1
|
Zhang Y, Yeh LK, Zhang S, Call M, Yuan Y, Yasunaga M, Kao WWY, Liu CY. Wnt/β-catenin signaling modulates corneal epithelium stratification via inhibition of Bmp4 during mouse development. Development 2016; 142:3383-93. [PMID: 26443636 DOI: 10.1242/dev.125393] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of organs with an epithelial parenchyma relies on reciprocal mesenchymal-epithelial communication. Mouse corneal epithelium stratification is the consequence of a coordinated developmental process based on mesenchymal-epithelial interactions. The molecular mechanism underlying these interactions remains unclear. The Wnt/β-catenin signaling pathway is involved in fundamental aspects of development through the regulation of various growth factors. Here, we show that conditional ablation of either β-catenin (Ctnnb1(cKO)) or co-receptors Lrp5/6 (Lrp5/6(cKO)) in corneal stromal cells results in precocious stratification of the corneal epithelium. By contrast, ectopic expression of a murine Ctnnb1 gain-of-function mutant (Ctnnb1(cGOF)) retards corneal epithelium stratification. We also discovered that Bmp4 is upregulated in the absence of β-catenin in keratocytes, which further triggers ERK1/2 (Mapk3/1) and Smad1/5 phosphorylation and enhances transcription factor p63 (Trp63) expression in mouse corneal basal epithelial cells and in a human corneal epithelial cell line (HTCE). Interestingly, mouse neonates given a subconjunctival BMP4 injection displayed a phenotype resembling that of Ctnnb1(cKO). Conditional ablation of Bmp4 eradicates the phenotype produced in Ctnnb1(cKO) mice. Furthermore, ChIP and promoter-luciferase assays show that β-catenin binds to and suppresses Bmp4 promoter activity. These data support the concept that cross-talk between the Wnt/β-catenin/Bmp4 axis (in the stromal mesenchyme) and Bmp4/p63 signaling (in the epithelium) plays a pivotal role in epithelial stratification during corneal morphogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
91 |
2
|
Zhou J, Gao Y, Lan Y, Jia S, Jiang R. Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis. Development 2013; 140:4709-18. [PMID: 24173808 DOI: 10.1242/dev.099028] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cleft palate is one of the most common birth defects in humans. Whereas gene knockout studies in mice have shown that both the Osr2 and Pax9 transcription factors are essential regulators of palatogenesis, little is known about the molecular mechanisms involving these transcription factors in palate development. We report here that Pax9 plays a crucial role in patterning the anterior-posterior axis and outgrowth of the developing palatal shelves. We found that tissue-specific deletion of Pax9 in the palatal mesenchyme affected Shh expression in palatal epithelial cells, indicating that Pax9 plays a crucial role in the mesenchyme-epithelium interactions during palate development. We found that expression of the Bmp4, Fgf10, Msx1 and Osr2 genes is significantly downregulated in the developing palatal mesenchyme in Pax9 mutant embryos. Remarkably, restoration of Osr2 expression in the early palatal mesenchyme through a Pax9(Osr2KI) allele rescued posterior palate morphogenesis in the absence of Pax9 protein function. Our data indicate that Pax9 regulates a molecular network involving the Bmp4, Fgf10, Shh and Osr2 pathways to control palatal shelf patterning and morphogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
73 |
3
|
Jia S, Kwon HJE, Lan Y, Zhou J, Liu H, Jiang R. Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists. Dev Biol 2016; 420:110-119. [PMID: 27713059 DOI: 10.1016/j.ydbio.2016.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/01/2016] [Accepted: 10/02/2016] [Indexed: 01/08/2023]
Abstract
Mutations in MSX1 cause craniofacial developmental defects, including tooth agenesis, in humans and mice. Previous studies suggest that Msx1 activates Bmp4 expression in the developing tooth mesenchyme to drive early tooth organogenesis. Whereas Msx1-/- mice exhibit developmental arrest of all tooth germs at the bud stage, mice with neural crest-specific inactivation of Bmp4 (Bmp4ncko/ncko), which lack Bmp4 expression in the developing tooth mesenchyme, showed developmental arrest of only mandibular molars. We recently demonstrated that deletion of Osr2, which encodes a zinc finger transcription factor expressed in a lingual-to-buccal gradient in the developing tooth bud mesenchyme, rescued molar tooth morphogenesis in both Msx1-/- and Bmp4ncko/ncko mice. In this study, through RNA-seq analyses of the developing tooth mesenchyme in mutant and wildtype embryos, we found that Msx1 and Osr2 have opposite effects on expression of several secreted Wnt antagonists in the tooth bud mesenchyme. Remarkably, both Dkk2 and Sfrp2 exhibit Osr2-dependent preferential expression on the lingual side of the tooth bud mesenchyme and expression of both genes was up-regulated and expanded into the tooth bud mesenchyme in Msx1-/- and Bmp4ncko/ncko mutant embryos. We show that pharmacological activation of canonical Wnt signaling by either lithium chloride (LiCl) treatment or by inhibition of DKKs in utero was sufficient to rescue mandibular molar tooth morphogenesis in Bmp4ncko/ncko mice. Furthermore, whereas inhibition of DKKs or inactivation of Sfrp2 alone was insufficient to rescue tooth morphogenesis in Msx1-/- mice, pharmacological inhibition of DKKs in combination with genetic inactivation of Sfrp2 and Sfrp3 rescued maxillary molar morphogenesis in Msx1-/- mice. Together, these data reveal a novel mechanism that the Bmp4-Msx1 pathway and Osr2 control tooth organogenesis through antagonistic regulation of expression of secreted Wnt antagonists.
Collapse
|
Journal Article |
9 |
31 |
4
|
Saadi I, Das P, Zhao M, Raj L, Ruspita I, Xia Y, Papaioannou VE, Bei M. Msx1 and Tbx2 antagonistically regulate Bmp4 expression during the bud-to-cap stage transition in tooth development. Development 2013; 140:2697-702. [PMID: 23720046 DOI: 10.1242/dev.088393] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bmp4 expression is tightly regulated during embryonic tooth development, with early expression in the dental epithelial placode leading to later expression in the dental mesenchyme. Msx1 is among several transcription factors that are induced by epithelial Bmp4 and that, in turn, are necessary for the induction and maintenance of dental mesenchymal Bmp4 expression. Thus, Msx1(-/-) teeth arrest at early bud stage and show loss of Bmp4 expression in the mesenchyme. Ectopic expression of Bmp4 rescues this bud stage arrest. We have identified Tbx2 expression in the dental mesenchyme at bud stage and show that this can be induced by epithelial Bmp4. We also show that endogenous Tbx2 and Msx1 can physically interact in mouse C3H10T1/2 cells. In order to ascertain a functional relationship between Msx1 and Tbx2 in tooth development, we crossed Tbx2 and Msx1 mutant mice. Our data show that the bud stage tooth arrest in Msx1(-/-) mice is partially rescued in Msx1(-/-);Tbx2(+/-) compound mutants. This rescue is accompanied by formation of the enamel knot (EK) and by restoration of mesenchymal Bmp4 expression. Finally, knockdown of Tbx2 in C3H10T1/2 cells results in an increase in Bmp4 expression. Together, these data identify a novel role for Tbx2 in tooth development and suggest that, following their induction by epithelial Bmp4, Msx1 and Tbx2 in turn antagonistically regulate odontogenic activity that leads to EK formation and to mesenchymal Bmp4 expression at the key bud-to-cap stage transition.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
29 |
5
|
Swärd K, Sadegh MK, Mori M, Erjefält JS, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep 2013; 1:e00008. [PMID: 24303100 PMCID: PMC3831936 DOI: 10.1002/phy2.8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/15/2022] Open
Abstract
Caveolae are invaginations in the plasma membrane that depend on caveolins and cavins for maturation. Here, we investigated the pulmonary phenotype in mice lacking cavin-1. Bright field and electron-microscopy showed that the cavin-1-deficient mice lacked caveolae in the lung, had an increased lung tissue density, and exhibited hypertrophic remodeling of pulmonary arteries. The right ventricle of the heart moreover had an increased mass and the right ventricular pressure was elevated. A microarray analysis revealed upregulation of Arg1 and downregulation of Ddah1, molecules whose altered expression has previously been associated with pulmonary arterial hypertension. Taken together, this work demonstrates vascular remodeling and increased pulmonary blood pressure in cavin-1 deficient mice and associates this phenotype with altered expression of Arg1 and Ddah1.
Collapse
|
Journal Article |
12 |
28 |
6
|
Hirai T, Tanaka K, Togari A. α1-adrenergic receptor signaling in osteoblasts regulates clock genes and bone morphogenetic protein 4 expression through up-regulation of the transcriptional factor nuclear factor IL-3 (Nfil3)/E4 promoter-binding protein 4 (E4BP4). J Biol Chem 2014; 289:17174-83. [PMID: 24794868 DOI: 10.1074/jbc.m113.546135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies have demonstrated that the α1-adrenergic receptor (AR) plays an important role in regulating cell growth and function in osteoblasts. However, the physiological role of α1-AR signaling in bone metabolism is largely unknown. In this study, the stimulation of phenylephrine (PHE), a nonspecific α1-AR agonist, increased the transcriptional factor Nfil3/E4BP4 and led to the rhythmic expression of bone morphogenetic protein 4 (Bmp4) in MC3T3-E1 osteoblastic cells. We also showed that Bmp4 mRNA expression peaked in bone near zeitgeber time 8 in a 24-h rhythm. Furthermore, the expression of Nfil3 and Bmp4 displayed a circadian pattern with opposing phases, which suggested that Nfil3 repressed the expression of the Bmp4 gene during a circadian cycle. On a molecular level, both loss-of-function and gain-of-function experiments demonstrated that Nfil3/E4BP4 negatively regulated Bmp4 expression in osteoblasts. Furthermore, the systemic administration of PHE increased the expression of Nfil3 mRNA in bone, whereas it decreased that of Bmp4 mRNA. The expression of Bmp4 mRNA was decreased significantly by exposure to PHE, and this was concomitant with the increase in Nfil3 binding to the D-box-containing Bmp4 promoter region in MC3T3-E1 cells, which indicates that the expression of Nfil3 by α1-AR signaling can bind directly to the Bmp4 promoter and inhibit Bmp4 expression in osteoblasts. Our results suggest that α1-AR signaling regulates clock genes and Bmp4 expression in osteoblasts. Moreover, α1-AR signaling negatively regulated Bmp4 expression by up-regulating the transcriptional factor Nfil3/E4BP4 in osteoblasts.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
27 |
7
|
Suenaga M, Kurosawa N, Asano H, Kanamori Y, Umemoto T, Yoshida H, Murakami M, Kawachi H, Matsui T, Funaba M. Bmp4 expressed in preadipocytes is required for the onset of adipocyte differentiation. Cytokine 2013; 64:138-45. [PMID: 23911203 DOI: 10.1016/j.cyto.2013.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 12/19/2022]
Abstract
We previously revealed that endogenous bone morphogenetic protein (Bmp) activity is required for lipid accumulation in 3T3-L1 adipocytes. The present study characterized the role of endogenous Bmp activity in preadipocytes. Endogenous Bmp activity was monitored by analyzing the level of phosphorylation of Smad1/5/8, downstream molecules in the Bmp pathway. Higher levels of phosphorylated Smad1/5/8 were detected in adipogenic cells but not in non-adipogenic cells prior to differentiation induction. The inhibition of the Bmp pathway during this period decreased the expression of Pparγ2 and C/ebpα, which are transcription factors responsible for adipocyte differentiation. The expression of these transcription factors were also down-regulated by Bmp4 knockdown. In addition, endogenous Bmp4 was required for the repression of Intrleukin-11 expression. Endogenous Bmp4 in preadipocytes is indispensable for the onset of the adipogenic program, and may help to maintain the preadipocytic state during adipocyte differentiation.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
27 |
8
|
Modica S, Wolfrum C. The dual role of BMP4 in adipogenesis and metabolism. Adipocyte 2017; 6:141-146. [PMID: 28425843 PMCID: PMC5477726 DOI: 10.1080/21623945.2017.1287637] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/12/2017] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
BMP4 has a well-established role in triggering commitment of mesenchymal stem cells into the osteogenic and adipogenic linage. We recently described an additional dual function in adipogenesis: after promoting the formation of both white and brown pre-adipocytes, Bmp4 drives terminal differentiation into mature white rather than brown fat cells. Besides this, Bmp4 seems to have a dual role in metabolism either promoting or repressing oxidative metabolism in a cell context dependent manner.
Collapse
|
|
8 |
26 |
9
|
Huang J, Liu Y, Oltean A, Beebe DC. Bmp4 from the optic vesicle specifies murine retina formation. Dev Biol 2015; 402:119-26. [PMID: 25792196 DOI: 10.1016/j.ydbio.2015.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 01/30/2023]
Abstract
Previous studies of mouse embryos concluded that after the optic vesicle evaginates from the ventral forebrain and contacts the surface ectoderm, signals from the ectoderm specify the distal region of the optic vesicle to become retina and signals from the optic vesicle induce the lens. Germline deletion of Bmp4 resulted in failure of lens formation. We performed conditional deletion of Bmp4 from the optic vesicle to test the function of Bmp4 in murine eye development. The optic vesicle evaginated normally and contacted the surface ectoderm. Lens induction did not occur. The optic cup failed to form and the expression of retina-specific genes decreased markedly in the distal optic vesicle. Instead, cells in the prospective retina expressed genes characteristic of the retinal pigmented epithelium. We conclude that Bmp4 is required for retina specification in mice. In the absence of Bmp4, formation of the retinal pigmented epithelium is the default differentiation pathway of the optic vesicle. Differences in the signaling pathways required for specification of the retina and retinal pigmented epithelium in chicken and mouse embryos suggest major changes in signaling during the evolution of the vertebrate eye.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
22 |
10
|
Qiu Z, Elsayed Z, Peterkin V, Alkatib S, Bennett D, Landry JW. Ino80 is essential for proximal-distal axis asymmetry in part by regulating Bmp4 expression. BMC Biol 2016; 14:18. [PMID: 26975355 PMCID: PMC4790052 DOI: 10.1186/s12915-016-0238-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
Background Understanding how embryos specify asymmetric axes is a major focus of biology. While much has been done to discover signaling pathways and transcription factors important for axis specification, comparatively little is known about how epigenetic regulators are involved. Epigenetic regulators operate downstream of signaling pathways and transcription factors to promote nuclear processes, most prominently transcription. To discover novel functions for these complexes in axis establishment during early embryonic development, we characterized phenotypes of a mouse knockout (KO) allele of the chromatin remodeling Ino80 ATPase. Results Ino80 KO embryos implant, but fail to develop beyond the egg cylinder stage. Ino80 KO embryonic stem cells (ESCs) are viable and maintain alkaline phosphatase activity, which is suggestive of pluripotency, but they fail to fully differentiate as either embryoid bodies or teratomas. Gene expression analysis of Ino80 KO early embryos by in situ hybridization and embryoid bodies by RT-PCR shows elevated Bmp4 expression and reduced expression of distal visceral endoderm (DVE) markers Cer1, Hex, and Lefty1. In culture, Bmp4 maintains stem cell pluripotency and when overexpressed is a known negative regulator of DVE differentiation in the early embryo. Consistent with the early embryo, we observed upregulated Bmp4 expression and down-regulated Cer1, Hex, and Lefty1 expression when Ino80 KO ESCs are differentiated in a monolayer. Molecular studies in these same cells demonstrate that Ino80 bound to the Bmp4 promoter regulates its chromatin structure, which correlates with enhanced SP1 binding. These results in combination suggest that Ino80 directly regulates the chromatin structure of the Bmp4 promoter with consequences to gene expression. Conclusions In contrast to Ino80 KO differentiated cells, our experiments show that undifferentiated Ino80 KO ESCs are viable, but fail to differentiate in culture and in the early embryo. Ino80 KO ESCs and the early embryo up-regulate Bmp4 expression and down-regulate the expression of DVE markers Cer1, Hex and Lefty1. Based on this data, we propose a model where the Ino80 chromatin remodeling complex represses Bmp4 expression in the early embryo, thus promoting DVE differentiation and successful proximal-distal axis establishment. These results are significant because they show that epigenetic regulators have specific roles in establishing embryonic axes. By further characterizing these complexes, we will deepen our understanding of how the mammalian embryo is patterned by epigenetic regulators. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0238-5) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
18 |
11
|
Li J, Xu J, Cui Y, Wang L, Wang B, Wang Q, Zhang X, Qiu M, Zhang Z. Mesenchymal Sufu Regulates Development of Mandibular Molars via Shh Signaling. J Dent Res 2019; 98:1348-1356. [PMID: 31499014 DOI: 10.1177/0022034519872679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sonic hedgehog (Shh) in dental epithelium regulates tooth morphogenesis by epithelial-mesenchymal signaling transduction. However, the action of Shh signaling regulation in this process is not well understood. Here we find that mesenchymal Suppressor of Fused (Sufu), a major negative regulator of Shh signaling, plays an important role in modulating the tooth germ morphogenesis during the bud-to-cap stage transition. Deletion of Sufu in dental mesenchyme by Dermo1-Cre mice leads to delayed development of mandibular molar into cap stage with defect of primary enamel knot (EK) formation. We show the disruption of cell proliferation and programmed cell death in dental epithelium and mesenchyme in Sufu mutants. Epithelial-specific adhesion molecule E-cadherin is evidently reduced in the bilateral basal cells of tooth germ at E14.5. The cells in the presumptive EK, predominantly expressing P-cadherin, appear stratified but fail to condense. Moreover, the transcripts of primary EK marker genes, including Shh, Fgf4, and p21, are significantly decreased compared to controls. In contrast, we find that deficiency of Sufu results in elevation of Shh signaling in mesenchyme, indicated by the significant upregulation of Gli1 and Ptch1. Meanwhile, the expression of Bmp4 and Fgf3, the critical factors of mesenchymal-epithelial induction, is significantly inhibited in dental mesenchyme. Furthermore, the expression of Runx2 experiences a transient decrease at the bud stage. Taken together, these data suggest that mesenchymal Sufu is necessary for tuning the Shh signaling, which may act as an upstream modulator of Bmp4 and Fgf3 to coordinate the interplay between the dental mesenchyme and epithelium of tooth germ.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
17 |
12
|
Zhang C, Zuo Q, Wang M, Chen H, He N, Jin J, Li T, Jiang J, Yuan X, Li J, Shi X, Zhang M, Bai H, Zhang Y, Xu Q, Cui H, Chang G, Song J, Sun H, Zhang Y, Chen G, Li B. Narrow H3K4me2 is required for chicken PGC formation. J Cell Physiol 2020; 236:1391-1400. [PMID: 32749682 DOI: 10.1002/jcp.29945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/12/2023]
Abstract
The development of primordial germ cells (PGCs) undergoes epigenetic modifications. The study of histone methylation in regulating PGCs is beneficial to understand the development and differentiation mechanism of germ stem cells. Notably, it provides a theoretical basis for directed induction and mass acquisition in vitro. However, little is known about the regulation of PGC formation by histone methylation. Here, we found the high enrichment of H3K4me2 in the blastoderm, genital ridges, and testis. Chromatin immunoprecipitation sequencing was performed and the results revealed that genomic H3K4me2 is dynamic in embryonic stem cells, PGCs, and spermatogonial stem cells. This trend was consistent with the H3K4me2 enrichment in the gene promoter region. Additionally, narrow region triggered PGC-related genes (Bmp4, Wnt5a, and Tcf7l2) and signaling pathways (Wnt and transforming growth factor-β). After knocking down histone methylase Mll2 in vitro and vivo, the level of H3K4me2 decreased, inhibiting Cvh and Blimp1 expression, then repressing the formation of PGCs. Taken together, our study revealed the whole genome map of H3K4me2 in the formation of PGCs, contributing to improve the epigenetic study in PGC formation and providing materials for bird gene editing and rescue of endangered birds.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
15 |
13
|
Sá da Bandeira D, Kilpatrick AM, Marques M, Gomez-Salazar M, Ventura T, Gonzalez ZN, Stefancova D, Rossi F, Vermeren M, Vink CS, Beltran M, Henderson NC, Jung B, van der Linden R, van de Werken HJG, van Ijcken WFJ, Betsholtz C, Forbes SJ, Cuervo H, Crisan M. PDGFRβ + cells play a dual role as hematopoietic precursors and niche cells during mouse ontogeny. Cell Rep 2022; 40:111114. [PMID: 35858557 PMCID: PMC9638014 DOI: 10.1016/j.celrep.2022.111114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022] Open
Abstract
Hematopoietic stem cell (HSC) generation in the aorta-gonad-mesonephros region requires HSC specification signals from the surrounding microenvironment. In zebrafish, PDGF-B/PDGFRβ signaling controls hematopoietic stem/progenitor cell (HSPC) generation and is required in the HSC specification niche. Little is known about murine HSPC specification in vivo and whether PDGF-B/PDGFRβ is involved. Here, we show that PDGFRβ is expressed in distinct perivascular stromal cell layers surrounding the mid-gestation dorsal aorta, and its deletion impairs hematopoiesis. We demonstrate that PDGFRβ+ cells play a dual role in murine hematopoiesis. They act in the aortic niche to support HSPCs, and in addition, PDGFRβ+ embryonic precursors give rise to a subset of HSPCs that persist into adulthood. These findings provide crucial information for the controlled production of HSPCs in vitro.
PDGFRβ deletion affects hematopoietic development in the AGM in vivo The transcriptome and hematopoietic support of the PDGFRβ-KO niche are altered The osteogenic gene profile and differentiation of KO AGM MSCs are affected PDGFRβ+ early embryonic precursors contribute to EC and HSPC lineages in vivo
Collapse
|
|
3 |
14 |
14
|
Birt IA, Hagenauer MH, Clinton SM, Aydin C, Blandino P, Stead JD, Hilde KL, Meng F, Thompson RC, Khalil H, Stefanov A, Maras P, Zhou Z, Hebda-Bauer EK, Goldman D, Watson SJ, Akil H. Genetic Liability for Internalizing Versus Externalizing Behavior Manifests in the Developing and Adult Hippocampus: Insight From a Meta-analysis of Transcriptional Profiling Studies in a Selectively Bred Rat Model. Biol Psychiatry 2021; 89:339-355. [PMID: 32762937 PMCID: PMC7704921 DOI: 10.1016/j.biopsych.2020.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND For more than 16 years, we have selectively bred rats for either high or low levels of exploratory activity within a novel environment. These bred high-responder (bHR) and bred low-responder (bLR) rats model temperamental extremes, exhibiting large differences in internalizing and externalizing behaviors relevant to mood and substance use disorders. METHODS We characterized persistent differences in gene expression related to bHR/bLR phenotype across development and adulthood in the hippocampus, a region critical for emotional regulation, by meta-analyzing 8 transcriptional profiling datasets (microarray and RNA sequencing) spanning 43 generations of selective breeding (postnatal day 7: n = 22; postnatal day 14: n = 49; postnatal day 21: n = 21; adult: n = 46; all male). We cross-referenced expression differences with exome sequencing within our colony to pinpoint candidates likely to mediate the effect of selective breeding on behavioral phenotype. The results were compared with hippocampal profiling from other bred rat models. RESULTS Genetic and transcriptional profiling results converged to implicate multiple candidate genes, including two previously associated with metabolism and mood: Trhr and Ucp2. Results also highlighted bHR/bLR functional differences in the hippocampus, including a network essential for neurodevelopmental programming, proliferation, and differentiation, centering on Bmp4 and Mki67. Finally, we observed differential expression related to microglial activation, which is important for synaptic pruning, including 2 genes within implicated chromosomal regions: C1qa and Mfge8. CONCLUSIONS These candidate genes and functional pathways may direct bHR/bLR rats along divergent developmental trajectories and promote a widely different reactivity to the environment.
Collapse
|
research-article |
4 |
12 |
15
|
Kajioka D, Suzuki K, Nakada S, Matsushita S, Miyagawa S, Takeo T, Nakagata N, Yamada G. Bmp4 is an essential growth factor for the initiation of genital tubercle (GT) outgrowth. Congenit Anom (Kyoto) 2020; 60:15-21. [PMID: 30714224 DOI: 10.1111/cga.12326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
Abstract
The external genitalia are appendage organs outgrowing from the posterior body trunk. Murine genital tubercle (GT), anlage of external genitalia, initiates its outgrowth from embryonic day (E) 10.5 as a bud structure. Several growth factors such as fibroblast growth factor (FGF), Wnt and Sonic hedgehog (Shh) are essential for the GT outgrowth. However, the mechanisms of initiation of GT outgrowth are poorly understood. We previously identified bone morphogenetic protein (Bmp) signaling as a negative regulator for GT outgrowth. We show here novel aspects of Bmp4 functions for GT outgrowth. We identified the Bmp4 was already expressed in cloaca region at E9.5, before GT outgrowth. To analyze the function of Bmp4 at early stage for the initiation of GT outgrowth, we utilized the Hoxa3-Cre driver and Bmp4 flox/flox mouse lines. Hoxa3 Cre/+ ; Bmp4 flox/flox mutant mice showed the hypoplasia of GT with reduced expression of outgrowth promoting genes such as Wnt5a, Hoxd13 and p63, whereas Shh expression was not affected. Formation of distal urethral epithelium (DUE) marked by the Fgf8 expression is essential for controlling mesenchymal genes expression in GT and subsequent its outgrowth. Furthermore, Fgf8 expression was dramatically reduced in such mutant mice indicating the defective DUE formation. Hence, current results indicate that Bmp4 is an essential growth factor for the initiation of GT outgrowth independent of Shh signaling. Thus, Bmp4 positively regulates for the formation of DUE. The current study provides new insights into the function of Bmp signaling at early stage for the initiation of GT outgrowth.
Collapse
|
|
5 |
11 |
16
|
Tsaytler P, Liu J, Blaess G, Schifferl D, Veenvliet JV, Wittler L, Timmermann B, Herrmann BG, Koch F. BMP4 triggers regulatory circuits specifying the cardiac mesoderm lineage. Development 2023; 150:310518. [PMID: 37082965 DOI: 10.1242/dev.201450] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
Cardiac lineage specification in the mouse is controlled by TGFβ and WNT signaling. From fly to fish, BMP has been identified as indispensable heart inducer. A detailed analysis of the role of Bmp4 and its effectors Smad1/5, however, were still missing. We show that Bmp4 induces cardiac mesoderm formation in murine ESCs in vitro. Bmp4 first activates Wnt3 and up-regulates Nodal. pSmad1/5 and the WNT effector Tcf3 form a complex, and together with pSmad2/3 activate mesoderm enhancers and Eomes. They then cooperate with Eomes to consolidate the expression of many mesoderm factors, including T. Eomes and T form a positive feedback loop and open additional enhancers regulating early mesoderm genes, including the transcription factor Mesp1 establishing the cardiac mesoderm lineage. In parallel the neural fate is suppressed. Our data confirm the pivotal role of Bmp4 in cardiac mesoderm formation in the mouse. We describe in detail the consecutive and cooperative actions of three signaling pathways, BMP, WNT and Nodal, and their effector transcription factors, during cardiac mesoderm specification.
Collapse
|
|
2 |
11 |
17
|
Hirai T. Regulation of Clock Genes by Adrenergic Receptor Signaling in Osteoblasts. Neurochem Res 2017; 43:129-135. [PMID: 28752422 DOI: 10.1007/s11064-017-2365-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 01/16/2023]
Abstract
The clock system has been identified as one of the major mechanisms controlling cellular functions. Circadian clock gene oscillations also actively participate in the functions of various cell types including bone-related cells. Previous studies demonstrated that clock genes were expressed in bone tissue and also that their expression exhibited circadian rhythmicity. Recent findings have shown that sympathetic tone plays a central role in biological oscillations in bone. Adrenergic receptor (AR) signaling regulates the expression of clock genes in cancellous bone. Furthermore, α1-AR signaling in osteoblasts is known to negatively regulate the expression of bone morphogenetic protein-4 (Bmp4) by up-regulating nuclear factor IL-3 (Nfil3)/e4 promoter-binding protein 4 (E4BP4). The ablation of α1B-AR signaling also increases the expression of the Bmp4 gene in bone. The findings of transient overexpression and siRNA experiments have supported the involvement of the transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ, Cebpd) in Nfil3 and Bmp4 expression in MC3T3-E1 cells. These findings suggest that the effects of Cebpd are due to the circadian regulation of Bmp4 expression, at least in part, by the up-regulated expression of the clock gene Nfil3 in response to α1B-AR signaling in osteoblasts. Therefore, AR signaling appears to modulate cellular functionality through the expression of clock genes that are circadian rhythm regulators in osteoblasts. The expression of clock genes regulated by the sympathetic nervous system and clock-controlled genes that affect bone metabolism are described herein.
Collapse
|
Review |
8 |
8 |
18
|
Bottasso-Arias N, Leesman L, Burra K, Snowball J, Shah R, Mohanakrishnan M, Xu Y, Sinner D. BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L224-L242. [PMID: 34851738 PMCID: PMC8794023 DOI: 10.1152/ajplung.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tracheobronchomalacia and complete tracheal rings are congenital malformations of the trachea associated with morbidity and mortality for which the etiology remains poorly understood. Epithelial expression of Wls (a cargo receptor mediating Wnt ligand secretion) by tracheal cells is essential for patterning the embryonic mouse trachea's cartilage and muscle. RNA sequencing indicated that Wls differentially modulated the expression of BMP signaling molecules. We tested whether BMP signaling, induced by epithelial Wnt ligands, mediates cartilage formation. Deletion of Bmp4 from respiratory tract mesenchyme impaired tracheal cartilage formation that was replaced by ectopic smooth muscle, recapitulating the phenotype observed after epithelial deletion of Wls in the embryonic trachea. Ectopic muscle was caused in part by anomalous differentiation and proliferation of smooth muscle progenitors rather than tracheal cartilage progenitors. Mesenchymal deletion of Bmp4 impaired expression of Wnt/β-catenin target genes, including targets of WNT signaling: Notum and Axin2. In vitro, recombinant (r)BMP4 rescued the expression of Notum in Bmp4-deficient tracheal mesenchymal cells and induced Notum promoter activity via SMAD1/5. RNA sequencing of Bmp4-deficient tracheas identified genes essential for chondrogenesis and muscle development coregulated by BMP and WNT signaling. During tracheal morphogenesis, WNT signaling induces Bmp4 in mesenchymal progenitors to promote cartilage differentiation and restrict trachealis muscle. In turn, Bmp4 differentially regulates the expression of Wnt/β-catenin targets to attenuate mesenchymal WNT signaling and to further support chondrogenesis.
Collapse
|
research-article |
3 |
7 |
19
|
Tak HJ, Park TJ, Piao Z, Lee SH. Separate development of the maxilla and mandible is controlled by regional signaling of the maxillomandibular junction during avian development. Dev Dyn 2016; 246:28-40. [PMID: 27756109 DOI: 10.1002/dvdy.24465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Syngnathia is a congenital craniofacial disorder characterized by bony or soft tissue fusion of upper and lower jaws. Previous studies suggested some causative signals, such as Foxc1 or Bmp4, cause the disruption of maxillomandibular identity, but their location and the interactive signals involved remain unexplored. We wanted to examine the embryonic origin of syngnathia based on the assumption that it may be located at the separation between the maxillary and mandibular processes. This region, known as the maxillomandibular junction (MMJ), is involved in segregation of cranial neural crest-derived mesenchyme into the presumptive upper and lower jaws. RESULTS Here we investigated the role of Fgf, Bmp, and retinoid signaling during development of MMJ in chicken embryos. By changing the levels of these signals with bead implants, we induced syngnathia with microstomia on the treated side, which showed increased Barx1 and neural cell adhesion molecule (NCAM) expression. Redistribution of proliferating cells was also observed at the proximal region to maxillary and mandibular arch around MMJ. CONCLUSIONS We propose that interactive molecular signaling by Fgfs, Bmps, and retinoids around MMJ is required for normal separation of the maxilla and mandible, as well as the proper positioning of beak commissure during early facial morphogenesis. Developmental Dynamics 246:28-40, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
7 |
20
|
Kwon HJE, Park EK, Jia S, Liu H, Lan Y, Jiang R. Deletion of Osr2 Partially Rescues Tooth Development in Runx2 Mutant Mice. J Dent Res 2015; 94:1113-9. [PMID: 25916343 DOI: 10.1177/0022034515583673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tooth organogenesis depends on genetically programmed sequential and reciprocal inductive interactions between the dental epithelium and neural crest-derived mesenchyme. Previous studies showed that the Msx1 and Runx2 transcription factors are required for activation of odontogenic signals, including Bmp4 and Fgf3, in the early tooth mesenchyme to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 acts downstream of Msx1 to activate Fgf3 expression. Recent studies identified Osr2 as a repressor of tooth development and showed that inactivation of Osr2 rescued molar tooth morphogenesis in the Msx1(-/-) mutant mice as well as in mice with neural crest-specific inactivation of Bmp4. Here we show that Runx2 expression is expanded in the tooth bud mesenchyme in Osr2(-/-) mutant mouse embryos and is partially restored in the tooth mesenchyme in Msx1(-/-)Osr2(-/-) mutants in comparison with Msx1(-/-) and wild-type embryos. Whereas mandibular molar development arrested at the bud stage and maxillary molar development arrested at the bud-to-cap transition in Runx2(-/-) mutant mice, both mandibular and maxillary molar tooth germs progressed to the early bell stage, with rescued expression of Msx1 and Bmp4 in the dental papilla as well as expression of Bmp4, p21, and Shh in the primary enamel knot in the Osr2(-/-)Runx2(-/-) compound mutants. In contrast to the Msx1(-/-)Osr2(-/-) compound mutants, which exhibit nearly normal first molar morphogenesis, the Osr2(-/-)Runx2(-/-) compound mutant embryos failed to activate the expression of Fgf3 and Fgf10 in the dental papilla and exhibited significant deficit in cell proliferation in both the dental epithelium and mesenchyme in comparison with the control embryos. These data indicate that Runx2 synergizes with Msx1 to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 controls continued tooth growth and morphogenesis beyond the cap stage through activation of Fgf3 and Fgf10 expression in the dental papilla.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
7 |
21
|
Wnt1 signal determines the patterning of the diencephalic dorso-ventral axis. Brain Struct Funct 2015; 221:3693-708. [PMID: 26452989 DOI: 10.1007/s00429-015-1126-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022]
Abstract
The diencephalon is a complex brain area that derives from the caudal region of the prosencephalon. This structure is divided into four longitudinal neuroepithelial zones: roof, alar, basal and floor plates, which constitute its dorso-ventral (DV) columnar domains. Morphogenetic differences between alar and basal plates in the prosencephalon and mesencephalon contribute to the characteristic expansion of alar plate derivatives in the brain and the formation of the cephalic flexure. Although differential histogenesis among DV regions seems to be relevant in understanding structural and functional complexity of the brain, most of our knowledge about DV regionalization comes from the spinal cord development. Therefore, it seems of interest to study the molecular mechanisms that govern DV patterning in the diencephalon, the brain region where strong differences in size and complexity between alar and basal derivatives are evident in all vertebrates. Different morphogenetic signals, which induce specific progenitors fate to the neighboring epithelium, are involved in the spinal cord DV patterning. To study if Wnt1, one of these signaling molecules, has a role for the establishment of the diencephalic longitudinal domains, we carried out gain- and loss-of-function experiments, using mice and chick embryos. Our results demonstrated functional differences in the molecular mechanisms downstream of Wnt1 function in the diencephalon, in relation to the spinal cord. We further demonstrated that Bmp4 signal induces Wnt1 expression in the diencephalon, unraveling a new molecular regulatory code downstream of primary dorsalizing signals to control ventral regionalization in the diencephalon.
Collapse
|
|
10 |
5 |
22
|
Lee YY, Choi HJ, Lee SY, Park SY, Kang MJ, Han J, Han JS. Bcl-2 Overexpression Induces Neurite Outgrowth via the Bmp4/Tbx3/NeuroD1 Cascade in H19-7 Cells. Cell Mol Neurobiol 2020; 40:153-166. [PMID: 31493044 PMCID: PMC11448937 DOI: 10.1007/s10571-019-00732-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
Bcl-2 is overexpressed in the nervous system during neural development and plays an important role in modulating cell survival. In addition to its anti-apoptotic function, it has been suggested previously that Bcl-2 might act as a mediator of neuronal differentiation. However, the mechanism by which Bcl-2 might influence neurogenesis is not sufficiently understood. In this study, we aimed to determine the non-apoptotic functions of Bcl-2 during neuronal differentiation. First, we used microarrays to analyze the whole-genome expression patterns of rat neural stem cells overexpressing Bcl-2 and found that Bcl-2 overexpression induced the expression of various neurogenic genes. Moreover, Bcl-2 overexpression increased the neurite length as well as expression of Bmp4, Tbx3, and proneural basic helix-loop-helix genes, such as NeuroD1, NeuroD2, and Mash1, in H19-7 rat hippocampal precursor cells. To determine the hierarchy of these molecules, we selectively depleted Bmp4, Tbx3, and NeuroD1 in Bcl-2-overexpressing cells. Bmp4 depletion suppressed the upregulation of Tbx3 and NeuroD1 as well as neurite outgrowth, which was induced by Bcl-2 overexpression. Although Tbx3 knockdown repressed Bcl-2-mediated neurite elaboration and downregulated NeuroD1 expression, it did not affect Bcl-2-induced Bmp4 expression. While the depletion of NeuroD1 had no effect on the expression of Bcl-2, Bmp4, or Tbx3, Bcl-2-mediated neurite outgrowth was suppressed. Taken together, these results demonstrate that Bcl-2 regulates neurite outgrowth through the Bmp4/Tbx3/NeuroD1 cascade in H19-7 cells, indicating that Bcl-2 may have a direct role in neuronal development in addition to its well-known anti-apoptotic function in response to environmental insults.
Collapse
|
research-article |
5 |
5 |
23
|
Kawamura Y, Yamashita T, Yamauchi T, Matsumoto K, Sato K. Effects of thalidomide on Fgf8, Bmp4 and Hoxa11 expression in the limb bud in Kbl:JW rabbit embryos. Congenit Anom (Kyoto) 2014; 54:54-62. [PMID: 24344727 DOI: 10.1111/cga.12046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/08/2013] [Indexed: 11/30/2022]
Abstract
Thalidomide (TM) induces limb defects in humans and some animal species including rabbits. Although the mechanism of TM-induced limb defects has been investigated for a long period, the limb development-related genes expressions have not been vigorously characterized in rabbits. In this study, we investigated the Fgf8, Bmp4 and Hoxa11 expressions in TM-treated JW rabbit embryos on gestation days (GDs) 10, 11 and 12 by whole mount in situ hybridization. On GDs 10 and 11, growth retardation of the embryo was induced by TM treatment. The Fgf8 expression lengths on GDs 10 and 11 in the forelimb bud were significantly or tended to be decreased in the TM-treated embryos, which was correlated to the growth retardation and was not considered to be directly relevant to the teratogenic effect of TM in the forelimb. The TM-induced characteristic changes in the expression pattern of Hoxa11 and Bmp4 on GDs 10 and/or 11 were not noted. On GD 12, TM-induced growth retardation was not noted and the Fgf8 and Bmp4 expressions were not changed. On the contrary, Hoxa11 expression was narrowed at the anterior region, which was located on the radial side, and was not changed at the middle and posterior regions in the forelimb bud and in all regions in the hindlimb bud. Because the radius malformations were induced by TM treatment, we concluded the decrease in the Hoxa11 expression was related to the TM-induced limb defects and can be a good marker for early prediction of the teratogenic effect of TM.
Collapse
|
|
11 |
3 |
24
|
Identification and analysis of a novel bmp4 enhancer in Fugu genome. Arch Oral Biol 2015; 60:540-5. [PMID: 25594624 DOI: 10.1016/j.archoralbio.2014.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/18/2014] [Accepted: 12/07/2014] [Indexed: 12/24/2022]
Abstract
Spatiotemporal expression of bone morphogenetic protein 4 (Bmp4) in epithelial and mesenchymal cells is critical for the development of many organs including teeth. Since Bmp4 has a complex and widespread regulatory area in mammals, the tissue-specific enhancers that are responsible for mesenchymal expression of Bmp4 are difficult to identify in mammals. TakiFugu rubripes (Fugu, pufferfish) has a highly compact genome size and is widely used in comparative genomics studies of gene regulatory mechanisms. In this study, we used the Fugu genome to evaluate the 15kb promoter region upstream of the Fugu bmp4 gene. By DNA segmental cloning and luciferase assay with two dental odontoblast-like cell lines, a dental ameloblast-like cell line, and a kidney fibroblast cell line, we identified a 485bp cis-regulatory enhancer between -4213 and -3728bp of the Fugu bmp4 gene. This enhancer showed strong transcriptional activity in all three dental cell lines and, to a lesser extent, also in kidney fibroblast cells. Though not located in an evolutionary conserved region, the enhancer activity for the DNA segment is intense. This is the first time a bmp4 enhancer sequence with activity in both mesenchymal and epithelial cells has been identified, which will help to decode the mechanism of tooth development in vertebrates.
Collapse
|
|
10 |
2 |
25
|
Swärd K, Sadegh MK, Mori M, Erjefält JS, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep 2013. [PMID: 24303100 PMCID: PMC3831936 DOI: 10.1002/phy2.8,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Caveolae are invaginations in the plasma membrane that depend on caveolins and cavins for maturation. Here, we investigated the pulmonary phenotype in mice lacking cavin-1. Bright field and electron-microscopy showed that the cavin-1-deficient mice lacked caveolae in the lung, had an increased lung tissue density, and exhibited hypertrophic remodeling of pulmonary arteries. The right ventricle of the heart moreover had an increased mass and the right ventricular pressure was elevated. A microarray analysis revealed upregulation of Arg1 and downregulation of Ddah1, molecules whose altered expression has previously been associated with pulmonary arterial hypertension. Taken together, this work demonstrates vascular remodeling and increased pulmonary blood pressure in cavin-1 deficient mice and associates this phenotype with altered expression of Arg1 and Ddah1.
Collapse
|
research-article |
12 |
1 |