1
|
Zeng Y, Himmel ME, Ding SY. Visualizing chemical functionality in plant cell walls. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:263. [PMID: 29213316 PMCID: PMC5708085 DOI: 10.1186/s13068-017-0953-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/02/2017] [Indexed: 05/07/2023]
Abstract
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructively and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition-especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.
Collapse
|
Review |
8 |
64 |
2
|
Sun Q, Foston M, Meng X, Sawada D, Pingali SV, O’Neill HM, Li H, Wyman CE, Langan P, Ragauskas AJ, Kumar R. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:150. [PMID: 25342973 PMCID: PMC4205766 DOI: 10.1186/s13068-014-0150-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 09/25/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have large implications with respect to enzymatic deconstruction efforts. RESULTS Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated with dilute sulfuric acid (0.10 M) at 160°C for 15 minutes and 35 minutes, respectively . Following extensive characterization, the partially delignified biomass displayed more significant changes in cellulose ultrastructure following DAP than the native untreated biomass. With respect to the native untreated poplar, delignified poplar after DAP (in which approximately 40% lignin removal occurred) experienced: increased cellulose accessibility indicated by increased Simons' stain (orange dye) adsorption from 21.8 to 72.5 mg/g, decreased cellulose weight-average degree of polymerization (DPw) from 3087 to 294 units, and increased cellulose crystallite size from 2.9 to 4.2 nm. These changes following DAP ultimately increased enzymatic sugar yield from 10 to 80%. CONCLUSIONS Overall, the results indicate a strong influence of lignin content on cellulose ultrastructural changes occurring during DAP. With the reduction of lignin content during DAP, the enlargement of cellulose microfibril dimensions and crystallite size becomes more apparent. Further, this enlargement of cellulose microfibril dimensions is attributed to specific processes, including the co-crystallization of crystalline cellulose driven by irreversible inter-chain hydrogen bonding (similar to hornification) and/or cellulose annealing that converts amorphous cellulose to paracrystalline and crystalline cellulose. Essentially, lignin acts as a barrier to prevent cellulose crystallinity increase and cellulose fibril coalescence during DAP.
Collapse
|
research-article |
11 |
57 |
3
|
Li M, Cao S, Meng X, Studer M, Wyman CE, Ragauskas AJ, Pu Y. The effect of liquid hot water pretreatment on the chemical-structural alteration and the reduced recalcitrance in poplar. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:237. [PMID: 29213308 PMCID: PMC5707831 DOI: 10.1186/s13068-017-0926-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/06/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood. RESULTS We investigated the effects of LHW pretreatment with different severity factors (log R0) on the structural changes of fast-grown poplar (Populus trichocarpa). With the severity factor ranging from 3.6 to 4.2, LHW pretreatment resulted in a substantial xylan solubilization by 50-77% (w/w, dry matter). The molecular weights of the remained hemicellulose in pretreated solids also have been significantly reduced by 63-75% corresponding to LHW severity factor from 3.6 to 4.2. In addition, LHW had a considerable impact on the cellulose structure. The cellulose crystallinity increased 6-9%, whereas its degree of polymerization decreased 35-65% after pretreatment. We found that the pretreatment severity had an empirical linear correlation with the xylan solubilization (R2 = 0.98, r = + 0.99), hemicellulose molecular weight reduction (R2 = 0.97, r = - 0.96 and R2 = 0.93, r = - 0.98 for number-average and weight-average degree of polymerization, respectively), and cellulose crystallinity index increase (R2 = 0.98, r = + 0.99). The LHW pretreatment also resulted in small changes in lignin structure such as decrease of β-O-4' ether linkages and removal of cinnamyl alcohol end group and acetyl group, while the S/G ratio of lignin in LHW pretreated poplar residue remained no significant change compared with the untreated poplar. CONCLUSIONS This study revealed that the solubilization of xylan, the reduction of hemicellulose molecular weights and cellulose degree of polymerization, and the cleavage of alkyl-aryl ether bonds in lignin resulted from LHW pretreatment are critical factors associated with reduced cell wall recalcitrance. The chemical-structural changes of the three major components, cellulose, lignin, and hemicellulose, during LHW pretreatment provide useful and fundamental information of factors governing feedstock recalcitrance during hydrothermal pretreatment.
Collapse
|
research-article |
8 |
35 |
4
|
Yuan W, Gong Z, Wang G, Zhou W, Liu Y, Wang X, Zhao M. Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility. BIORESOURCE TECHNOLOGY 2018; 265:464-470. [PMID: 29935456 DOI: 10.1016/j.biortech.2018.06.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 05/05/2023]
Abstract
In the present study, a sodium hydroxide-methanol solution (SMs) pretreatment of corn stover was described to overcome biomass recalcitrance for the first time. Effects of sodium hydroxide loading, solid-to-liquid ratio, processing time and temperature on enzymatic saccharification were studied in detail. The SMs pretreatment could significantly enhance the enzyme accessibility of corn stover, minimize the degradation of sugar polymers, and decrease the energy consumption. 97.5% glucan and 83.5% xylan were preserved in the regenerated corn stover under the optimal condition. Subsequent enzymatic digestibilities of glucan and xylan reached 97.2% and 80.3%, respectively. The enzyme susceptibility of the regenerated samples was explained by their physical and chemical characteristics. This strategy provides a promising alternative for better techno-economic of the lignocelluloses-to-sugars routes.
Collapse
|
|
7 |
34 |
5
|
Selig MJ, Thygesen LG, Felby C. Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:159. [PMID: 25426165 PMCID: PMC4243321 DOI: 10.1186/s13068-014-0159-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/08/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Studies in bioconversions have continuously sought the development of processing strategies to overcome the "close physical association" between plant cell wall polymers thought to significantly contribute to biomass recalcitrance [Adv Space Res 18:251-265, 1996],[ Science 315:804-807, 2007]. To a lesser extent, studies have sought to understand biophysical factors responsible for the resistance of lignocelluloses to enzymatic degradation. Provided here are data supporting our hypothesis that the inhibitory potential of different cell wall polymers towards enzymatic cellulose hydrolysis is related to how much these polymers constrain the water surrounding them. We believe the entropy-reducing constraint imparted to polymer associated water plays a negative role by increasing the probability of detrimental interactions such as junction zone formation and the non-productive binding of enzymes. RESULTS Selected commercial lignocellulose-derived polymers, including hemicelluloses, pectins, and lignin, showed varied potential to inhibit 24-h cellulose conversion by a mix of purified cellobiohydrolase I and β-glucosidase. At low dry matter loadings (0.5% w/w), insoluble hemicelluloses were most inhibitory (reducing conversion relative to cellulose-only controls by about 80%) followed by soluble xyloglucan and wheat arabinoxylan (reductions of about 70% and 55%, respectively), while the lignin and pectins tested were the least inhibitory (approximately 20% reduction). Low field nuclear magnetic resonance (LF-NMR) relaxometry used to observe water-related proton relaxation in saturated polymer suspensions (10% dry solids, w/w) showed spin-spin, T2, relaxation time curves generally approached zero faster for the most inhibitory polymer preparations. The manner of this decline varied between polymers, indicating different biophysical aspects may differentially contribute to overall water constraint in each case. To better compare the LF-NMR data to inhibitory potential, T2 values from monocomponent exponential fits of relaxation curves were used as a measure of overall water constraint. These values generally correlated faster relaxation times (greater water constraint) with greater inhibition of the model cellulase system by the polymers. CONCLUSIONS The presented correlation of cellulase inhibition and proton relaxation data provides support for our water constraint-biomass recalcitrance hypothesis. Deeper investigation into polymer-cellulose-cellulase interactions should help elucidate the types of interactions that may be propagating this correlation. If these observations can be verified to be more than correlative, the hypothesis and data presented suggest that a focus on water-polymer interactions and ways to alter them may help resolve key biological lignocellulose processing bottlenecks.
Collapse
|
research-article |
11 |
24 |
6
|
Li M, Pu Y, Yoo CG, Gjersing E, Decker SR, Doeppke C, Shollenberger T, Tschaplinski TJ, Engle NL, Sykes RW, Davis MF, Baxter HL, Mazarei M, Fu C, Dixon RA, Wang ZY, Neal Stewart C, Ragauskas AJ. Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:12. [PMID: 28053668 PMCID: PMC5209956 DOI: 10.1186/s13068-016-0695-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/23/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. We determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand the fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years. RESULTS Field-grown COMT down-regulated plants maintained both reduced cell wall recalcitrance and lignin content compared with the non-transgenic controls for at least 3 seasons. The transgenic switchgrass yielded 35-84% higher total sugar release (enzymatic digestibility or saccharification) from a 72-h enzymatic hydrolysis without pretreatment and also had a 25-32% increase in enzymatic sugar release after hydrothermal pretreatment. The COMT-silenced switchgrass lines had consistently lower lignin content, e.g., 12 and 14% reduction for year 2 and year 3 growing season, respectively, than the control plants. By contrast, the transgenic lines had 7-8% more xylan and galactan contents than the wild-type controls. Gel permeation chromatographic results revealed that the weight-average molecular weights of hemicellulose were 7-11% lower in the transgenic than in the control lines. In addition, we found that silencing of COMT in switchgrass led to 20-22% increased cellulose accessibility as measured by the Simons' stain protocol. No significant changes were observed on the arabinan and glucan contents, cellulose crystallinity, and cellulose degree of polymerization between the transgenic and control plants. With the 2-year comparative analysis, both the control and transgenic lines had significant increases in lignin and glucan contents and hemicellulose molecular weight across the growing seasons. CONCLUSIONS The down-regulation of COMT in switchgrass resulting in a reduced lignin content and biomass recalcitrance is stable in a field-grown trial for at least three seasons. Among the determined affecting factors, the reduced biomass recalcitrance of the COMT-silenced switchgrass, grown in the field conditions for two and three seasons, was likely related to the decreased lignin content and increased biomass accessibility, whereas the cellulose crystallinity and degree of its polymerization and hemicellulose molecular weights did not contribute to the reduction of recalcitrance significantly. This finding suggests that lignin down-regulation in lignocellulosic feedstock confers improved saccharification that translates from greenhouse to field trial and that lignin content and biomass accessibility are two significant factors for developing a reduced recalcitrance feedstock by genetic modification.
Collapse
|
research-article |
8 |
21 |
7
|
Ko JK, Jung JH, Altpeter F, Kannan B, Kim HE, Kim KH, Alper HS, Um Y, Lee SM. Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain. BIORESOURCE TECHNOLOGY 2018; 256:312-320. [PMID: 29455099 DOI: 10.1016/j.biortech.2018.01.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 05/26/2023]
Abstract
The recalcitrant structure of lignocellulosic biomass is a major barrier in efficient biomass-to-ethanol bioconversion processes. The combination of feedstock engineering via modification in the lignin synthesis pathway of sugarcane and co-fermentation of xylose and glucose with a recombinant xylose utilizing yeast strain produced 148% more ethanol compared to that of the wild type biomass and control strain. The lignin reduced biomass led to a substantially increased release of fermentable sugars (glucose and xylose). The engineered yeast strain efficiently co-utilized glucose and xylose for fermentation, elevating ethanol yields. In this study, it was experimentally demonstrated that the combined efforts of engineering both feedstock and microorganisms largely enhances the bioconversion of lignocellulosic feedstock to bioethanol. This strategy will significantly improve the economic feasibility of lignocellulosic biofuels production.
Collapse
|
|
7 |
21 |
8
|
Liu H, Chen X, Ji G, Yu H, Gao C, Han L, Xiao W. Mechanochemical deconstruction of lignocellulosic cell wall polymers with ball-milling. BIORESOURCE TECHNOLOGY 2019; 286:121364. [PMID: 31026715 DOI: 10.1016/j.biortech.2019.121364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 05/22/2023]
Abstract
In this work, the deconstruction mechanism of corn stover cell wall polymers during ball milling was evaluated. The characterization showed that ball milling not only brought about the dissociation of the cross-linked cellulose-hemicellulose-lignin complex but also led to the depolymerization of the cell-wall polymers especially the carbohydrates. Micromorphology characterization revealed that mechanical treatment disrupted the orderly fibrillar matrices with a porous structure. The breakage of β-1,4 glycosidic bonds in cellulose and the decomposition of arabinoxylans indicated the modification in polysaccharide chains. The degradation of lignin-carbohydrate complex (LCC) linkages and the cleavage of β-O-4' linkages in lignin approved the partial degradation of lignin. In conclusion, mechanochemistry is an efficient force to make the polymers in plant fibers more digestible.
Collapse
|
|
6 |
18 |
9
|
Zhang Y, Huang M, Su J, Hu H, Yang M, Huang Z, Chen D, Wu J, Feng Z. Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:12. [PMID: 30647772 PMCID: PMC6327530 DOI: 10.1186/s13068-019-1354-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/04/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Due to biomass recalcitrance, including complexity of lignocellulosic matrix, crystallinity of cellulose, and inhibition of lignin, the bioconversion of lignocellulosic biomass is difficult and inefficient. The aim of this study is to investigate an effective and green pretreatment method for overcoming biomass recalcitrance of lignocellulose. RESULTS An effective mechanical activation (MA) + metal salt (MAMS) technology was applied to pretreat sugarcane bagasse (SCB), a typical kind of lignocellulosic biomass, in a stirring ball mill. Chlorides and nitrates of Al and Fe showed better synergistic effect with MA, especially AlCl3, ascribing to the interaction between metal salt and oxygen-containing groups induced by MA. Comparative studies showed that MAMS pretreatment effectively changed the recalcitrant structural characteristics of lignocellulosic matrix and reduced the inhibitory action of lignin on enzymatic conversion of SCB. The increase in hydroxyl and carboxyl groups of lignin induced by MAMS pretreatment led to the increase of its hydrophilicity, which could weaken the binding force between cellulase and lignin and reduce the nonproductive binding of cellulase enzymes to lignin. CONCLUSIONS MAMS pretreatment significantly enhanced the enzymatic digestibility of polysaccharides substrate by overcoming biomass recalcitrance without the removal of lignin from enzymatic hydrolysis system.
Collapse
|
research-article |
6 |
18 |
10
|
Ju X, Grego C, Zhang X. Specific effects of fiber size and fiber swelling on biomass substrate surface area and enzymatic digestibility. BIORESOURCE TECHNOLOGY 2013; 144:232-9. [PMID: 23871925 DOI: 10.1016/j.biortech.2013.06.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 05/26/2023]
Abstract
To clarify the specific effect of biomass substrate surface area on its enzymatic digestibility, factors of fiber size reduction and swelling changes were investigated by using poplar substrates with controlled morphological and chemical properties after modified chemical pulping. Results showed that fiber size changes had insignificant influence on enzymatic hydrolysis, although the external surface area increased up to 41% with the reduction of fiber size. Swelling changes caused by increased biomass fiber porosities after PFI refining showed a significant influence on the efficiency of enzymatic hydrolysis. It is also found that chemical properties such as xylan and lignin content can influence the swelling effect. Xylan is confirmed to facilitate substrate hydrolysability by swelling, while lignin restricts swelling effect and thus minimizes the enzyme accessibility to substrates.
Collapse
|
|
12 |
18 |
11
|
Sakamoto S, Kamimura N, Tokue Y, Nakata MT, Yamamoto M, Hu S, Masai E, Mitsuda N, Kajita S. Identification of enzymatic genes with the potential to reduce biomass recalcitrance through lignin manipulation in Arabidopsis. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:97. [PMID: 32514309 PMCID: PMC7260809 DOI: 10.1186/s13068-020-01736-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 04/09/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND During the chemical and biochemical decomposition of lignocellulosic biomasses, lignin is highly recalcitrant. Genetic transformation of plants to qualitatively and/or quantitatively modify lignin may reduce these recalcitrant properties. Efficient discovery of genes to achieve lignin manipulation is thus required. RESULTS To screen for new genes to reduce lignin recalcitrance, we heterologously expressed 50 enzymatic genes under the control of a cinnamate 4-hydroxylase (C4H) gene promoter, derived from a hybrid aspen, which is preferentially active in tissues with lignified cell walls in Arabidopsis plants. These genes encode enzymes that act on metabolites in shikimate, general phenylpropanoid, flavonoid, or monolignol biosynthetic pathways. Among these genes, 30, 18, and 2 originated from plants, bacteria, and fungi, respectively. In our first screening step, 296 independent transgenic plants (T1 generation) harboring single or multiple transgenes were generated from pools of seven Agrobacterium strains used for conventional floral-dip transformation. Wiesner and Mäule staining patterns in the stems of the resultant plants revealed seven and nine plants with apparent abnormalities in the two respective staining analyses. According to genomic PCR and subsequent direct sequencing, each of these 16 plants possessed a gene encoding either coniferaldehyde dehydrogenase (calB), feruloyl-CoA 6'-hydroxylase (F6H1), hydroxycinnamoyl-CoA hydratase/lyase (couA), or ferulate 5-hydroxylase (F5H), with one transgenic plant carrying both calB and F6H1. The effects of these genes on lignin manipulation were confirmed in individually re-created T1 transgenic Arabidopsis plants. While no difference in lignin content was detected in the transgenic lines compared with the wild type, lignin monomeric composition was changed in the transgenic lines. The observed compositional change in the transgenic plants carrying calB, couA, and F5H led to improved sugar release from cell walls after alkaline pretreatment. CONCLUSIONS Simple colorimetric characterization of stem lignin is useful for simultaneous screening of many genes with the potential to reduce lignin recalcitrance. In addition to F5H, the positive control, we identified three enzyme-coding genes that can function as genetic tools for lignin manipulation. Two of these genes (calB and couA) accelerate sugar release from transgenic lignocelluloses.
Collapse
|
research-article |
5 |
15 |
12
|
Yu Q, Liu J, Zhuang X, Yuan Z, Wang W, Qi W, Wang Q, Tan X, Kong X. Liquid hot water pretreatment of energy grasses and its influence of physico-chemical changes on enzymatic digestibility. BIORESOURCE TECHNOLOGY 2016; 199:265-270. [PMID: 26233251 DOI: 10.1016/j.biortech.2015.07.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 06/04/2023]
Abstract
Pennisetum hybrid I, II and switchgrass were pretreated with liquid hot water to enhance the release of sugars. The optimum hydrolysis factor for three energy grasses was 5.98, and the total xylose yield was 88.4%, 98.1% and 83.6% for grass I, II and S. It was indicated that the ratio of syringyl and guaiacyl units of lignin played an important role on the hemicellulose hydrolysis in LHW than branch degree, but latter contributed more on the characterization of xylooligomers degree of polymerization. Moreover, the analysis of multi-scale changes of substrate suggested that cellulose crystallinity index and degree of polymerization seemed no direct relationships for increase of enzymatic digestibility. While lignin barrier was the main factor limiting efficiency of sugar release, and Pennisetum hybrid with low lignin content and high sugar recovery was proved to be a prospective plant feedstock for cellulosic ethanol production.
Collapse
|
|
9 |
13 |
13
|
Harman-Ware AE, Happs RM, Davison BH, Davis MF. The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:281. [PMID: 29213321 PMCID: PMC5707875 DOI: 10.1186/s13068-017-0962-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/06/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND Lignin dehydrogenation polymers (DHPs) are polymers generated from phenolic precursors for the purpose of studying lignin structure and polymerization processes. METHODS Here, DHPs were synthesized using a Zutropfverfahren method with horseradish peroxidase and three lignin monomers, sinapyl (S), coumaryl (H), and coniferyl (G) alcohols, in the presence of hydrogen peroxide. The H monomer was reacted with G and a 1:1 molar mixture of S:G monomers at H molar compositions of 0, 5, 10, and 20 mol% to study how the presence of the H monomer affected the structure and composition of the recovered polymers. RESULTS At low H concentrations, solid-state NMR spectra suggest that the H and G monomers interact to form G:H polymers that have a lower average molecular weight than the solely G-based polymer or the G:H polymer produced at higher H concentrations. Solid-state NMR and pyrolysis-MBMS analyses suggest that at higher H concentrations, the H monomer primarily self-polymerizes to produce clusters of H-based polymer that are segregated from clusters of G- or S:G-based polymers. Thioacidolysis generally showed higher recoveries of thioethylated products from S:G or S:G:H polymers made with higher H content, indicating an increase in the linear ether linkages. CONCLUSIONS Overall, the experimental results support theoretical predictions for the reactivity and structural influences of the H monomer on the formation of lignin-like polymers.
Collapse
|
research-article |
8 |
11 |
14
|
Ma Q, Zhou W, Du X, Huang H, Gong Z. Combined dilute sulfuric acid and Tween 80 pretreatment of corn stover significantly improves the enzyme digestibility: synergistic removal of hemicellulose and lignin. BIORESOURCE TECHNOLOGY 2023; 382:129218. [PMID: 37217142 DOI: 10.1016/j.biortech.2023.129218] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Pretreatment is a prerequisite to tackle the issue of biomass recalcitrance, which is the major hindrance of lignocellulose-to-sugars routes. In the present study, a novel combination of dilute sulfuric acid (dilute-H2SO4) with Tween 80 pretreatment of corn stover (CS) was developed to significantly enhance the enzyme digestibility. Strong synergistic effects of H2SO4 and Tween 80 for simultaneously eliminating hemicellulose and lignin and significantly promoting saccharification yield were observed. A response surface optimization realized the maximum monomeric sugar yield of 95.06% at 120 °C for 1.4 h with 0.75wt% of H2SO4 and 73.92 wt% of Tween 80. The excellent enzyme susceptibility of pretreated CS was explained by their physical and chemical characteristics via SEM, XRD, and FITR. The repeatedly recovered pretreatment liquor exerted highly-effective reusability in the subsequent pretreatments for at least four cycles. This strategy offers a highly-efficient and practical pretreatment strategy, which provides valuable information for the lignocellulose-to-sugars routes.
Collapse
|
|
2 |
9 |
15
|
Laksana C, Sophiphun O, Chanprame S. Lignin reduction in sugarcane by performing CRISPR/Cas9 site-direct mutation of SoLIM transcription factor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111987. [PMID: 38220093 DOI: 10.1016/j.plantsci.2024.111987] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Genetic engineering of plant cell walls is limited for reducing lignocellulose recalcitrance, so mild and/or green-like pretreatment is still required for sequential enzymatic saccharification. Here, we report a method to reduce lignin content in sugarcane stalks using the CRISPR/Cas 9 technique. Three target sequences of SoLIM were designed and fused to pRGEB32. The cassette constructs were introduced into sugarcane calli cv. KK3 through Agrobacterium-mediated transformation. We produced one base substitution and one insertion line for the 1st target site; two insertions, one deletion, and one base substitution for the 2nd target site; and one base substitution and insertion for the 3rd target site. qRT-PCR analysis of SoLIM, SoPAL, SoC4H, and SoCAD showeded that downregulation of SoLIM by single nucleotide insertions or deletions reduced the expression of SoPAL, SoC4H, and SoCAD. Consequently, the edited lines contained 9.74 to 51.46% less lignin content compared to that in the wild-type plants. The syringyl/guaiacyl (S/G) ratio of the edited lines ranged between 0.23 and 0.49, while the wild-type was 0.22. The histochemical evaluation and scanning electron microscopy of the cell walls supported this observation. A low lignin content sugarcane will provide a better feedstock for second-generation bioethanol production.
Collapse
|
|
1 |
8 |
16
|
Yao L, Yang H, Yoo CG, Pu Y, Meng X, Muchero W, Tuskan GA, Tschaplinski T, Ragauskas AJ. Understanding the influences of different pretreatments on recalcitrance of Populus natural variants. BIORESOURCE TECHNOLOGY 2018; 265:75-81. [PMID: 29883849 DOI: 10.1016/j.biortech.2018.05.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Four different pretreatment technologies were applied to two Populus natural variants and the effects of each pretreatment on glucose release were compared. Physicochemical properties of pretreated biomass were analyzed by attenuated total reflection Fourier transform infrared spectroscopy, gel permeation chromatography, and cross polarization/magic angle spinning carbon-13 nuclear magnetic resonance techniques. The results revealed that hemicellulose and lignin were removed to different extents during various pretreatments. The degree of polymerization of cellulose was decreased in the order of alkali > hydrothermal > organosolv > dilute acid pretreatment. Cellulose crystallinity index was slightly increased after each pretreatment. The results also demonstrated that organosolv pretreatment resulted in the highest glucose yield. Among the tested properties of Populus, degree of polymerization of cellulose was negatively correlated with glucose release, whereas hemicellulose and lignin removal, and cellulose accessibility were positively associated with glucose release from the two Populus natural variants.
Collapse
|
|
7 |
2 |
17
|
Ohlsson JA, Hallingbäck HR, Jebrane M, Harman-Ware AE, Shollenberger T, Decker SR, Sandgren M, Rönnberg-Wästljung AC. Genetic variation of biomass recalcitrance in a natural Salix viminalis (L.) population. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:135. [PMID: 31171936 PMCID: PMC6545741 DOI: 10.1186/s13068-019-1479-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/25/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Salix spp. are high-productivity crops potentially used for lignocellulosic biofuels such as bioethanol. In general, pretreatment is needed to facilitate the enzymatic depolymerization process. Biomass resistance to degradation, i.e., biomass recalcitrance, is a trait which can be assessed by measuring the sugar released after combined pretreatment and enzymatic hydrolysis. We have examined genetic parameters of enzymatic sugar release and other traits related to biorefinery use in a population of 286 natural Salix viminalis clones. Furthermore, we have evaluated phenotypic and genetic correlations between these traits and performed a genomewide association mapping analysis using a set of 19,411 markers. RESULTS Sugar release (glucose and xylose) after pretreatment and enzymatic saccharification proved highly variable with large genetic and phenotypic variations, and chip heritability estimates (h 2) of 0.23-0.29. Lignin syringyl/guaiacyl (S/G) ratio and wood density were the most heritable traits (h 2 = 0.42 and 0.59, respectively). Sugar release traits were positively correlated, phenotypically and genetically, with biomass yield and lignin S/G ratio. Association mapping revealed seven marker-trait associations below a suggestive significance threshold, including one marker associated with glucose release. CONCLUSIONS We identified lignin S/G ratio and shoot diameter as heritable traits that could be relatively easily evaluated by breeders, making them suitable proxy traits for developing low-recalcitrance varieties. One marker below the suggestive threshold for marker associations was identified for sugar release, meriting further investigation while also highlighting the difficulties in employing genomewide association mapping for complex traits.
Collapse
|
research-article |
6 |
2 |
18
|
Li M, Si B, Zhang Y, Watson J, Aierzhati A. Reduce recalcitrance of cornstalk using post-hydrothermal liquefaction wastewater pretreatment. BIORESOURCE TECHNOLOGY 2019; 279:57-66. [PMID: 30711753 DOI: 10.1016/j.biortech.2019.01.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Hydrothermal pretreatment (HTP) using an acidic catalyst is known to be effective for reducing lignocellulosic biomass recalcitrance. Post-hydrothermal liquefaction wastewater (PHW) from hydrothermal liquefaction of swine manure contains a large fraction of organic acids and thus was introduced to improve the HTP of cornstalk in this study. The response surface methodology was performed to optimize operating parameters of HTP for preserving structural polysaccharides while removing the barrier substances. A remarkable co-extraction of cell wall polymers was observed during PHW-catalyzed HTP at 172 °C for 88 min. The analysis of particle size, crystalline cellulose, the degree of polymerization (DP), mole number (MN) and SEM suggested that the co-extraction effect could distinctively alter lignocellulosic structures associated with recalcitrance and thus accelerate biomass saccharification. Additionally, the biodegradability of PHW was improved after HTP as a result of balanced nutrients and increased acids and sugars suitable for biogas production via anaerobic fermentation.
Collapse
|
|
6 |
1 |
19
|
Jang SK, Jeong H, Kim HY, Choi JH, Kim JH, Koo BW, Choi IG. Evaluation of correlation between glucan conversion and degree of delignification depending on pretreatment strategies using Jabon Merah. BIORESOURCE TECHNOLOGY 2017; 236:111-118. [PMID: 28391105 DOI: 10.1016/j.biortech.2017.03.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
The main purpose of this study was to investigate the glucan conversion rate after enzymatic hydrolysis depending on the treatment methods and conditions with changes in the chemical composition of treated solid fraction of Jabon Merah. The glucan conversion rate (17.4%) was not significantly improved after liquid hot water treatment (1st step) even though most of the hemicellulose was dissolved into liquid hydrolysate. Subsequently, dilute acid, organosolv, and peracetic acid treatment (2nd step) was conducted under various conditions to enhance glucan conversion. Among the 2nd step treatment, the glucan conversion rate of organosolv (max. 46.0%) and peracetic acid treatment (max. 65.9%) was increased remarkably through decomposition of acid-insoluble lignin (AIL). Finally, the glucan conversion rate and AIL content were highly correlated, which was revealed by the R-squared value (0.84), but inhibitory factors including cellulose crystallinity must be considered for advanced glucan conversion from highly recalcitrant biomasses, such as Jabon Merah.
Collapse
|
|
8 |
1 |
20
|
Gao J, Jebrane M, Terziev N, Daniel G. Enzymatic hydrolysis of the gelatinous layer in tension wood of Salix varieties as a measure of accessible cellulose for biofuels. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:141. [PMID: 34158106 PMCID: PMC8218511 DOI: 10.1186/s13068-021-01983-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Salix (willow) species represent an important source of bioenergy and offer great potential for producing biofuels. Salix spp. like many hardwoods, produce tension wood (TW) characterized by special fibres (G-fibres) that produce a cellulose-rich lignin-free gelatinous (G) layer on the inner fibre cell wall. Presence of increased amounts of TW and G-fibres represents an increased source of cellulose. In the present study, the presence of TW in whole stems of different Salix varieties was characterized (i.e., physical measurements, histochemistry, image analysis, and microscopy) as a possible marker for the availability of freely available cellulose and potential for releasing D-glucose. Stem cross sections from different Salix varieties (Tora, Björn) were characterized for TW, and subjected to cellulase hydrolysis with the free D-glucose produced determined using a glucose oxidase/peroxidase (GOPOD) assay. Effect of cellulase on the cross sections and progressive hydrolysis of the G-layer was followed using light microscopy after staining and scanning electron microscopy (SEM). RESULTS Tension wood fibres with G-layers were developed multilaterally in all stems studied. Salix TW from varieties Tora and Björn showed fibre G-layers were non-lignified with variable thickness. Results showed: (i) Differences in total % TW at different stem heights; (ii) that using a 3-day incubation period at 50 °C, the G-layers could be hydrolyzed with no apparent ultrastructural effects on lignified secondary cell wall layers and middle lamellae of other cell elements; and (iii) that by correlating the amount of D-glucose produced from cross sections at different stem heights together with total % TW and density, an estimate of the total free D-glucose in stems can be derived and compared between varieties. These values were used together with a literature value (45%) for estimating the contribution played by G-layer cellulose to the total cellulose content. CONCLUSIONS The stem section-enzyme method developed provides a viable approach to compare different Salix varieties ability to produce TW and thus freely available D-glucose for fermentation and biofuel production. The use of Salix stem cross sections rather than comminuted biomass allows direct correlation between tissue- and cell types with D-glucose release. Results allowed correlation between % TW in cross sections and entire Salix stems with D-glucose production from digested G-layers. Results further emphasize the importance of TW and G-fibre cellulose as an important marker for enhanced D-glucose release in Salix varieties.
Collapse
|
research-article |
4 |
1 |
21
|
Lu K, Hao N, Meng X, Luo Z, Tuskan GA, Ragauskas AJ. Investigating the correlation of biomass recalcitrance with pyrolysis oil using poplar as the feedstock. BIORESOURCE TECHNOLOGY 2019; 289:121589. [PMID: 31207412 DOI: 10.1016/j.biortech.2019.121589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Pyrolysis of five poplar samples with differing degrees of recalcitrance was performed; the correlations between the poplar enzymatic hydrolysis glucose yields and the physicochemical properties of pyrolysis product were investigated in this study. Sugar release of five poplar samples varied from 48.1 to 112.3 mg/g for glucose, and 12.0 to 32.4 mg/g for xylose. The yield of pyrolysis products was calculated and the molecular weight distribution of pyrolysis oils was measured by GPC, ranging from 268 to 289 g/mol for its weight-average molecular weight. GC-MS analysis of the bio-oil exhibited a strong correlation between biomass recalcitrance and guaiacyl-type structures in bio-oils. The correlation between biomass recalcitrance and the ratio of syringyl-to-guaiacyl-type-related structures was also assessed. The results from quantitative 31P NMR indicated some correlation between biomass recalcitrance and the guaiacyl hydroxyl groups in bio-oils. These results illustrate correlations and differences between converting biomass to biofuels via the biological and thermal platform.
Collapse
|
|
6 |
1 |
22
|
Shakeel U, Zhang Y, Topakas E, Wang W, Liang C, Qi W. Unraveling interplay between lignocellulosic structures caused by chemical pretreatments in enhancing enzymatic hydrolysis. Carbohydr Polym 2024; 334:122037. [PMID: 38553235 DOI: 10.1016/j.carbpol.2024.122037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
To investigate the interplay between substrate structure and enzymatic hydrolysis (EH) efficiency, poplar was pretreated with acidic sodium-chlorite (ASC), 3 % sodium-hydroxide (3-SH), and 3 % sulfuric acid (3-SA), resulting in different glucose yields of 94.10 %, 74.35 %, and 24.51 %, respectively, of pretreated residues. Residues were fractionated into cellulose, lignin and unhydrolyzed residue after EH (for lignin-carbohydrate complex (LCC) analysis) and analyzed using HPLC, FTIR, XPS, CP MAS 13C NMR and 2D-NMR (Lignin and LCC analysis). After delignification, holocellulose exhibited a dramatic increase in glucose yield (74.35 % to 90.82 % for 3-SH and 24.51 % to 80.0 % for 3-SA). Structural analysis of holocellulose suggested the synergistic interplay among cellulose allomorphs to limit glucose yield. Residual lignin analysis from un/pretreated residues indicated that higher β-β' contents and S/G ratios were favorable to the inhibitory effect but unfavourable to the holocellulose digestibility and followed the trend in the following order: 3-SA (L3) > 3-SH (L2) > native-lignin (L1). Analysis of enzymatically unhydrolyzed pretreated residues revealed the presence of benzyl ether (BE1,2) LCC and phenyl glycoside (PG) bond linking to xylose (X) and mannose (M), which yielded a xylan-lignin-glucomannan network. The stability, steric hindrance and hydrophobicity of this network may play a central role in defining poplar recalcitrance.
Collapse
|
|
1 |
|