1
|
Nafie EH, Abou-Gamra MM, Mossalem HS, Sarhan RM, Hammam OA, Nasr SM, Anwar MM. Evaluation of the prophylactic and therapeutic efficacies of mucus and tissue nucleoproteins extracted from Biomphalaria alexandrina snails on schistosomiasis mansoni. J Parasit Dis 2024; 48:551-569. [PMID: 39145357 PMCID: PMC11319553 DOI: 10.1007/s12639-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease with considerable morbidity. The lone effective drug, praziquantel (PZQ), is showing emergence of drug resistance hence, searching for new supportive treatment is crucial. This study aimed to evaluate the efficacy of mucus and nucleoproteins (NPs) extracted from Biomphalaria alexandrina (B. alexandrina) snails on miracidia, cercariae and Schistosoma mansoni (S. mansoni) adults in vitro and assess their experimental in vivo effect through parasitological, histopathological, and biochemical parameters. The in vivo study included 90 male Swiss albino mice. Mice were grouped into 9 groups; G1-G5 were infected and treated with; GI: PZQ, GII: mucus, GIII: combined PZQ and mucus, GIV: NPs, GV: combined PZQ and NPs. Control groups; C1: Non infected non treated (negative control), C2: Infected non treated (positive control), C3: Non infected mucus treated and C4: Non infected NPs treated. The in vitro study proved that the mucus had a better lethal effect on cercariae than miracidia, while NPs had better lethal effect on miracidia. The mucus lethal effect on adults surpassed the NPs as 100% and 60%, respectively. The in vivo study proved that the combined NPs or mucus with PZQ added to the effect of individual PZQ resulting in 100% total worm burden (TWB) reduction. As regard oxidative stress markers, the lowest level of nitric oxide (NO) was shown with combined PZQ and NPs. While, the highest glutathione (GSH) level was produced by individual PZQ. The study concluded that mucus and NPs of B. alexandrina had cercaricidal, miracidicidal and anti-schistosomal effect in vitro and that their combination could be considered a contribution to PZQ potentiality in vivo.
Collapse
|
2
|
Ibrahim AM, Youssef AA, Youssef ABA, Nasr SM. Biological, biochemical and genotoxicological alterations of Benzylamine on Biomphalaria alexandrina snails and its Schistosoma mansoni larvicidal potential. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105855. [PMID: 38685235 DOI: 10.1016/j.pestbp.2024.105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 05/02/2024]
Abstract
Biomphalaria spp. snails are freshwater gastropods that responsible for Schistosoma mansoni transmission. Schistosomiasis is a chronic illness that occurred in underdeveloped regions with poor sanitation. The aim of the present study is to evaluate the molluscicidal activity of benzylamine against B. alexandrina snails and it larvicidal effects on the free larval stages of S. mansoni. Results showed that benzylamine has molluscicidal activity against adult B. alexandrina snails after 24 h of exposure with median lethal concentration (LC50) 85.7 mg/L. The present results indicated the exposure of B. alexandrina snails to LC10 or LC25 of benzylamine resulted in significant decreases in the survival, fecundity (eggs/snail/week) and reproductive rates, acetylcholinesterase, albumin, protein, uric acid and creatinine concentrations, levels of Testosterone (T) and 17β Estradiol (E), while alkaline phosphatase levels were significantly increased in comparison with control ones. The present results showed that the sub lethal concentration LC50 (85.7 mg/L) of benzylamine has miracidial and cercaricidal activities, where the Lethal Time (LT50) for miracidiae was 17.08 min while for cercariae was 30.6 min. Also, results showed that were decreased significantly after exposure to sub lethal concentrations compared with control. The present results showed that the expression level of NADH dehydrogenase subunit 1 (ND1) genes and cytochrome oxidase subunit I (COI) in B. alexandrina snails exposed to LC10 or LC25 concentrations benzylamine were significantly decreased compared to the control groups. Therefore, benzylamine could be used as effective molluscicide to control schistosomiasis.
Collapse
|
3
|
El-Khayat HMM, Gaber HS, Helal NS, Zayed KM, Flefel HE, Mohammed WA, Sayed SSM. Comparative study on Lake Manzala in Egypt after and before development and purifications: Ecosystem and biomarkers; biochemical, histopathological and immunohistochemical. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122741. [PMID: 37839684 DOI: 10.1016/j.envpol.2023.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/02/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
The present work aims to evaluate the impact of Lake Manzala development, started in 2017, on lake water quality and biomarkers of Lake Oreochromis niloticus and Biomphalaria alexandrina samples from Dakahlia and Port Said during 2021 and compare it with the results of a series of studies concerning the same criteria in Lake Manzala during 2015. Results showed a remarkable increase in water EC, indicating a higher water exchange with the sea, a significant decrease in Pb, Cd, Cu, and Zn levels in water samples, and a remarkable decline in Cd and Pb bioaccumulation in all fish and snail samples. Macroinvertebrate samples showed higher taxa richness than in 2015, indicating biologically improved lake water quality. Results showed no trematode transmission, while there were natural infections in B. alexandrina snails during 2015. Biochemically, liver enzymes and hematological criteria in fish and snail samples during 2021 showed levels nearer to control at Port Said, indicating a less stressed liver and more healthy specimens than in 2015. Histopathological examination of fish organs (except spleen) and snail tissues pointed to their improved tissue architecture in Port Said than that of Dakahlia (2021). However, the 2021 samples were better than those of 2015. The immunohistochemical study showed higher expression of IL-6 in Dakahlia samples than the other samples, denoting higher tissue inflammation and humoral immune response. So, all the examined criteria indicated that Manzala Lake is positively impacted by the developmental and purification process, especially in Port Said.
Collapse
|
4
|
Ibrahim AM, Bekhit M, Sokary R, Hammam O, Atta S. Toxicological, hepato-renal, endocrine disruption, oxidative stress and immunohistopathological responses of chitosan capped gold nanocomposite on Biomphalaria alexandrina snails. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105559. [PMID: 37666595 DOI: 10.1016/j.pestbp.2023.105559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
The present investigation aimed to synthesize chitosan‑gold nanocomposites (Ch-AuNPs) with gamma radiation, then to evaluate its toxic effect on the freshwater snails Biomphalaia alexandrina. Results showed that Ch-AuNPs is spherical shaped with average size 12 nm. It had a toxic effect against B. alexandrina snails with LC50 20.43 mg/l. Exposure of B. alexandrina snails to LC10 7.51 or LC25 13.63 mg/l of Ch-AuNPs, reduced the survival, reproductive and fecundity rates; total protein and albumin; both testosterone (T) and 17β Estradiol (E) levels; SOD and CAT activities of exposed snails while increased the activities of transaminases (AST & ALT), uric acid, creatinine, TAC and MDA levels compared to the control group. Results were supported by histopathological and immunohistopathological alterations of the digestive and hermaphrodite glands. In conclusion B. alexandrina could be used as a model to screen the negative impact of nanomaterials. Also, Ch-AuNPs could be used as a molluscicidal agent.
Collapse
|
5
|
Ibrahim AM, Gad El-Karim RM, Ali RE, Nasr SM. Toxicological effects of Saponin on the free larval stages of Schistosoma mansoni, infection rate, some biochemical and molecular parameters of Biomphalaria alexandrina snails. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105357. [PMID: 36963932 DOI: 10.1016/j.pestbp.2023.105357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Saponins have been used as biopesticides. The objective of the present study is to investigate the toxic effects of Saponin against Biomphalaria alexandrina snails. Results showed that Saponin exhibited a molluscicidal activity against adult B. alexandrina snails at LC50 (70.05 mg/l) and had a larvicidal effect on the free larval stages of Schistosoma mansoni. To evaluate the lethal effects, snails were exposed to either LC10 (51.8 mg/l) or LC25 (60.4 mg/l) concentrations of Saponin. The survival, the infection rates, protein, albumin, and total fat levels were decreased, while glucose levels were increased in exposed snails compared to control snails. Also, these concentrations significantly raised Malondialdehyde (MDA) and Glutathione S Transferase (GST) levels, whereas reduced Superoxide dismutase (SOD) activity and the total antioxidant capacity (TAC) in exposed snails. Furthermore, these concentrations resulted in endocrine disruptions where it caused a significant increase in testosterone (T) level; while a significant decrease in Estradiol (E2) levels were noticed. As for Estrogen (E) level, it was increased after exposure to LC10 Saponin concentration while after exposure to LC25 concentration, it was decreased. Also, LC10 and LC25 concentrations of Saponin caused a genotoxic effect and down-regulation of metabolic cycles in the snails. In conclusion, Saponins caused deleterious effects on the intermediate host of schistosomiasis mansoni. Therefore, B. alexandrina snails could be used as models to screen the toxic effects of Saponins in the aquatic environment and if it was used as a molluscicide, it should be used cautiously and under controlled circumstances.
Collapse
|
6
|
Ibrahim AM, Ghazy M, El-Sayed H, Abd El-Hameed RM, Khalil RG, Korany SM, Aloufi AS, Hammam OA, Morad MY. Histopathological, Immunohistochemical, Biochemical, and In Silico Molecular Docking Study of Fungal-Mediated Selenium Oxide Nanoparticles on Biomphalaria alexandrina (Ehrenberg, 1831) Snails. Microorganisms 2023; 11:microorganisms11030811. [PMID: 36985384 PMCID: PMC10053037 DOI: 10.3390/microorganisms11030811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Daphnia magna and freshwater snails are used as delicate bioindicators of contaminated aquatic habitats. Due to their distinctive characteristics, selenium oxide nanoparticles (SeONPs) have received interest regarding their possible implications on aquatic environments. The current study attempted to investigate the probable mechanisms of fungal-mediated selenium nanoparticles' ecotoxicological effects on freshwater Biomphalaria alexandrina snails and Daphnia magna. SeONPs revealed a toxicological impact on D. magna, with a half-lethal concentration (LC50) of 1.62 mg/L after 24 h and 1.08 mg/L after 48 h. Survival, fecundity, and reproductive rate were decreased in B. alexandrina snails exposed to SeONPs. Furthermore, the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were markedly elevated, while albumin and total protein levels decreased. Histopathological damage in the hermaphrodite and digestive glands was detected by light, electron microscopy, and immunohistochemistry studies. The molecular docking study revealed interactions of selenium oxide with the ALT and AST. In conclusion, B. alexandrina snails and D. magna could be employed as bioindicators of selenium nanomaterial pollution in aquatic ecosystems. This study emphasizes the possible ecological effects of releasing SeONPs into aquatic habitats, which could serve as motivation for regulatory organizations to monitor and control the use and disposal of SeONPs in industry.
Collapse
|
7
|
El-Khayat HMM, Mossalem HS, El-Hommossany K, Sayed SSM, Mohammed WA, Zayed KM, Saied M, Habib MR. Assessment of schistosomiasis transmission in the River Nile at Greater Cairo using malacological surveys and cercariometry. J Parasit Dis 2022; 46:1090-1102. [PMID: 36457778 PMCID: PMC9606168 DOI: 10.1007/s12639-022-01529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Continuous field studies on the abundance and distribution of freshwater snails and cercarial populations are important for schistosomiasis control programs. In the present work, snail surveys and cercariometry were conducted for four successive seasons at 12 sites on the Nile River banks in the area of Greater Cairo to identify potential transmission foci for schistosomiasis. In addition, water physicochemical parameters were recorded. The results showed that the electrical conductivity, total dissolved solids, dissolved oxygen, and pH were within the permissible levels, except that the water temperature increased, especially in the spring season. Malacological surveys identified 10 native snail species at the studied sites of the Nile River, namely Bulinus truncatus, Biomphalaria alexandrina, Lymnaea natalensis, Lanistes carinatus, Cleopatra bulimoides, Melanoides tuberculata, Helisoma duryi, Bellamya unicolor, Physa acuta, Thedoxus niloticus, and one invasive snail species, Thiara scabra. The calculated diversity index indicated that the structure of snails' habitats was poor, while Evenness index indicated that the individuals were not distributed equally. Natural infection results identified no schistosome cercariae in B. truncatus and B. alexandrina. However, the cercariometry recovered Schistosoma cercariae in all the surveyed sites during all seasons with variable distribution. The preceding data suggest that there are still some active transmission foci for schistosomiasis infection in the Nile River. Moreover, the present finding highlights the importance of cercariomety as a complementary approach to snail samplings for identifying the transmission foci for schistosomiasis.
Collapse
|
8
|
Ghazy RM, Ellakany WI, Badr MM, Taktak NEM, Elhadad H, Abdo SM, Hagag A, Hussein AR, Tahoun MM. Determinants of Schistosoma mansoni transmission in hotspots at the late stage of elimination in Egypt. Infect Dis Poverty 2022; 11:102. [PMID: 36138424 PMCID: PMC9503191 DOI: 10.1186/s40249-022-01026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In certain settings, the prevalence and severity of schistosoma infection do not lessen despite repeated rounds of preventative chemotherapy; these areas are known as hotspots. This study aimed to investigate the role of human practices, besides environmental and malacological factors, in the maintenance of the Schistosoma mansoni infection transmission chain in hotspot areas in Egypt. METHODS This cross-sectional study was conducted between July and November 2019 in Kafr El-Sheikh Governorate, Egypt. A pre-designed structured interviewing questionnaire was used to collect humanitarian data. Stool samples were collected from children aged 6-15 years on three successive days and examined using the Kato-Katz technique. Simultaneously, water and snail samples were taken from watercourses surrounding houses. Snails were identified based on their shell morphology and structure and tested for cercaria shedding. Water samples were analyzed for their physicochemical and biological characteristics. RESULTS A total of 2259 fecal samples (1113 in summer and 1146 in fall) were collected from 861 children. About 46.9% of the participants were males, and 31.8% were aged 6-10 years. The prevalence of S. mansoni infection was higher during the summer than during the fall (19.1% vs 7.2%, respectively, P < 0.01). The intensity of infection (light, moderate, and heavy) during summer versus fall was (93.55 vs 89.38%, 6.45 vs 8.85%, and 0.00% vs 1.77%), respectively (P < 0.05). A higher prevalence of human infection was observed among males than females [OR = 1.63, 95% confidence interval (CI):1.10-2.40, P = 0.015], children aged 11-15 years than among their counterparts aged 6-10 years (OR = 2.96, 95% CI: 1.72-5.06, P < 0.001), and mothers with a low level of education (OR = 3.33, 95% CI: 1.70-6.52, P < 0.001). The main identified risk factors were contacting the main body of water-canal for washing clothes (OR = 1.81, 95% CI: 1.12-2.49, P = 0.015), land irrigation (OR = 2.56, 95% CI: 1.32-4.96, P = 0.004), water collection (OR = 2.94, 95% CI: 1.82-4.73, P < 0.001), bathing (OR = 2.34, 95% CI: 1.21-4.31, P = 0.009), and garbage disposal (OR = 2.38, 95% CI:1.38-4.12, P < 0.001). The count of Biomphalaria alexandrina was distinct between seasons (P < 0.01) in consistent with statistically significant differences in water temperature, salinity, turbidity, the total concentration of coliforms, depth, velocity, and water level (P < 0.01). The presence of grasses and duckweeds was significantly associated with snail infection (P = 0.00 l). Significant effects of water depth, pH, temperature, and total dissolved solids on snail count were also observed (P < 0.05). CONCLUSIONS The persistence of the infection is due to adoption of risky behaviors and environmental factors that enhance snail survival and infection. Schistosomiasis elimination in hotspots requires an integrated control approach that combines preventive chemotherapy with other complementary measures.
Collapse
|
9
|
Ibrahim AM, Hussein AAA. Toxicological impact of organophosphorus Chlorpyrifos 48%EC pesticide on hemocytes, biochemical disruption, and molecular changes in Biomphalaria alexandrina snails. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105154. [PMID: 35973759 DOI: 10.1016/j.pestbp.2022.105154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Organophosphorus pesticides like Chlorpyrifos 48%EC were widely used to control agricultural pests. The present study aimed to evaluate the toxic effects of Chlorpyrifos 48%EC on B. alexandrina snails, the intermediate host of Schistosoma mansoni. After exposure of snails to serial concentrations to determine the LC50, thirty snails for each sublethal concentration (LC10 2.1 and LC25 5.6 mg/l) in each group were exposed for 24 h followed by another 24 h for recovery. After recovery random samples were collected from hemolymph and tissue to measure the impacts on Phagocytic index, histological, biochemical, and molecular parameters. The current results showed a toxic effect of Chlorpyrifos 48%EC on adult B. alexandrina snails after 24 h of exposure at LC50 9.6 mg/l. After exposure to the sub-lethal concentrations of this pesticide, it decreased the total number of hemocytes and the percentage of small cells, while increased the percentage of hyalinocytes. The granulocyte percentage was increased after exposure to LC10, while after LC25, it was decreased compared to the control group. Also, the light microscopical examination showed that some granulocytes have plenty of granules, vacuoles and filopodia. Some hyalinocytes were contained shrinked nuclei, incomplete cell division and forming pseudopodia. Besides, the phagocytic index of hemocytes was significantly increased than control in all treated groups. Also, these sub-lethal concentrations increased MDA and SOD activities, while, tissue NO, GST and TAC contents were significantly decreased after exposure. Levels of Testosterone (T) and Estradiol (E) were increased significantly after exposure compared with control group. The present results showed that the concentration of DNA and RNA was highly decreased after exposure to LC10, 25 than the control group. Therefore, B. alexandrina snails could be used as a bio monitor of the chemical pollution. Besides, this pesticide could reduce the transmission of schistosomiasis as it altered the biological system of these snails.
Collapse
|
10
|
Abdalla AM, Abdel Karim GSA. Biochemical characterization and peptide mass fingerprinting of two glutathione transferases from Biomphalaria alexandrina snails (Gastropoda: Planorbidae). J Genet Eng Biotechnol 2022; 20:99. [PMID: 35792934 PMCID: PMC9259769 DOI: 10.1186/s43141-022-00372-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/08/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The freshwater snails Biomphalaria alexandrina (Gastropoda: Planorbidae) has public health importance of being an intermediate host of Schistosoma mansoni, the parasite species that causes intestinal schistosomiasis in humans. Glutathione transferases (GSTs) play an important role in detoxification of a broad range of compounds including secondary metabolites and exogenous compounds. Studying GSTs in snails may clarify their role in detoxification of molluscicides. RESULTS Two glutathione transferases (BaGST2 and BaGST3) were purified and characterized from B. alexandrina snails. BaGST2 and BaGST3 were electrophoretically homogeneous preparations with subunit molecular weight of 23.6 kDa and molecular weight of 45 kDa. Isoelectric focusing of BaGST2 revealed the presence of two components at pI 4.47 and 4.67, while BaGST3 showed one band at pI 4.17. The specific activity of BaGST2 and BaGST3 toward 1-chloro-2,4-dinitrobenzene (CDNB) was 19.0 and 45.2 μmol/min/mg protein following 146- and 346-fold purification, respectively. The catalytic pH optima, km values, and the activation energies for BaGST2 and BaGST3 were determined. BaGST2 and BaGST3 were significantly inhibited by hematin and Cibacron Blue and to a less extent by bromosulfophthalein, S-butyl-GSH, S-hexyl-GSH, and S-P-bromobenzyl-GSH. BaGST2 and BaGST3 showed high activity against ethacrynic acid as substrate, and they also exhibited peroxidase activity on cumene hydroperoxide. The two enzymes showed identical patterns of lysine-C digestion after high-performance liquid chromatography. The amino acid sequences of three peptide fragments and peptide mass fingerprinting of fourteen peptides were used to predict the primary structure of BaGST2. A polypeptide of 206 amino acids (with 7 gaps, 3 of which could not identified) was predicted for BaGST2. The theoretical subunit molecular weight of BaGST2 is 22.6 kDa, with pI of 8.58. BaGST2 has 65% sequence identity and 78% positive with Biomphalaria glabrata GST7. The overall structure of BaGST2 at the N-terminal domain is identical to the canonical GST N-terminal domain, having the typical thioredoxin-like fold with a βαβ-α-ββα motif, whereas the C-terminal domain is made from 6 α-helices. A conservative GST-N-domain includes glutathione binding sites Y11, L17, Q53, M54, Q65, and S66, while a variable GST-C domain contains electrophilic substrate binding site H99, R102, A103, F106, K107, L161, and Y167. Phylogenetic tree showed that BaGST2 was clustered in the sigma group with GSTs sigma class from invertebrates and vertebrates. CONCLUSIONS We have purified and characterized two GSTs from B. alexandrina snails. Our study broadens the biochemical information on freshwater snail GSTs by demonstrating the role of BaGSTs in defense mechanisms against structurally different electrophilic compounds. BaGST2 and BaGST3 have Se-independent peroxidase activity, which indicates their role in cellular antioxidant defense by reducing organic hydroperoxides in B. alexandrina. A polypeptide chain of 206 amino acids was predicted. The primary structure of BaGST2 showed 65% sequence identity with Biomphalaria glabrata GST7. Sequence analysis indicates that BaGST2 is a GST-N-sigma-like with a thioredoxin-like superfamily. Phylogenetic tree confirms that BaGST2 belongs to the sigma class of GSTs superfamily.
Collapse
|
11
|
Immunotoxical, neurotoxical, histopathological and immunohistopathological alterations of Nerium oleander and Tecoma stans methanolic extract on Biomphalaria alexandrina snails. Acta Trop 2022; 230:106405. [PMID: 35296391 DOI: 10.1016/j.actatropica.2022.106405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 01/20/2023]
Abstract
Schistosomiasis is a severe illness that caused socioeconomic problems. The present study aimed to investigate the molluscicidal activities of the methanolic extract of Nerium oleander and Tecoma stans on B. alexandrina snails. The present results showed that N. oleander had the higher molluscicidal effect (LC50: 138.6 mg/l) than T. stans methanolic extract (LC50: 256.0 mg/l). These concentrations had no mortality effects on Daphnia magna during the first 12 h of the exposure, while, they had a cercaricidal activity. Exposure of B. alexandrina snails to the sub lethal concentrations (LC10 and LC25) of the methanolic extract of either N. oleander or T. stans caused a concentration- dependent significant decrease in their mean total number of hemocyte and hyalinocytes percent, while, both the round small and the granulocytes were increased than the control group. Exposure of B. alexandrina snails to LC25 of the methanolic extract of N. oleander or T. stans, caused morphological alterations in the hemocytes that were studied by both light and electron microscopy. The sub lethal concentration (LC25) significantly decreased the acetyl cholinesterase activities, acid and alkaline phosphatase levels and the protein content. Histopathological changes occurred in the digestive and the hermaphrodite glands of exposed B. alexandrina snails to LC25 of the methanolic extracts. These alterations were confirmed by Immunohistochemistry for PCNA and Cyclin D1 expressions. Conclusively, these plants could be used to decrease the spread of schistosomiasis as they are cheap and environmentally safe to replace the synthetic molluscicides for snail control.
Collapse
|
12
|
Mekawey AAI, Salah AM, Yosri M. A Study on the Bio-responses of a Freshwater Snail ( Biomphalaria alexandrina) to Fungal-derived Compounds. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:139-153. [PMID: 35692160 DOI: 10.2174/2772434417666220610110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Biomphalaria alexandrina snails, as transitional hosts of schistosomiasis, plays an essential part in the spread of the illness. Control of these snails by the substance molluscicides antagonistically influences the oceanic climate, causing poisonous and cancer-causing consequences for non-target life forms. OBJECTIVE Looking for new naturally safe substances that can treat schistosomiasis disease with minimal side effects on the environment and plants, fish wealth and do not affect vital human functions. METHODS Fifty fungal species were used to evaluate their activity against Biomphalaria alexandrina. Study the effect of the fungal extract on vital functions of Biomphalaria alexandrina and fish wealth. Purification of active substances and identification of their chemical structures. RESULTS Cladosporium nigrellum and Penicillium aurantiogresium metabolites were effective against B. alexandrina snails, and the effects of promising fungal extracts sublethal concentrations (IC10 & IC25) on the levels of steroid sex hormones, liver enzymes, total protein, lipids, albumin and glucose were determined. Chemical analyses of this filtrate separated a compound effective against snails; it was identified. Protein electrophoresis showed that fungal filtrate affects the protein pattern of snails' haemolymph. Little or no mortality of Daphnia pulex individuals was observed after their exposure to sublethal concentrations of each treatment. CONCLUSION Certain compounds from fungal cultures could be safely used for biological control of Biomphalaria alexandrina snails.
Collapse
|
13
|
Rolón-Martínez S, Habib MR, Mansour TA, Díaz-Ríos M, Rosenthal JJC, Zhou XN, Croll RP, Miller MW. FMRF-NH 2 -related neuropeptides in Biomphalaria spp., intermediate hosts for schistosomiasis: Precursor organization and immunohistochemical localization. J Comp Neurol 2021; 529:3336-3358. [PMID: 34041754 PMCID: PMC8273141 DOI: 10.1002/cne.25195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022]
Abstract
Freshwater snails of the genus Biomphalaria serve as intermediate hosts for the digenetic trematode Schistosoma mansoni, the etiological agent for the most widespread form of intestinal schistosomiasis. As neuropeptide signaling in host snails can be altered by trematode infection, a neural transcriptomics approach was undertaken to identify peptide precursors in Biomphalaria glabrata, the major intermediate host for S. mansoni in the Western Hemisphere. Three transcripts that encode peptides belonging to the FMRF-NH2 -related peptide (FaRP) family were identified in B. glabrata. One transcript encoded a precursor polypeptide (Bgl-FaRP1; 292 amino acids) that included eight copies of the tetrapeptide FMRF-NH2 and single copies of FIRF-NH2 , FLRF-NH2 , and pQFYRI-NH2 . The second transcript encoded a precursor (Bgl-FaRP2; 347 amino acids) that comprised 14 copies of the heptapeptide GDPFLRF-NH2 and 1 copy of SKPYMRF-NH2 . The precursor encoded by the third transcript (Bgl-FaRP3; 287 amino acids) recapitulated Bgl-FaRP2 but lacked the full SKPYMRF-NH2 peptide. The three precursors shared a common signal peptide, suggesting a genomic organization described previously in gastropods. Immunohistochemical studies were performed on the nervous systems of B. glabrata and B. alexandrina, a major intermediate host for S. mansoni in Egypt. FMRF-NH2 -like immunoreactive (FMRF-NH2 -li) neurons were located in regions of the central nervous system associated with reproduction, feeding, and cardiorespiration. Antisera raised against non-FMRF-NH2 peptides present in the tetrapeptide and heptapeptide precursors labeled independent subsets of the FMRF-NH2 -li neurons. This study supports the participation of FMRF-NH2 -related neuropeptides in the regulation of vital physiological and behavioral systems that are altered by parasitism in Biomphalaria.
Collapse
|
14
|
Rosa-Casillas M, de Jesús PM, Vicente Rodríguez LC, Habib MR, Croll RP, Miller MW. Identification and localization of a gonadotropin-releasing hormone-related neuropeptide in Biomphalaria, an intermediate host for schistosomiasis. J Comp Neurol 2021; 529:2347-2361. [PMID: 33368267 DOI: 10.1002/cne.25099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/22/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Freshwater snails of the genus Biomphalaria serve as obligatory hosts for the digenetic trematode Schistosoma mansoni, the causative agent for the most widespread form of intestinal schistosomiasis. Within Biomphalaria, S. mansoni larvae multiply and transform into the cercariae form that can infect humans. Trematode development and proliferation is thought to be facilitated by modifications of host behavior and physiological processes, including a reduction of reproduction known as "parasitic castration." As neuropeptides participate in the control of reproduction across phylogeny, a neural transcriptomics approach was undertaken to identify peptides that could regulate Biomphalaria reproductive physiology. The present study identified a transcript in Biomphalaria alexandrina that encodes a peptide belonging to the gonadotropin-releasing hormone (GnRH) superfamily. The precursor and the predicted mature peptide, pQIHFTPDWGNN-NH2 (designated Biom-GnRH), share features with peptides identified in other molluscan species, including panpulmonates, opisthobranchs, and cephalopods. An antibody generated against Biom-GnRH labeled neurons in the cerebral, pedal, and visceral ganglia of Biomphalaria glabrata. GnRH-like immunoreactive fiber systems projected to all central ganglia. In the periphery, immunoreactive material was detected in the ovotestis, oviduct, albumen gland, and nidamental gland. As these structures serve crucial roles in the production, transport, nourishment, and encapsulation of eggs, disruption of the GnRH system of Biomphalaria could contribute to reduced reproductive activity in infected snails.
Collapse
|
15
|
Effect of methyl gallate on immune response of Biomphalaria alexandrina (Ehrenberg, 1831) snails to infection with Schistosoma mansoni (Sambon, 1907). Parasitol Res 2021; 120:1011-1023. [PMID: 33409634 DOI: 10.1007/s00436-020-07037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Schistosomiasis still affects a lot of people in many developing countries. Reducing the disease dissemination has been the target of various studies. As methyl gallate has antioxidant properties, it is assumed that it can be a good candidate for stimulating the immune response of snails. So, the aim of this work is to investigate the potential of using methyl gallate as an immunostimulant to Biomphalaria alexandrina snails in order to prevent the development of invading miracidia into infective cercariae. The infected snails were exposed to three concentrations of methyl gallate for two periods: 24 and 72 h. The results indicated that the most effective concentration was the lowest one: 125 mg/L of methyl gallate for 72 h, as it reduced both infection rate and mean number of shed cercariae. Also, it increased the total number of snails' hemocytes in hemolymph, which were observed in head-foot region and digestive gland of treated snails surrounding degenerated sporocysts and cercariae. In addition, hydrogen peroxide showed its highest content in tissues of snails exposed to 125 mg/L of methyl gallate for 72 h. In conclusion, methyl gallate can be considered as one of the most promising immunostimulants of B. alexandrina snails against infection with Schistosoma mansoni.
Collapse
|
16
|
Abdel-Azeem HH, Osman GY, El Garhy MF, Al Benasy KS. Efficacy of Miltefosine and Artemether on Infected Biomphalaria Alexandrina Snails with Schistosoma Mansoni: Immunological and Histological Studies. Helminthologia 2020; 57:335-343. [PMID: 33364902 PMCID: PMC7734665 DOI: 10.2478/helm-2020-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
Biomphalaria alexandrina snails have received much attention due to their great medical importance as vectors for transmitting Schistosoma mansoni infection to humans. The main objective of the present work was to assess the efficacy of miltefosin a synthetic molluscicidal drug and artemether a natural molluscicidal drug. The correlation between immunological and histological observations from light and electron microscopy of the hemocytes of B. alexandrina post treatment with both drugs was also evaluated. LC50 and LC90 values were represented by 13.80 ppm and 24.40 ppm for miltefosine and 16.88 ppm and 27.97 ppm for artemether, respectively. The results showed that the treatment of S. mansoni-infected snails and normal snails with sublethal dose of miltefosine (LC25=8.20 ppm) and artemether (LC25=11.04 ppm) induced morphological abnormalities and a significant reduction in hemocytes count.
Collapse
|
17
|
Habib MR, Ghoname SI, Ali RE, El-Karim RMG, Youssef AA, Croll RP, Miller MW. Biochemical and apoptotic changes in the nervous and ovotestis tissues of Biomphalaria alexandrina following infection with Schistosoma mansoni. Exp Parasitol 2020; 213:107887. [PMID: 32224062 DOI: 10.1016/j.exppara.2020.107887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 01/04/2020] [Accepted: 03/22/2020] [Indexed: 01/24/2023]
Abstract
Infection with trematodes produces physiological and behavioural changes in intermediate snail hosts. One response to infection is parasitic castration, in which energy required for reproduction of the host is thought to be redirected to promote development and multiplication of the parasite. This study investigated some reproductive and biochemical parameters in the nervous (CNS) and ovotestis (OT) tissues of Biomphalaria alexandrina during the course of Schistosoma mansoni infection. Antioxidant and oxidative stress parameters including catalase (CAT), nitric oxide (NO) and lipid peroxidation (MDA) were measured. Levels of steroid hormones, including testosterone, progesterone and estradiol, were also assessed. Finally, flow cytometry was used to compare measures of apoptosis between control snails and those shedding cercariae by examining mitochondrial membrane potential with the stain 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1) and poly(ADP-ribose) polymerase (PARP). Infection with S. mansoni caused a 47.7% reduction in the net reproductive rate (Ro) of B. alexandrina. CAT activity was increased in the CNS at 21 days post infection (dpi) but by 28 dpi it was reduced below control values. Also, CAT activity increased significantly in the OT at 14, 21 and 28 dpi. In CNS tissues, NO levels were reduced at 7 dpi, increased at 14 and 21 dpi, and reduced again at 28 dpi. The overall level of lipid peroxidation gradually increased during the course of infection to reach its highest levels at 28 dpi. Steroid hormone measurements showed that concentrations of testosterone and estradiol were reduced in the CNS tissues at 28 dpi, while those of progesterone were slightly increased in the CNS and OT tissues. The percentage of cells that positively stained with JC-1was significantly increased in CNS and OT tissues of infected snails while the percentage of cells positively stained with PARP was decreased compared to controls. Together, these findings indicate that infection initiates diverse biochemical and hormonal changes leading to loss of cells responsible for egg laying and reproduction in B. alexandrina.
Collapse
|
18
|
Abu El Einin HM, Ali RE, Gad El-Karim RM, Youssef AA, Abdel-Hamid H, Habib MR. Biomphalaria alexandrina: a model organism for assessing the endocrine disrupting effect of 17β-estradiol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23328-23336. [PMID: 31197669 DOI: 10.1007/s11356-019-05586-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
A wide range of endocrine disruptor compounds are routinely discharged to the ecosystem. Water contaminated with these compounds has a potential effect on the reproductive physiology of aquatic organisms as well as humans. In the present study, we tested the effect of the steroid estrogen, 17β-estradiol, on Biomphalaria alexandrina, a snail species that is widely distributed in Egypt and that acts as an intermediate host for the human blood fluke, Schistosoma mansoni. The effects of exposure to 0.3 mg/L and 1 mg/L 17β-estradiol on fecundity (MX) and reproductive rate (R0) of B. alexandrina were recorded. In addition, levels of steroid sex hormones and antioxidants in the hemolymph and ovotestis (OT) of exposed snails were measured. Histopathological changes in the OT of B. alexandrina were also investigated. Exposure to 0.3 mg/L and 1 mg/L 17β-estradiol caused a significant increase in the number of egg masses per snail after 3 weeks and 1 week of exposure for the two tested concentrations compared with unexposed controls. An increase in the levels of progesterone hormone was recorded in the hemolymph of exposed snails in comparison with unexposed controls. Additionally, levels of the antioxidant enzyme glutathione (GSH) were increased in the hemolymph and OT tissues of snails after 2 and 4 weeks of exposure. Histopathological sections in the OT revealed an increase in the oocyte and a decrease in the sperm densities after 2 weeks and this effect was restored to normal conditions after 4 weeks of exposure to both tested concentrations. The current results indicate that B. alexandrina is sensitive to 17β-estradiol and can therefore be used as bioindicator and model organism for the assessment of water pollution with endocrine disruptor compounds.
Collapse
|
19
|
Ibrahim AM, Bakry FA. Assessment of the molluscicidal impact of extracted chlorophyllin on some biochemical parameters in the nervous tissue and histological changes in Biomphalaria alexandrina and Lymnaea natalensis snails. INVERTEBRATE NEUROSCIENCE 2019; 19:7. [PMID: 31352500 DOI: 10.1007/s10158-019-0230-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 11/27/2022]
Abstract
Biomphalaria alexandrina and Lymnaea natalensis snails are the intermediate hosts of schistosomiasis and fasciolosis. The aim of the present study is to evaluate the molluscicidal activity of chlorophyll extract as a photodynamic substance against these snails and how it affected its tissues and the biological system. Chlorophyllin was extracted from deep-frozen Moringa oleifera leaves, and then it was transformed into water-soluble chlorophyllin. The present results showed that it had a molluscicidal activity on B. alexandrina snails (LC50 17.6 mg/l; LC90 20.9 mg/l) and L. natalensis snails (LC50 4.3 mg/l; LC90 6.8 mg/l). Exposing B. alexandrina snails to the sublethal concentrations (LC0, LC10, and LC25) resulted in a significant reduction in their survival rates. Regarding its effect on biochemical parameters, chlorophyllin significantly reduced the acetylcholinesterase activity, protein content, and alkaline and acid phosphatase activity in B. alexandrina nervous tissue compared to the control group. Histopathological changes occurred in the digestive gland of treated B. alexandrina snails where cells lost their nuclei, vacuolated, degenerated, and ruptured, and the lumen increased. Photosynthesizing materials like chlorophyllin are new approaches to control schistosomiasis and fasciolosis in developing countries by affecting their intermediate host. These materials were cheap and environmentally safe to replace the synthetic molluscicides for snail control.
Collapse
|
20
|
Jia TW, Wang W, Sun LP, Lv S, Yang K, Zhang NM, Huang XB, Liu JB, Liu HC, Liu RH, Gawish FA, Habib MR, El-Emam MA, King CH, Zhou XN. Molluscicidal effectiveness of Luo-Wei, a novel plant-derived molluscicide, against Oncomelania hupensis, Biomphalaria alexandrina and Bulinus truncatus. Infect Dis Poverty 2019; 8:27. [PMID: 31014390 PMCID: PMC6480903 DOI: 10.1186/s40249-019-0535-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/18/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Control of snail intermediate hosts has been proved to be a fast and efficient approach for interrupting the transmission of schistosomiasis. Some plant extracts have shown obvious molluscicidal activity, and a new compound Luo-Wei, also named tea-seed distilled saponin (TDS), was developed based on the saponins extracted from Camellia oleifera seeds. We aimed to test the molluscicidal activity of 4% TDS against the intermediate host snails in China and Egypt, and evaluate its environmental safety to non-target organisms. METHODS In the laboratory, Oncomelania hupensis, Biomphalaria alexandrina and Bulinus truncatus were exposed to 4% TDS, and the median lethal concentration (LC50) was estimated at 24, 48 and 72 h. In the field, snail mortalities were assessed 1, 2, 3 and 7 d post-immersion with 2.5 g/m3 4% TDS and 1, 3, 7 and 15 d post-spraying with 5 g/m2 4% TDS. In addition, the acute toxicity of 4% TDS to Japanese quail (Coturnix japonica), zebrafish (Brachydanio rerio) and freshwater shrimp (Macrobrachium nipponense) was assessed by estimations of LC50 or median lethal dose (LD50). RESULTS In the laboratory, the LC50 values of 4% TDS for O. hupensis were 0.701, 0.371 and 0.33 mg/L at 24, 48 and 72 h, respectively, and 4% TDS showed a 1.975 mg/L [corrected] 24 h LC50 against B. alexandrina, and a 1.396 mg/L 24 h LC50 against B. truncatus. Across all study regions, the pooled mortalities of O. hupensis were 72, 86, 94 and 98% at 1, 2, 3 and 7 d, following field immersion of 4% TDS at a dose of 2.5 g/m3, and were 69, 77, 85 and 88% at 1, 3, 7 and 15 d, following field spraying at 5 g/m2, respectively. 4% TDS had moderate toxicity to Japanese quail (7 d LD50 > 60 mg/kg) and to shrimp (96 h LC50 = 6.28 mg/L; 95% CI: 3.53-11.2 mg/L), whereas its toxicity to zebrafish was high (96 h LC50 = 0.15 mg/L; 95% CI: 0.14-0.17 mg/L). CONCLUSIONS 4% TDS is active against O. hupensis, B. alexandrina and B. truncatus under laboratory and field conditions, and it may be a candidate molluscicide of plant origin.
Collapse
|
21
|
Ibrahim AM, Sayed DA. Toxicological impact of oxyfluorfen 24% herbicide on the reproductive system, antioxidant enzymes, and endocrine disruption of Biomphalaria alexandrina (Ehrenberg, 1831) snails. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7960-7968. [PMID: 30684178 DOI: 10.1007/s11356-019-04251-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Oxyfluorfen (Goal 24%EC) herbicide is widely used in agriculture for weed control. Biomphalaria alexandrina snails can be used as bioindicator of the chemical pollution in the aquatic environment. The objective of this study was to evaluate the molluscicidal activity of this herbicide on Biomphalaria alexandrina snails and how it affected its biological system. The present study revealed a molluscicidal effect of oxyfluorfen 24%EC on these snails at LC50 5.9 mg/l. After exposure of snails to the sub-lethal concentrations (LC0, LC10, or LC25) of this herbicide, the survival rates, reproductive rate (R0), and fecundity (Mx) of adult B. alexandrina snails were significantly decreased in comparison with the control group. Also, levels of testosterone and estradiol were decreased significantly. It caused alterations in the antioxidant system, where exposure to sub-lethal concentration of this herbicide caused significant increases in levels of lipid peroxide malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD), while it significantly decreased glutathione transferase (GST). Histopathological changes in the digestive gland included severe damage in the digestive cells, where, they lost their tips and some were degenerated, while the secretory cells increased in number. Regarding the hermaphrodite gland, there were losses of the connective tissues, irregular sperms, and the eggs degenerated. These findings concluded that B. alexandrina snails can be used as a bioindicator for pollution with pesticide in the aquatic environment.
Collapse
|
22
|
The potential effects of silver and gold nanoparticles as molluscicides and cercaricides on Schistosoma mansoni. Parasitol Res 2018; 117:3867-3880. [PMID: 30280220 DOI: 10.1007/s00436-018-6093-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023]
Abstract
Schistosomiasis seriously affects human health in tropical regions. Its prevention is more important than treatment, raising the need for effective control methods. Recently, the role of nanomaterials in medical science has been growing. The present study aimed to evaluate the potential effects of silver (Ag) and gold (Au) nanoparticles (NPs) on Biomphalaria alexandrina snails and Schistosoma mansoni cercariae in vitro and to assess their effects on the infectivity of cercariae in vivo. The in vitro study proved that Ag and Au NPs were effective in killing B. alexandrina snails, with 30 μg/ml Ag and 160 μg/ml Au causing 100% mortality. The LC50 of 9.68 μg/ml for Ag NPs and 133.7 μg/ml for Au NPs prevented snail infection with S. mansoni miracidia. Furthermore, Ag NPs at 50 μg/ml and Au NPs at 100 μg/ml increased the mortality of S. mansoni cercariae in a dose- and time-dependent manner, reaching 100% mortality after 1 h. The in vivo study found that Ag NPs prevented the occurrence of infection when cercariae were treated before the infection by either the tail immersion (TI) or subcutaneous (SC) route, as proven by parasitological parameters and by the absence of granuloma formation in hepatic tissue. Meanwhile, infection of mice by untreated cercariae followed by treatment with NPs 1 h post-infection (PI) caused a decrease in egg count/g intestine and egg count/g liver in the TI-infected group only. The oogram patterns and granuloma formation results were similar between infection control and the SC-infected group. On the other hand, Au NPs led to a decrease in total worm burden (TWB) in all tested groups, with a decrease in egg count/g intestine and egg count/g liver in TI-infected groups with either pre-treated or post-treated cercariae, in contrast to SC-infected groups. However, the oogram patterns and granuloma formation showed similar results to infection control. Ag and Au NPs have potential as molluscicides and cercaricides in vitro and can prevent or modulate the infectivity of cercariae in vivo.
Collapse
|
23
|
Abd El-Ghany AM, Salama A, Abd El-Ghany NM, Gharieb RMA. New Approach for Controlling Snail Host of Schistosoma mansoni, Biomphalaria alexandrina with Cyanobacterial Strains-Derived C-Phycocyanin. Vector Borne Zoonotic Dis 2018; 18:464-468. [PMID: 29920163 DOI: 10.1089/vbz.2018.2274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Schistosomiasis is one of the major communicable diseases of public health and socioeconomic importance in the developing world. It is a waterborne disease in which Biomphalaria alexandrina snails are known to be the intermediate molluscan host for Schistosoma mansoni: the causative agent of human intestinal schistosomiasis. Therefore, snail control is one of the cornerstones of schistosomiasis control programs. Several methods have been used to eliminate snail hosts. One of these methods is chemical molluscicides, which have undesirable effect to nontarget organisms. Consequently, the search for biologically derived molluscicides to complement the use of synthetic molluscicides is a top priority. In this concern, this study is the first to evaluate the molluscicidal potency of Cyanobacterial Phycocyanin (C-PC) as a virtually untapped source. Laboratory assessment of three freshwater Cyanobacterial strains: Anabaena oryzae SOS13, Nostoc muscorum SOS14, and Spirulina platensis SOS13-derived C-Phycocyanin as a biocontrol agent against freshwater mollusks; B. alexandrina snails were performed. Also, the safety of tested C-PC on nontarget organisms (Tilapia fish) was assessed. Results reveal that C-PC extracted from all tested Cyanobacteria strains showed a promising molluscicidal activity (the mortality rate was 100% at 100 μg/mL concentration). Out of the examined strains, A. oryzae SOS13 phycocyanin was found to be the most potent strain (LC50 and LC90 were 38.492 and 49.976 μg/mL, respectively). Moreover, C-PC extracts from all tested strains have been found to be safe to Tilapia fish as the survival rate was 100% at the effective molluscicidal concentrations. We can conclude that C-PC extracts are the first promising microbial biopesticides for the control of freshwater B. alexandrina snails.
Collapse
|
24
|
Vaasjo LO, Quintana AM, Habib MR, Mendez de Jesus PA, Croll RP, Miller MW. GABA-like immunoreactivity in Biomphalaria: Colocalization with tyrosine hydroxylase-like immunoreactivity in the feeding motor systems of panpulmonate snails. J Comp Neurol 2018; 526:1790-1805. [PMID: 29633264 DOI: 10.1002/cne.24448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/24/2022]
Abstract
The simpler nervous systems of certain invertebrates provide opportunities to examine colocalized classical neurotransmitters in the context of identified neurons and well defined neural circuits. This study examined the distribution of γ-aminobutyric acid-like immunoreactivity (GABAli) in the nervous system of the panpulmonates Biomphalaria glabrata and Biomphalaria alexandrina, major intermediate hosts for intestinal schistosomiasis. GABAli neurons were localized in the cerebral, pedal, and buccal ganglia of each species. With the exception of a projection to the base of the tentacle, GABAli fibers were confined to the CNS. As GABAli was previously reported to be colocalized with markers for dopamine (DA) in five neurons in the feeding network of the euopisthobranch gastropod Aplysia californica (Díaz-Ríos, Oyola, & Miller, 2002), double-labeling protocols were used to compare the distribution of GABAli with tyrosine hydroxylase immunoreactivity (THli). As in Aplysia, GABAli-THli colocalization was limited to five neurons, all of which were located in the buccal ganglion. Five GABAli-THli cells were also observed in the buccal ganglia of two other intensively studied panpulmonate species, Lymnaea stagnalis and Helisoma trivolvis. These findings indicate that colocalization of the classical neurotransmitters GABA and DA in feeding central pattern generator (CPG) interneurons preceded the divergence of euopisthobranch and panpulmonate taxa. These observations also support the hypothesis that heterogastropod feeding CPG networks exhibit a common universal design.
Collapse
|
25
|
Ibrahim AM, Ahmed AK, Bakry FA, Abdel-Ghaffar F. Hematological, physiological and genotoxicological effects of Match 5% EC insecticide on Biomphalaria alexandrina snails. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:1017-1022. [PMID: 29976004 DOI: 10.1016/j.ecoenv.2017.09.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 06/08/2023]
Abstract
Freshwater snails are used as brilliant biomarkers of aquatic ecosystem pollution by chemical compounds. The objective of this study is to highlight the ecotoxicological impacts of the insecticide Match 5%EC (its active ingredient is lufenuron 5% EC) on Biomphalaria alexandrina snails the intermediate host of Schistosoma mansoni in Egypt. The present investigation recorded a remarkable molluscicidal effect of lufenuron 5% EC on these snails and there was a decrease in total number of their hemocytes after exposure. Three morphologically distinct populations of circulating hemocytes were identified (round small cells, granulocytes and hyalinocytes) and results showed that some hyalinocytes had a shrunk nucleus and some were degenerated. Significant increase of transaminases (ALT and AST), while, a decrease of the total protein and albumin content in hemolymph was recorded. The results of alkaline comet assay in the present study demonstrated that lufenuron 5% EC has a genotoxic effect especially when its concentration increases. It can be concluded that Biomphalaria alexandrina snails can be used as bio monitor to screen the deleterious effects of lufenuron 5% EC insecticide as a cause of the environmental pollution, and this insecticide can be used in controlling schistosomiasis because of its molluscicidal effects on B. alexandrina snails.
Collapse
|