fate, and human exposure and health risks of the air-borne resistome is still lacking. Therefore, the current review uses the source-pathway-receptor-impact-mitigation framework to investigate the air-borne resistome. The nature and sources of antibiotic resistance in the air-borne resistome are discussed. The dissemination pathways, and environmental and anthropogenic drivers accounting for the transfer of antibiotic resistance from sources to the receptors are highlighted. The human exposure and health risks posed by air-borne resistome are presented. A health risk assessment and mitigation strategy is discussed. Finally, future research directions including key knowledge gaps are summarized.
Collapse
|
Review |
3 |
38 |
25
|
Ren T, Dormitorio TV, Qiao M, Huang TS, Weese J. N-halamine incorporated antimicrobial nonwoven fabrics for use against avian influenza virus. Vet Microbiol 2018; 218:78-83. [PMID: 29685225 DOI: 10.1016/j.vetmic.2018.03.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 01/09/2023]
Abstract
Airborne pathogens are one of the most common avenues leading to poultry diseases. Preventing the avian influenza (AI) virus from entering the chicken hatchery house is critical for reducing the spread and transmission of AI disease. Many studies have investigated the incorporation of antimicrobials into air filters to prevent viruses from entering the indoor environment. N-halamines are one of the most effective antimicrobial agents against a broad spectrum of microorganisms. In this study, 1-chloro-2,2,5,5-tetramethyl-4-imidazolidinone (MC, a variety of N-halamine) was coated on nonwoven fabrics to give the fabric antimicrobial activity against the AI virus. Results showed that MC exhibited potent antiviral activity either in suspension or in the air. Higher concentrations of MC completely inactivated AI viruses and disrupted their RNA, preventing them from being detected by the real time reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Coating the fabrics with MC resulted in remarkably reduced presence of AI virus on the MC-treated fabric in a short period of time. Furthermore, aerosolized AI viruses were completely inactivated when they passed through filters coated with the MC compound. In addition, MC is not volatile and does not release any gaseous chlorine. The active chlorine in the MC compound is stable, and the coating procedure is straightforward and inexpensive. Therefore, this study validates a novel approach to reducing airborne pathogens in the poultry production environment.
Collapse
|
Journal Article |
7 |
35 |